

Acid Hydrolysis of Hemicelluloses in a Continuous Reactor

Andrea Pérez Nebreda

Outline

- 1. Introduction Biorefineries
- 2. Aim of the Project
- 3. Hydrolysis of Hemicelluloses
- 4. Why continuous
- 5. Galactoglucomannan (GGM)
- 6. Hydrolysis of GGM
 - Product Applications
- 7. Materials and Methods
 - 7.1. Reactor Setup
 - 7.2. Analysis
- 8. Results
- 9. Conclusions
- 10. Future work

1 Introduction - Biorefineries

SHORTAGE OF RAW MATERIALS IN THE LONG TERM

Energy Sector

• Environmental implications

Lignocellulosic biomass

SUSTAINABLE DEVELOPMENT

Renewable resources Biomass

Key

Hemicellulose:

mannans, xylans, arabinans, galactans and derivatives

ssue

2. Aim of the Project

- Continuous production of rare sugars via acid hydrolysis of different types of hemicelluloses
- Minimizing the formation of degradation products
 - Furfural, HMF, formic acid, levulinic acid...
- Developing a mathematical model of the process

3. Hydrolysis of hemicelluloses

- Hemicelluloses are heteropolysaccharides composed of different sugar units
- Hydrolysis: Process for production of rare sugars
- Rare sugars: highly value-added compounds in biorefinery
 - Enzymatic OLYSIS
 - Acid

Y D R (

- Homogeneous
- Heterogeneous
- Selective acid hydrolysis is more efficient than enzymatic
- Different methods: two-step method...

4. Why continuous?

- TMP → Hydrolysis → Monomers
- Logical next step
- Norway spruce is one of the main wood species in the Nordic countries
- Very versatile raw material

Advantages of continuous reactor

- better concentration profiles
- \downarrow size $\rightarrow \uparrow\uparrow$ mixing rates
- ↑operating flexibility

5. Galactoglucomannan (GGM)

- Softwood derived polysaccharide
- Extracted from TMP from Norway spruce (*Picea abies*)
- Structure:
- $(1\rightarrow 4)$ -linked β -D-mannopyranosyl
- $(1\rightarrow 4)$ -linked β -D-glucopyranosyl
- α-D-galactopyranosyl
- O-acetyl groups

6. Hydrolysis of GGM

Protonation of the glycosidic bond

Catalyst: Hydrochloric acid (HCl)

Product Applications

Åbo Akademi University

Product Applications

OH

- Production of pharmaceuticals
- Decrease of the symptoms in lower urinary tract diseases
- Growth accelerator for swine
- nose Hydrogenation to mannitol: further applications

- Nutrient medium for maintaining viability of neutral cells
- Use in cytotoxic and anti-inflammatory drugs
- D-Galactose Transformation to tagatose or fucose: further applications

7 Materials and Methods

- Continuous reactor
- Isothermal conditions
- Parameters to study
 - Conversion
 - Sugar concentration

Raw Material	GGM
Catalyst	HCI

- Reaction conditions
 - pH = 0 2
 - T= 80 100 °C
 - c_{GGM}= 0.5%wt 6%wt

7.1.Reactor Setup

Reactor

- Characteristics
 - Glass
 - Dimensions
 - L_{ph} = 1 m
 - L_r = 3 m
 - d_t= 3 mm

7.1.Reactor Setup

Pump

7.1.Reactor Setup

Flowsheet

Åbo Akademi University

7.2.Analysis

Gas Chromatography Analysis (GC)

- Total organic carbohydrate content (Methanolysis)
- Monomeric sugar content
- Oligomer content (DP<6)

Analysis:

- Quantitative
- Qualitative

Mass balance — Conversion

Challenging and time consuming techniques

Residence time

		GGM		HCI		Total flow		
	Flow rate	0,1 mL/min	+	0,1 mL/min	=	0,2 mL/min		
Preheater	d _t = 3mm							
	L = 1m	t _r = 71 min						
	V = 7,07 mL							
Reactor	d _t = 3mm		_					
	L = 3m	t _r =98 min						
	V = 19,56 mL		L	-				

		GGM		HCI		Total flow		
	Flow rate	0,075 mL/min	+	0,1 mL/min	=	0,175 mL/min		
Preheater	d _t = 3mm	t – 71min						
	L = 1m	$t_{\rm r} = 7$ min						
	V = 7,07 mL	ι _r =94 ΠΠΠ						
Reactor	d _t = 3mm		_					
	L = 3m	t _r =121min						
	V = 19,56 mL							

Residence time

Experimental Measurement

0,300

0,250

Iniversity

Monomer Production pH = 0,3; $T = 90^{\circ}C$

Initial concentration of GGM inside the reactor: $C_0 = 0,43 \text{ mg/ml}$

> Experimental ratio for sugar production:

> > Gal:Glu:Man 1:1,5:5

- Mannose is produced in larger amounts
- Concentration in the outlet tend to be constant

University

- Mannose is produced in larger amounts
- Concentration in the outlet tend to be constant

University

Monomer Production
pH = 0,3 ; T = 95°C

Initial concentration of GGM inside the reactor: $C_0=0,32$ mg/ml

Concentration in the outlet tend to be constant

pH dependence

Outlet conversion: Lower pH \rightarrow Higher conversion

Temperature dependence

Outlet conversion: Higher temperature \rightarrow Higher conversion

9.Conclusions

- High production of sugars was accomplished
- < 90% conversion was reached</p>
- No degradation products were detected
- ↓pH → ↑Conversion
- ↑T → ↑Conversion

 First time demonstration of feasibility of continuous operation mode

10.Future Work

- Hydrolysis of different hemicelluloses
 - Arabinogalactan
 - Glucuroxylan
 - Inulin
- Use of different catalysts
 - Organic acids
 - Heterogeneous catalysts fixed bed reactor
- Optimization of reactor conditions in continuous mode
- Separation of product fractions by chromatographic techniques

Acknowledgements

The work is a part of the activities of Process Chemistry Centre (PCC), a centre of excellence financed by Åbo Akademi University

Thanks for your attention!

