

Alexey Kirilin

Aqueous-phase reforming – a pathway to chemicals and fuels

Laboratory of Industrial Chemistry and Reaction Engineering Process Chemistry Centre Åbo Akademi

- Short Introduction, biomass, what is APR?
- Main tasks of the doctoral research
- Experimental methods
- Choice of catalytic systems
- Catalytic results
- Summary

Introduction - Biomass

Biomass

Biomass production 200 Gt/y > 75 % of biomass carbohydrates

Fossil fuels extracted 7 Gt/y

huge potential in carbohydrates

Only ~ 4 % of annually produced biomass is used by man. Rest decays and recycles natural pathways.

Carbohydrates C_n(H₂O)_n hydrophilic overfunctionalized with OH⁻ groups <u>Hydrocarbons CnH2n+2</u> hydrophobic lacking functional groups

→ due to different nature of carbohydrates compared to fossil resources, different process technology is needed ?

Aqueous phase reforming (APR)

Aqueous phase reforming (APR)

The main tasks of the research

- Task 1. Investigation of reaction products and intermediates
- Task 2. Synthesis and characterization of catalysts
- Task 3. Catalyst stability studies
- Task 4. Investigation of reactant structure on process properties
- Task 5. Influence of a second metal (Re)
- Task 6. Modelling of reaction kinetics

Experimental setup

Reaction conditions:

- 0.5 g of a catalyst
- 225°C
- 30 bar
- Carrier gas N₂ (30 ml/min)

- ✓ Continuous fixed-bed reactor
- ✓ 10 wt.% of xylitol used as a feed

Reagents in the liquid phase

Reactor's scheme

Product analysis

Volatile compounds were identified by means of Solid-phase microextraction (SPME) + GC-MS

TOC – total organic carbon analysis Mass balance – 95-100% (by carbon analysis)

Important parameters in APR

- Catalyst activity, stability and selectivity to H₂
- Product distribution between phases
- Ratio H₂/CO₂

Selectivity to H₂ (%) =
$$\frac{v(H_2)}{v(C_{in gas})} \times 1/RR \times 100\%$$
 RR – reforming H₂/CO₂ ratio (11/5 fo xylitol)

Choice of active metal and support

Based on catalytic activity in the APR of ethylene glycol

Ni	Pt	
Ru	Pd	

AI_2O_3	TiO ₂
С	MgO

Choice of active metal and support

Based on catalytic activity in the APR of ethylene glycol

Pt/Al₂O₃, Pt/TiO₂, Pt/C and bimetallic catalyst PtRe/TiO₂

Catalyst stability

Catalyst showed stable performance within more than 120 h time on stream

Time. h	$CO_2[\times 10^4]$. mol	$\sum (X \cdot C_x H_y) [\times 10^5]$. mol	$\sum C_x H_y / CO_2$
7	1.7	6.9	0.4
123	1.6	6.4	0.4

Distribution of carbon

Distribution of carbon

Distribution of carbon

Gas phase composition

Studied by micro-GC and GC-MS, benchmark catalyst – Pt/Al₂O₃

Liquid phase

Studied by HPLC and SPME benchmark catalyst – Pt/Al₂O₃

Influence of reactant structure

Higher yields of hydrogen for xylitol – substrate with shorter carbon chain

Higher selectivity to alkanes at lower space velocities

Conditions: 225°C, 30 atm., N_2 30 ml/min, 10 wt.% solution, Pt/Al₂O₃

Influence of reactant structure

Higher yields of hydrogen for xylitol – substrate with shorter carbon chain

Higher selectivity to alkanes at lower space velocities

Conditions: 225°C, 30 atm., N₂ 30 ml/min, 10 wt.% solution, Pt/Al₂O₃

Influence of reactant structure

Higher yields of hydrogen for xylitol – substrate with shorter carbon chain

Higher selectivity to alkanes at lower space velocities

Conditions: 225°C, 30 atm., N₂ 30 ml/min, 10 wt.% solution, Pt/Al₂O₃

- 1. Effect of a second metal: series
- Pt/TiO_2 ,
- Pt-Re/TiO₂
- Re/TiO₂

Prepared by incipient wetness impregnation, from $HReO_4$ and or $(NH_3)_4Pt(NO_3)_2$

2. Effect of a support material and support structure

one commercial Pt/C (Degussa) four prepared and characterized materials

- 5% Pt/C (Degussa)
- 2.5% Pt/TiC-CDC (CDC carbide-derived carbon)
- 5% Pt/Sibunit from (NH₃)₄ Pt (HCO₃)₂
- 5% Pt/Sibunit H₂PtCl₆
- 5% Pt/BAC (Birch active carbon)

- 1. Effect of a second metal: series
- Pt/TiO_2 ,
- $Pt-Re/TiO_2$ > To enhance selectivity to hydrocarbons
- Re/TiO₂

2. Effect of a support material and support structure

one commercial Pt/C (Degussa) four prepared and characterized materials

- 5% Pt/C (Degussa)
- 2.5% Pt/TiC-CDC (CDC carbide-derived carbon)
- 5% Pt/Sibunit from $(NH_3)_4$ Pt $(HCO_3)_2$
- 5% Pt/Sibunit H₂PtCl₆
- 5% Pt/BAC (Birch active carbon)

Example: APR of xylitol over Pt-Re/TiO₂

- Higher yields of hydrogen for monometallic Pt catalyst
- ✓ Higher selectivity to alkanes in the presence of bimetallic Pt-Re catalyst

Conditions: 225°C, 30 atm., N₂ 30 ml/min, 10 wt.% solution

In cooperation with prof. C. Hardacre from Queen's University, Belfast

Example: APR of xylitol over Pt-Re/TiO₂

Higher yields of hydrogen for monometallic Pt catalyst

Slightly higher selectivity to alkanes in the presence of bimetallic Pt-Re catalyst

Conditions: 225°C, 30 atm., N₂ 30 ml/min, 10 wt.% solution

In cooperation with prof. C. Hardacre from Queen's University, Belfast

Characterization

Transmission electron microscopy

Particle size distribution Pt/BAC ~2 nm ²⁰ ²⁰

d, nm

Temperature programmed reduction (H₂)

Temperature programmed desorption (NH₃)

APR of xylitol over Pt/C

Effect of acidity

Supervised visiting PhD student Benjamine Hasse for 2 months

In cooperation with prof. B. Etzold from University of Erlangen-Nürnberg

APR of xylitol over Pt/C

Effect of acidity

Supervised visiting PhD student Benjamine Hasse for 2 months

In cooperation with prof. B. Etzold from University of Erlangen-Nürnberg

APR of xylitol over Pt/C

Effect of acidity

Supervised visiting PhD student Benjamine Hasse for 2 months

In cooperation with prof. B. Etzold from University of Erlangen-Nürnberg

Based on experimental data

Based on experimental data

Pathway to hydrogen

Based on experimental data

Pathway to hydrogen

Based on experimental data

Based on experimental data

Based on experimental data

 \geq

A.V. Kirilin, J. Wärnå, T. Salmi, D. Yu. Murzin, "Kinetic Modeling of Sorbitol Aqueous-Phase Reforming over Pt/Al₂O₃", Ind. Eng. Chem. Res., 2014, 53, 4580–4588

Two main pathways are selected

Internal mass tranport limitation (pore diffusion)

(P.B. Weisz, C.D. Prater, Adv. Catal. 1954, 6, 143)

Due to Weisz-Prater no pore diffusion limitation occurs, if Weisz modulus:

$$\Phi = \frac{r_{obs} \cdot R^2}{c_s \cdot D_e}$$

 $\Phi < 1$ first order reaction $\Phi < 6$ zero - th order reaction $\Phi < 0.3$ second order reaction

coefficient D_e

$$\phi = R \cdot \frac{k \cdot c_s^{n-1}}{D_e} \quad \rightarrow \quad \phi^2 \cdot \eta = \frac{r_{obs} \cdot R^2}{c_s \cdot D_e} = \Phi$$

Weisz-Prater modulus

$$\Phi = \frac{r_{obs}R^2}{cD_{eff}}$$

for 1-st order reaction $\Phi < 1$, for 0 order reaction $\Phi < 6$ for 2 order reaction $\Phi < 0.3$ r_{obs} — maximal initial reaction rate R — mean radius of the catalyst particle c —substrate concentration. In our case R = 1.25×10^{-4} m (125 µm)

Wilke-Chang:

effective diffusion coefficient ($D_{\rm eff}$) of substrate (sorbitol) in water

$$D_{ef} = D rac{\xi}{\chi}$$
 porosity (0.3-0.6)
tortuosity (2-5)

$$D^{o}{}_{AB} = \frac{7.4 \times 10^{-8} (\phi M_{B})^{1/2} T}{\eta_{B} V_{b(A)}^{0.6}} \quad \text{[cm²/s]}$$

 ϕ = 2.6 (water), M_B is molecular weight of solvent, η_B = 0.11888 cP is solvent dynamic viscosity, T (K) = 498K, P=30 bar), $V_{b(A)}$ = 122.15 cm³×mol⁻¹ is liquid molar volume at solute's normal boiling point.

Assuming $\xi/\chi = 1/10$ the diffusion coefficient of sorbitol is calculated to be $D_{ef} = 1.18 \times 10^{-9} \text{ m}^2/\text{s}$ (498 K and 30 bar).

The concentration of the substrate in the solvent is equal to 0.515 mol×l⁻¹. r_{max} = 1.93×10⁻⁴ mol×l⁻¹×s⁻¹ at 2.7 h⁻¹

 Φ =0.005 \rightarrow substrate diffusion inside the catalyst pores does not affect the reaction rate

P=S+W-I, where S is the number of steps, W is the number of balance (link) equations, and I is the number of intermediates

P=17+2-11=8 basic routes (no intermediates are there)

Reaction pathways

 $\mathbf{N}^{(1)}: C_6 O_6 H_{14} = C_5 O_5 H_{12} + H_2 + CO$ $\mathbf{N}^{(2)}: C_5 O_5 H_{12} = C_4 O_4 H_{10} + H_2 + CO$ $N^{(3)}: C_4 O_4 H_{10} = C_3 O_3 H_8 + H_2 + CO$ **N**⁽⁴⁾: $C_2O_2H_2 = C_2O_2H_6 + H_2 + CO$ **N**⁽⁵⁾: $CO + H_2O = CO_2 + H_2$ **N**⁽⁶⁾: $C_4 O_4 H_{10} + 4H_2 = C_4 H_{10} + 4H_2 O$ **N**⁽⁷⁾: $C_{2}O_{2}H_{2} + 3H_{2} = C_{3}H_{8} + 3H_{2}O$ **N**⁽⁸⁾: $C_2 O_2 H_6 + 2H_2 = C_2 H_6 + 2H_2 O$

D. Murzin & J. Wärnå

on metal sites:

$$\theta_{C_6 O_6 H_{14}} = K_1 C_{C_6 O_6 H_{14}} \theta_V \qquad \theta_{C_5 O_5 H_{12}} = K_3 C_{C_5 O_5 H_{12}} \theta_V$$
 and so on for each component

on acid sites:

$$\theta_{C_4O_4H_{10}}' = K_{12}C_{C_4O_4H_{10}}\theta_V'$$

Total coverage:

$$\theta_{V} = \frac{1}{1 + K_{1}C_{C_{6}O_{6}H_{14}} + K_{3}C_{C_{5}O_{5}H_{12}} + K_{5}C_{C_{4}O_{4}H_{10}} + K_{7}C_{C_{3}O_{3}H_{8}} + K_{9}C_{C_{2}O_{2}H_{6}} + K_{10}C_{H_{2}O}}$$

$$\theta_{V}' = \frac{1}{1 + K_{12}C_{C_{4}O_{4}H_{10}} + K_{14}C_{C_{3}O_{3}H_{8}} + K_{16}C_{C_{2}O_{2}H_{6}}}$$

Rate for basic route 1:

$$r^{(1)} = k_2 \theta_{C_6 O_6 H_{14}} = k_2 K_1 C_{C_6 O_6 H_{14}} \theta_V =$$

$$= \frac{k_2 K_1 C_{C_6 O_6 H_{14}}}{1 + K_1 C_{C_6 O_6 H_{14}} + K_3 C_{C_5 O_5 H_{12}} + K_5 C_{C_4 O_4 H_{10}} + K_7 C_{C_3 O_3 H_8} + K_9 C_{C_2 O_2 H_6} + K_{10} C_{H_2 O}}$$
Generation rate for compound:
$$-\frac{dC_{C_6 O_6 H_{14}}}{d\tau} = r^{(1)}$$

D. Murzin & J. Wärnå

D. Murzin & J. Wärnå

- 1. Aqueous-phase reforming of two most abundant polyols has been studied over stable catalysts
- 2. Effect of reactants structure on selectivity to main product formation reveals that higher selectivities to hydrogen can be achieved in APR of xyltiol compared to sorbitol (up to 85%)
- 3. Addition of Re as a second metal component leads to enhanced alkane formation
- 4. Advanced reaction scheme was proposed on the basis of experimental data
- 5. For the first time reaction sensitivity in APR of xylitol was studied over Pt/C
- 6. The reaction kinetics was modeled based on kinetic data and mechanistic considerations for sorbitol transformation during APR.
- \checkmark APR is a powerfull method for hydrogen production from renewables
- ✓ Kinetic model proposed can be further developed and applied to description of APR data for other substrates as well as for APD/H process

- Graduate School in Chemical Engineering (GSCE, 2010-2013)
- Fortum Foundation (2009-2011)
- Academy of Finland in cooperation with North European Innovative Energy Research Programme (N-Inner, 2010-2013)
- Haldor Topsøe Scholarship Programme (2010-2012)
- COST–Action CM0903 (UbioChem, 2010-2013)

Alexey Kirilin

Aqueous-phase reforming – a pathway to chemicals and fuels

Laboratory of Industrial Chemistry and Reaction Engineering Process Chemistry Centre Åbo Akademi

