

Extraction of spruce hemicelluloses

J. V. Rissanen, H. Grénman, D. Yu. Murzin, T. Salmi

Hemicellulose molecule

Background

Protonation of glycosidic bonds

Starting material

Non-extracted chips, 1.25 – 2 mm

Non-extracted cubic blocks, 10 mm

Reactor system

•Cascade reactor

- •Flexible 5 point sampling of liquid and solid phases
- •Accurate control and measurement of temperature, pressure and flow rate

Batch reactor versus cascade reactor

The chips do not differentiate between reactor type

Liquid samples, 170°C, 0-60 min

- The viscosity of the extract increasing
- The color becomes brown

Solid samples, 170°C, 0-60 min

Experimental results

The influence of temperature and chip size on the overall extraction rate

Concentration of hemicellulose as a function of time (10 mm cubic blocks).

Liquid phase concentration as a function of time with different chip sizes.

The behaviour of pH during extraction

Influence of chip size on pH

The behavior of the pH during the reaction at four different temperatures

The pH with 1,25 – 2 mm chips (open symbols) and 10 mm cubic blocks (solid symbols).

The pH with 1,25 – 2 mm chips (open symbols) and 10 mm cubic blocks (solid symbols).

H₃O⁺ vs total hemicellulosic sugars

 The diffusion of the acetyl groups is clearly faster than for the hemicelluloses i.e. higher cH₃O⁺ is obtained at the same conversion for the larger chips

Modelling

$$rate = k_{I} \cdot c_{solid}^{n_{1}} \cdot (H^{+})^{n_{2}} \qquad \Longrightarrow \qquad n_{1} = 1$$
$$n_{2} = 0 \qquad rate = k_{I} \cdot c_{solid}$$

$$k_I = k_{OI} \cdot e^{\frac{a}{RT}}$$

$$T = \frac{1}{T} - \frac{1}{T_{mean}}$$

$$T_{mean} = 150^{\circ}C$$

	1,25 - 2,00 mm chips		10 mm cubic blocks	
	Estimated parameters	Estimated Std Error (%)	Estimated parameters	Estimated Std Error (%)
E _a [kJ / mol]	122	0,3	120	0,2
k₀ı [(L ⁽ⁿ¹⁺ⁿ²⁾⁻¹⁾ / (g ⁽ⁿ¹⁺ⁿ²⁾⁻¹ · min)]	9,57·10 ⁻³	0,3	5,55·10 ⁻³	0,3

The model of the complicated system can be simplified significantly

Sensitivity analysis and parameter correlations (E_a and k_{0l})

Modelling results

Fit of the model to experimental data (liquid-phase hemicellulose concentrations c) for the smaller chip size (1.25–2 mm).

Fit of the model to experimental data (liquid-phase hemicellulose concentrations c) for the larger chip size (10 × 10 mm).

So what did we learn from modelling exercise?

- Extraction and hydrolysis rate very temperature sensitive
- The chip size influences the overall extraction rate and the molar mass of the obtained hemicelluloses
- The extraction rate is not significantly influenced by pH
- The mathematical model for the complex system could be simplified significantly
- A good fit of the model to the experimental data was achieved

Rissanen, Grénman, Willfor, Murzin, Salmi, Industrial & Engineering Chemistry Research (2014), 53(15), 6341-6350. Rissanen, Grénman, Xu, Willför, Murzin, Salmi, ChemSusChem 2014, accepted, DOI 10.1002/cssc.201402282R1 Rissanen, Grénman, Xu, Willför, Murzin, Salmi, Cellulose Chemistry and Technology, submitted after revision

Molar mass of extracted hemicelluloses

Molecular weight as a function of time for different temperatures and chip sizes

Molecular weight as a function of conversion for different temperatures and chip sizes

Percentage of sugars in the extract, 120–170° C

Conclusions

- Industrial applications need long chained hemicelluloses and monomers
- The extraction kinetics is crucial in order to tailor the product as well as the production
- The overall extraction is influenced by several interlinked phenomena

Rissanen, Grénman, Willfor, Murzin, Salmi, Industrial & Engineering Chemistry Research (2014), 53(15), 6341-6350. Rissanen, Grénman, Xu, Willför, Murzin, Salmi, ChemSusChem 2014, accepted, DOI 10.1002/cssc.201402282R1 Rissanen, Grénman, Xu, Willför, Murzin, Salmi, Cellulose Chemistry and Technology, submitted after revision

Conclusion –

The influence of the extraction parameters is complex and interlinked

