

Interaction effects on deactivated exhaust aftertreatment catalysts run on biofuels

Sandra Dahlin

POKE Summer School

Saaremaa, August 2014

Sandra Dahlin – that's me

- 2014 201X: Ph.D. student at the division of Chemical Technology, KTH
 - started April 1st
- 2012 2014: Development engineer at Scania
 - Engine performance and emissions
- 2012: Graduated as M.Sc. in chemical engineering, KTH

 Master thesis at Scania – thermal ageing of SCR catalysts

SANDRA DAHLIN

Outline

- Overview
 - Emissions and emission challenges
 - Exhaust aftertreatment system
- Scope of my project
- Input to my project results from a Scania-project

Emissions from diesel engines

- Nitrogen oxides (NO_x)
- Particulate matter (PM)
- Carbon monoxide (CO)
- Hydrocarbons (HCs)
- Methane CH₄
- Carbon dioxide (CO₂)
- Laughing gas (nitrous oxide, N₂O)

Greenhouse gases

Regulated

pollutants

Increasingly stringent emission legislations.. PM (g/kWh)

Euro VI

- NOx
- PM (mass and number)
- CO
- HC
- *NH*₃

Beyond Eu VI..

Greenhouse gases

SANDRA DAHLIN

2014-08-26

Volvo Trucks Sweden, Utsläpp från lastbilar, http://www.volvotrucks.com/trucks/sweden-market/svse/aboutus/environment/our-trucks-andservices/Pages/Emissions-from-trucks.aspx

Emission reduction strategies

- Reduce the production of emissions
 - Engine tuning
 - Exhaust gas recirculation (EGR) to reduce NO_x production
- Exhaust aftertreatment
 - Catalysts/traps
 - Filters

Reducing greenhouse gas emissions

- Improve efficiency
- Alternative/renewable fuels

So what do we need to fulfill today and future emission legislations?

- Active and durable catalysts
- Change to *renewable* fuel

Scania's aftertreatment strategy

<u>http://www.fleetserv.com/our-</u> products/volvomack-mp7aftermarket-doc-oem-replacement/

Diesel oxidation catalyst (DOC)

- Oxidizes CO, hydrocarbons and some of the particulates into CO_2 and H_2O
- Oxidizes some NO into NO₂

Diesel particulate filter (DPF/CSF)

- Traps particulates (soot and ash)
- Regeneration of filter necessary with time due to pressure build-up
 - Passive (using NO₂)
 - Active
- Catalyzed or non-catalyzed

http://www.cambustion.com/engineeringservices/dpf-testing

Selective catalytic reduction (SCR) catalyst

- Reduces NOx to N₂ and H₂O
- Uses NH₃ as reduction agent
 - Water solution of urea (Adblue)used as NH₃ precursor

http://www.gasgoo.com/auto-images/airintake-exhaust-system-428/1411353.html

Standard reaction

Fast reaction

Slow reaction

Ammonia slip catalyst (ASC)

- Excess of NH₃ used for full conversion of NO_x
- ASC used downstream SCR to prevent NH₃ slip
 - Oxidizes NH₃ into N₂ and H₂O
 - Usually also have an SCR-ability and works thereby as an extension of the SCR catalyst

The DOC plays a key role in the system

- Takes care of unhealthy CO and hydrocarbons
- Oxidizes NO into NO₂
 - Facilitates particle filter regeneration
 - Promotes the fast SCR reaction → increases the NOx removal performance
- Often first in the exhaust system subjected to harsch (chemical) environment
- Deactivation of the DOC will affect the total performance of the system!!

Challenges

- Increased fuel diversity
- Catalyst deactivation
 - Thermal deactivation due to high exhaust temperatures
 - Chemical deactivation due to elements from oil or fuel e.g. Na, K, P
- Interaction between all exhaust treatment components

This project..

Interaction effects on deactivated exhaust aftertreatment catalysts run on biofuels

Focus of the project

How do the different catalysts in an exhaust treatment system interact when thermally and chemically aged under biofuel operation?

SANDRA DAHLIN

Tasks in the project

- Develope a lab-scale aging methodology to verify the effect of biodiesel on the total performance of the exhaust system
- Map deactivation mechanisms and interaction effects
 - Qualitatively, quantitatively
 - Identify clear limits regarding temperture and poisoning elements for the whole exhaust aftertreatment system

Input to my project

Effect of different fuels, fuel qualities and lube oils on chemical aging of exhaust catalysts

Na K Ca Mg P S Zn

Catalysts in focus

DOC, PtPd/Al₂O₃, samples from commercial monolith

Experimental design

- Poisoning effect
 - -1: Small poisoning effect
 - +1: Large poisoining effect
- Reduced factorial design 27-2
- Randomized sequence
- 6 replicates
- ∑ 38 observations

→ Which poisons give rise to a significant effect on NO oxidation?

→ Are there any significant interaction effects?

	Ρ	S	Zn	Na	Mg	Ca	К
	1 -1	-1	-1	-1	-1	1	1
	2 -1	-1	-1	-1	1	1	-1
	3 -1	-1	-1	1	-1	-1	-1
	4 -1	-1	-1	1	1	-1	1
	5 -1	-1	1	-1	-1	-1	1
	6 -1	-1	1	-1	1	-1	-1
	7 -1	-1	1	1	-1	1	-1
	8 -1	-1	1	1	1	1	1
	9 -1	1	-1	-1	-1	-1	-1
1	10 -1	1	-1	-1	1	-1	1
1	1 1 -1	1	-1	1	-1	1	1
1	12 -1	1	-1	1	1	1	-1
1	13 -1	1	1	-1	-1	1	-1
1	14 -1	1	1	-1	1	1	1
1	15 -1	1	1	1	-1	-1	1
1	16 -1	1	1	1	1	-1	-1
1	17 1	-1	-1	-1	-1	-1	-1
1	18 1	-1	-1	-1	1	-1	1
1	19 1	-1	-1	1	-1	1	1
2	20 1	-1	-1	1	1	1	-1
2	21 1	-1	1	-1	-1	1	-1
2	22 1	-1	1	-1	1	1	1
2	23 1	-1	1	1	-1	-1	1
2	24 1	-1	1	1	1	-1	-1
2	25 1	1	-1	-1	-1	1	1
	26 1	1	-1	-1	1	1	-1
2	27 1	1	-1	1	-1	-1	-1
	28 1	1	-1	1	1	-1	1
2	29 1	1	1	-1	-1	-1	1
	30 1	1	1	-1	1	-1	-1
3	31 1	1	1	1	-1	1	-1
1	32 1	1	1	1	1	1	1

Accelerated chemical aging

- Gas phase poisoning
 - Injection of aqueous salt solutions to a gas flow
 - Slow accumulation of poisons on the sample
- Poisoning by impregnation
 - Wet impregnation of aqueous salt soutions

Results

2014-01-28

Effect strength of the different poisons and interaction effects

High values - stronger poisoning effect Low values - less poisoning effect

Catalyst characterization – surface area vs total poison concentration

Increased poison amount on the catalyst \rightarrow decreased surface area

Type of species on surface (XPS)

- Fresh samples Al_2O_3 , SiO_2 , MgO and Na_2O_3
- Lab contaminated samples besides the above mentioned also Ca²⁺, Zn²⁺, S and P
 - S is present as sulfate
 - P is likely present as P₂O₅
- Similar compounds were found in the engine-aged samples

Crystalline phases (XRD)

- No crystalline phases formed between poisons and washcoat (ie no cryst. AIPO₄ or Al₂(SO4)₃) in the lab-aged or engine-aged samples
- In some of the lab-aged and both the engine-aged samples some extra peaks not related to washcoat or cordierite substrate found
 - CaSO₄
 - SiO₂

Results summary

- Large variation related to the contamination procedure and higher than expected experimental variation somewhat limits the conclusions which can be drawn from the experiments
- Na, K, and Ca and Ca*S exhibit strong poisoning effects on the DOC catalyst
- Important for future work
 - More reliable contamination procedure
 - Reduced experimental variation so that lower contamination levels can be studied

Acknowledgements

Thank you for your attention! Questions?

SANDRA DAHLIN

KTH ROYAL INSTITUTE OF TECHNOLOGY

Sandra Dahlin

sanj@kth.se +46 8 553 854 95

