

Åbo Akademi University Umeå University

Industrial Chemistry & Reaction Engineering Technical Chemistry – Department of Chemistry

ALLINNA TEHNIKAÜLIKOOL

Ο

Ionic liquid mediated biomass deconstruction: from analysis challenges to fermentable sugars

Sari Hyvärinen,

M. Vaher, M.E. Lienque, D. Yu. Murzin, M. Kaljurand, M. Koel, and J.-P. Mikkola

The focus/aim of the research

Saccharides & their derivatives – why?

Background & reasons for this research work

> Climate change

 \rightarrow EU legislation to promote the biofuels &

renewable energy sources

Increased demand for oil, especially in Asia

 \rightarrow We should not be too dependent on oil

...Background

How about possibilities to compensate or substitute petrochemical based industry?

Replacing of some oil based industrial products with the ethanol based ones:

• E.g. Örnsköldsvik, Sweden in wartime

Paper mill cellulose \rightarrow Glc \rightarrow fermentation to EtOH \rightarrow used as fuel etc.

• USA and Brazil are interested in ethanol as a chemical feedstock \rightarrow

(e.g. ethylene from ethanol instead of olefins from petrochemical steam cracking)

SAMPLES

The studied LIGNOCELLULOSICS

Softwood from Central Finland:

•Scots pine (Pinus sylvestris)

•Norway spruce (Picea abies)

•Silver Birch (Betula pendula)

...and in Chile

Forest residues:

- Eucalyptus
- Lenga
 Nothofagus
 pumilio

- Corn
- Wheat straw

Sample collecting and sampling To be considered before collecting sample - Things that might affect the results

- heart wood vs. sapwood
- growing place (e.g. heavy metals in soil?)
- age of wood
- condition/healthy of wood (fungi etc.)
- height where sample is taken from (1.2 1.50 m)

 Usually samples should be free from reaction wood & compression wood, branches and knots

EXPERIMENTAL PROCEDURES

Experimental conditions & procedures:

IONIC LIQUIDS (ILs)

1-Ethyl-3-methylimidazolium chloride EmimCl or [emim]⁺[Cl]⁻

Molar mass:
Density
Melting point
Flash point:
Viscosity
Flame point
Solubility in wate

Very hygroscopic

146,62 g/mol 1,1120 g/cm³ (at 80 °C) 77-80 °C ← impurities effect 186 °C 47.4 mPas (at 80 °C) 515 °C ∞

Information concerning melting point varies in literature

1-Ethyl-3-methylimidazolium acetate EmimOAc or [emim]⁺ [CH₃COO]⁻

- Molar mass: 170,21 g/mol
- Density 1.027 g/cm³ at 25 °C
- Melting point > 30 °C
- Flash point: 164 °C
- Viscosity 10 mPas (at 80 °C)
- Solubility in water

 ∞

THE ANALYSIS METHODS (CE, GC & HPLC) AND COMPARISON OF THEM IN THIS PARTICULAR CASE

(FOR ANALYSIS OF CARBOHYDRATES & THEIR DEGRADATION PRODUCTS IN LIGNOCELLULOSIC SAMPLES IN THE PRESENCE OF IONIC LIQUIDS)

GC, HPLC & CE

GC analysis

Analysis of carbohydrates on extract Without acid methanolysis

- · calibration samples: STD sugars with xylitol in MeOH
- ISTD: xylitol instead of sorbitol
- \rightarrow Evaporation (N₂) + vacuum oven \rightarrow
- silylation:

pyridine, HMDS and TMCS

→ shaking (and <u>ultrasonic bath</u>)

CE analysis

- calibration: STD sugars + ISTD (e.g. sucrose)
- no derivatization/silylation needed
- liquid phase can be analyzed after centrifuging and filtering

HPLC analysis

- calibration samples in eluent solution
- no derivatization/silylation needed

Differences in analysis methods

...Sample results: HPLC analysis

Reliability problem with GC monosaccharide calibration

HPLC analysis

...Sample results: HPLC analysis

Chromatography involves a mass transfer process involving adsorption

CE (Capillary electrophoresis)

- Separates ions based on their electrophoretic mobility
- Electrophoretic mobility depends on the charge of the molecule, the viscosity, and the atom's radius.

CE (Capillary electrophoresis)

- Detector: diode array UV/Vis
- Background electrolyte/buffer solution:

130 mM NaOH containing 36 mM Na₂HPO₄

must always be fresh

Sample derivatization is not needed

 \rightarrow instead: dilution, centrifugation & filtration

CE calibration standards

A typical example of CE results

HMF

in pine, spruce and birch samples

Comparison summary (CE, HPLC, GC)

- CE analysis is the method of choice
- GC (+ STD sugar column) is unreliable when ILs are present: concentration of IL is critical
- HPLC suffers from peak overlapping

Conclusions

IL pretreatment leads to significant formation of HMF and in some cases furfural

(like all depolymerization/ degradation processes) – good indicator to follow up (e.g. fermentation inhibitors, degree of depolymerization, colorization ...)

Thank you!

Acknowledgements for funding:

- The Academy of Finland
- Raisio Oyj:n Tutkimussäätiö
- Cost action CM0903 (UbioChem)
- European Social Fund's Doctoral Studies and Internationalisation
 Programme DoRa (carried out by Foundation Archimedes)
- Åbo Akademis "Doktorandstudiernas slutskede"- stipend

ACADEMY OF FINLAND

RAISIC

RCHIMEDE

