

Synthesis of biofuels and fine chemicals over Supported Ionic Liquid Catalysts (SILCAs)

Eero Salminen

CONTENTS

- IONIC LIQUIDS
- SUPPORTED IONIC LIQUID CATALYSTS
- SYNTHESIS OF BIOFUELS
- SYNTHESIS OF FINE CHEMICALS
- CONCLUSIONS

IONIC LIQUIDS

- Ionic compounds
- Melting point below 100°C or room temperature
- Usually large organic cation and polyatomic inorganic or organic anion
- Negligible vapor pressure
- Wide liquidus range
- Unique solvation properties

Some commonly used anions

CH₃CO₂⁻ CF₃CO₂⁻ Br ⁻, Cl ⁻, l ⁻

3

WHY IONIC LIQUIDS ?

- More environmental benign processes
 - Less toxic and volatile solvents
- Reaction takes place at ionic atmosphere
 - Higher reaction rate
 - Better selectivity
- Different applications
 - Hydrogenation
 - Dehydration
 - Isomerisation

SUPPORTED IONIC LIQUID CATALYSTS

- A thin layer of ionic liquid immobilized on a solid support
- Metal compounds, metal nanoparticles or e.g. acid/alkaline modifiers residing in ionic liquid layer

BENEFITS OF SILCA

- Benefits of heterogeneous and homogeneous catalysis
- Easy separation of catalyst from the liquid phase
- Small amount of ionic liquid (IL) needed
- Two basic limitations
 - Decomposition temperature of the IL
 - IL should not be miscible with the reaction solvent

CATALYST PREPARATION

- Simple impregnation method is applied
- Ionic liquid and metal compound are dissolved into suitable solvent
- Solution is poured over support material (ACC or zeolite)
- Solvent evaporation
- Catalyst pretreatment/ reduction if needed

N-(3-hydroxypropyl)pyridinium bis(trifluoromethylsulfonyl)imide [(C₃OH)Py][N(CF₃SO₂)₂]

ACC (active carbon cloth)

CH₃

N-butyl-4methylpyridinium tetrafluoroborate $[C_4C_1Py][BF_4]$

CATALYST CHARACTERISATION (ACC)

 SILCA catalyst Pd in [(C₃OH)Py][N(CF₃SO₂)₂]/KOH(1:4) on ACC in macro-, micro- and nanoscale

CATALYST CHARACTERISATION (ZEOLITES)

H-Beta-25 zeolite catalyst.

 200nm
 Mag = 25.00 K X
 EHT = 2.70 kV
 Aperture Size = 10.00 μm
 Date :2 May 2011

 LEO 1530
 WD = 6 mm
 Signal A = InLens
 Image Pixel Size = 4.7 nm
 Date :2 May 2011

IL-H-Beta-25 zeolite catalyst.

SYNTHESIS OF BIOFUELS

HMF is a renewable building block for various (currently) petroleum derived chemicals.

E. Salminen, N. Kumar, P. Virtanen, M. Tenho, P. Mäki-Arvela, J.-P. Mikkola, Etherification of 5-Hydroxymethylfurfural 10 to a Biodiesel Component Over Ionic Liquid Modified Zeolites, Topics in Catalysis, 56 (2013) 765.

CATALYST ACTIVITY AND SELECTIVITY

CONCLUSIONS

- High selectivities of tBMF were obtained with zeolites modified with Lewis acidic ionic liquids.
- Formation of HMF ethers is associated with the presence of Lewis acid sites.
- Modification of zeolites with ionic liquid did not influence the morphology of the zeolites (XRD/SEM).

SYNTHESIS OF FINE CHEMICALS

CITRAL HYDROGENATION TO CITRONELLAL

E. Salminen, P. Virtanen, K. Kordas, J.-P. Mikkola, Alkaline modifiers as performance boosters in citral hydrogenation over Supported Ionic Liquid Catalysts (SILCAs), Catalysis Today, 196 (2012) 126.

CATALYST ACTIVITY

The reaction conditions were T = 100 °C, $p(H_2) = 10$ bar

CATALYST SELECTIVITY

CONCLUSIONS

- Reaction rate can be influenced by different modifiers and also by different ionic liquids
- Alkaline modifiers enhance the activity and increase the selectivity of citronellal
- Highly selective reaction route was accomplished.
 - Only conjugated double bond is hydrogenated in the first phase

SYNTHESIS OF FINE CHEMICALS

$\alpha\mbox{-}PINENE OXIDE ISOMERISATION TO CAMPHOLENIC ALDEHYDE$

RESULTS

RESULTS

Molar yields of products from α -pinene oxide isomerisation reactions (after 4 hours). $n(IL):n(M_xCl_y) = 1:1$.

				Fencholenic	
		Conversion	Campholenic aldehyde	aldehyde yield	trans-Carveol
Entry	Catalyst	[%]	yield [%]	[%]	yield [%]
1	FeCl ₃ /IL/ACC	81	44 (49)	7	17
2	CrCl ₃ /IL/ACC	83	40 (46)	8	26
3	SnCl ₂ /IL/ACC	100	51	12	19
4a	SnCl ₂ /IL/ACC	100	57	12	20
5 ^{a,b}	SnCl ₂ /IL/ACC	100	62	10	23

^a m(SnCl₂)=135 mg. (n(IL):n(M_x Cl_y)=1:2) ^b Toluene as a solvent

IL= $[N(3-OH-Pr)Py][NTf_2]$

CONCLUSIONS

- Reusable catalysts with high selectivity towards campholenic aldehyde were accomplished
- The nature of the ionic liquid in SILCA influences the activity and selectivity of the catalyst

ACKNOWLEDGEMENTS

 Financial support from the Academy of Finland collaborative project with the DST India is gratefully acknowledged. Also, the Swedish BIO4ENERGY programme and COST action CM0903 (UbioChem) are acknowledged.

COST ACTION CM0903

