Synthesis of biofuels and fine chemicals over Supported Ionic Liquid Catalysts (SILCAs)

Eero Salminen
CONTENTS

- IONIC LIQUIDS
- SUPPORTED IONIC LIQUID CATALYSTS
- SYNTHESIS OF BIOFUELS
- SYNTHESIS OF FINE CHEMICALS
- CONCLUSIONS
IONIC LIQUIDS

- Ionic compounds
- Melting point below 100°C or room temperature
- Usually large organic cation and polyatomic inorganic or organic anion
- Negligible vapor pressure
- Wide liquidus range
- Unique solvation properties

Most commonly used cations

- 1-alkyl-3-methylimidazolium
- N-alkylpyridinium
- Tetraalkylammonium

Some commonly used anions

- CH_3CO_2^-
- CF_3CO_2^-
- Br^-, Cl^-, I^-
WHY IONIC LIQUIDS?

- More environmental benign processes
 - Less toxic and volatile solvents
- Reaction takes place at ionic atmosphere
 - Higher reaction rate
 - Better selectivity
- Different applications
 - Hydrogenation
 - Dehydration
 - Isomerisation
SUPPORTED IONIC LIQUID CATALYSTS

- A thin layer of ionic liquid immobilized on a solid support
- Metal compounds, metal nanoparticles or e.g. acid/alkaline modifiers residing in ionic liquid layer
BENEFITS OF SILCA

- Benefits of heterogeneous and homogeneous catalysis
- Easy separation of catalyst from the liquid phase
- Small amount of ionic liquid (IL) needed
- Two basic limitations
 - Decomposition temperature of the IL
 - IL should not be miscible with the reaction solvent
CATALYST PREPARATION

- Simple impregnation method is applied
- Ionic liquid and metal compound are dissolved into suitable solvent
- Solution is poured over support material (ACC or zeolite)
- Solvent evaporation
- Catalyst pretreatment/reduction if needed
CATALYST CHARACTERISATION (ACC)

- SILCA catalyst Pd in \([(C_3OH)Py][N(CF_3SO_2)_2]/KOH(1:4)\) on ACC in macro-, micro- and nanoscale
CATALYST CHARACTERISATION (ZEOLITES)

H-Beta-25 zeolite catalyst.

IL-H-Beta-25 zeolite catalyst.
SYNTHESIS OF BIOFUELS

HMF ETHERIFICATION TO t-BMF

HMF is a renewable building block for various (currently) petroleum derived chemicals.

CATALYST ACTIVITY AND SELECTIVITY

Catalyst Conversion (%)

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-Beta 25</td>
<td>36</td>
</tr>
<tr>
<td>H-Beta 150</td>
<td>30</td>
</tr>
<tr>
<td>H-Beta 300</td>
<td>25</td>
</tr>
<tr>
<td>IL-H-Beta 25</td>
<td>46</td>
</tr>
<tr>
<td>IL-H-Beta 150</td>
<td>35</td>
</tr>
<tr>
<td>IL-H-Beta 300</td>
<td>27</td>
</tr>
</tbody>
</table>

Selectivity [tBMF] (%)

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>tBMF selectivity [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-H-Beta 25</td>
<td>83</td>
</tr>
<tr>
<td>IL-H-Beta 150</td>
<td>76</td>
</tr>
<tr>
<td>IL-H-Beta 300</td>
<td>72</td>
</tr>
</tbody>
</table>

Reaction time: 3h
T = 120 °C, p(Ar) = 8 bar
CONCLUSIONS

- High selectivities of tBMF were obtained with zeolites modified with Lewis acidic ionic liquids.
- Formation of HMF ethers is associated with the presence of Lewis acid sites.
- Modification of zeolites with ionic liquid did not influence the morphology of the zeolites (XRD/SEM).
SYNTHESIS OF FINE CHEMICALS

CITRAL HYDROGENATION TO CITRONELLLAL

The reaction conditions were $T = 100 \, ^\circ C$, $p(H_2) = 10$ bar
The reaction conditions were

\[T = 100 \, ^\circ\text{C}, \, p(H_2) = 5 \, \text{bar} \]
CONCLUSIONS

- Reaction rate can be influenced by different modifiers and also by different ionic liquids.
- Alkaline modifiers enhance the activity and increase the selectivity of citronellal.
- Highly selective reaction route was accomplished.
 - Only conjugated double bond is hydrogenated in the first phase.
SYNTHESIS OF FINE CHEMICALS

α-PINENE OXIDE ISOMERISATION TO CAMPHOLENIC ALDEHYDE

- Monoterpenes (e.g. α-pinene) are the major components of resin
- Epoxidation of monoterpenes to oxides (e.g. α-pinene oxide)
- Isomerization of terpene oxides to value-added compounds (e.g. campholenic aldehyde)

Activity and selectivity of the catalysts are dependent upon the nature of ionic liquid and Lewic acid modifier

Campholenic aldehyde molar yield ≈ 62 %
RESULTS

m(SnCl₂) = 68 mg
m(IL)= 150 mg

Reaction conditions were T=70 °C, p(Ar) = 5, C₀, α-Pinene =0.012 M and V_hexane = 250 ml.

Reaction time = 4 h
RESULTS

Molar yields of products from α-pinene oxide isomerisation reactions (after 4 hours). n(IL):n(M_xCl_y) = 1:1.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Conversion [%]</th>
<th>Campholenic aldehyde yield [%]</th>
<th>Fencholenic aldehyde yield [%]</th>
<th>trans-Carveol yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FeCl_3/IL/ACC</td>
<td>81</td>
<td>44 (49)</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>CrCl_3/IL/ACC</td>
<td>83</td>
<td>40 (46)</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>SnCl_2/IL/ACC</td>
<td>100</td>
<td>51</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>4a</td>
<td>SnCl_2/IL/ACC</td>
<td>100</td>
<td>57</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>5a,b</td>
<td>SnCl_y/IL/ACC</td>
<td>100</td>
<td>62</td>
<td>10</td>
<td>23</td>
</tr>
</tbody>
</table>

\[a\] m(SnCl_2)=135 mg. (n(IL):n(M_xCl_y)=1:2)

\[b\] Toluene as a solvent

IL= [N(3-OH-Pr)Py][NTf_2]
CONCLUSIONS

- Reusable catalysts with high selectivity towards campholenic aldehyde were accomplished
- The nature of the ionic liquid in SILCA influences the activity and selectivity of the catalyst
Financial support from the Academy of Finland collaborative project with the DST India is gratefully acknowledged. Also, the Swedish BIO4ENERGY programme and COST action CM0903 (UbioChem) are acknowledged.