

# Challenges and opportunities of reactor technology in biorefineries



Academy professor Tapio Salmi Åbo Akademi Process Chemistry Centre Laboratory of Industrial Chemistry and Reaction Engineering FI-20500 Turku / Åbo Finland





# Catalysis

- Catalysis is one of the key technologies in the production of fine chemicals
- Catalytic phenomena were discovered by several people
  - J.Berzelius (1835) defined catalysis
  - Catalyst enhances a chemical reaction without being consumed in it!
- Homogeneous
- Heterogeneous >
- Enzymatic







The author of the concept of catalysis – J.J.Berzelius (1835)



### **Catalyst shapes**





#### **Catalysts in micro and nanoscale**

#### • 5wt.% Pt/SF (Silica fibre)



SEM image

5wt.% Pt/Al<sub>2</sub>O<sub>3</sub> (Strem)



TEM image





### New catalyst materials have emerged

- monoliths
- fibres/cloths
- foams

Benefit: low pressure drop, suppressed diffusion resistance inside the catalyst particleChallenge: activity, selectivity, metal particle size, chemical state





# **Monolith catalysts**

#### Monolithic catalyst

Channel



monolithic substrate



#### washcoat

Catalytic layer



#### catalytic species



## **Catalysts in detail**



SEM image of the 5 wt.% Pt/SiO<sub>2</sub> fiber catalyst

TEM image of the 5 wt.% Pt/Al<sub>2</sub>O<sub>3</sub> (Strem Chemicals) catalyst





# Three-phase reactor in laboratory scale

























### Why to model reactions and reactors?

- Development of new process concept for a new or old product
- Design of new reactors
- Optimization of existing reactors
- Challenging academic topic





## **Principles of reactor modelling**





### **Multiscale modelling**

- States of molecules, quantum chemistry
- Equilibria, chemical thermodynamics
- Rates of chemical reaction, chemical kinetics
- Mass and heat transfer modelling
- Residence time distribution and modelling of flow pattern
- Process modelling
- From nm to km





# **Reaction and diffusion**

• Even though the governing phenomena of coupled reaction and mass transfer in porous media are principally known since the days of Thiele and Frank-Kamenetskii



Emerte Thickle

Thiele



Frank-Kamenetskii





# **Reaction and diffusion**

- They are still not frequently used in the modeling of complex organic systems, involving sequences of parallel and consecutive reactions.
- Evaluation of Thiele modulus and Biot number for first-order reactions are not sufficient for such a network comprising slow and rapid steps with non-linear reaction kinetics.



 $Biot \\ Bi_M = \frac{Rk_{Gi}}{D_{ei}}$ 







#### Reaction and mass transfer in threephase reactors









Rates

$$r_i = \sum_j v_{ij} R_j a_j$$





# Separable and reversible deactivation kinetics



Fresh catalyst sample

Raney-Nickel Catalyst



Recycled catalyst sample

 $\frac{da_{j}}{dt} = -k'_{j}(a_{j} - a_{j}^{*})^{n} \qquad a_{j} = a_{j}^{*} + (a_{0j} - a_{j}^{*})e^{-k_{j}t}$ 

 $a_{j} = a_{j}^{*} + \left( \left( a_{0} - a_{j}^{*} \right)^{n-1} k_{j}^{'} \left( n - 1 \right) t \right)^{-\frac{1}{n-1}}, n \neq 1$ 





## **Model implementation**

$$N_i = -D_{ei} \left( \frac{dc_i}{dr} \right)$$
, where  $D_{ei} = (\epsilon_p / \tau_p) D_{mi}$ 

$$\frac{dc_i}{dt}\varepsilon_p^{-1} = \left(\rho_p \sum v_{ij}R_j a_j + D_{ei}\left(\frac{d^2c_i}{dr^2} + \frac{s}{r}\frac{dc_i}{dr}\right)\right)$$

#### **Boundary conditions**

$$\frac{dc_i}{dr} = 0 \qquad r = 0$$

$$D_{ei}\left(\frac{dc_i}{dt}\right)_{r=R} = k_{Li}\left(c_i - c_i(R)\right) \qquad r = R$$





#### **Physical properties and correlations**

Viscosity

$$\ln\!\left(\frac{\eta}{cP}\right) = A + B / T$$

Gas solubility

$$\ln\left(x_{H_2}^*\right) = A + B/T$$





# Gas-liquid and liquid-solid mass transfer

$$Sh_i = a \operatorname{Re}^{\alpha} Sc_i^{\beta}$$

Reynolds number is calculated by using the turbulence theory of Kolmogoroff,







## **Catalytic batch reactor**

Liquid phase mass balance

 $\frac{dc_i}{dt} = N_i a_p - N_{GLi} a_{GL}$ 

Liquid-solid flux

 $N_i = k_{Li} \left( c_i - c_i(R) \right)$ 

$$N_{GLi} = \frac{c_{Gi}^{b} - K_{i}c_{Li}^{b}}{\frac{K_{i}}{k_{Li}} - \frac{1}{k_{Gi}}}$$

Gas-liquid flux

Hydrogen in gas phase

 $K_{H_2} = \frac{p_{H_2}}{x_{H_2}^* c_{TOT,L} RT} \quad \text{where } c_{TOT,L} = \rho_L / M_L$ 





# Continuous, dynamic fixed bed with axial dispersion

Liquid phase

$$\frac{\partial c_{Li}}{\partial t} = \left(Pe_L \varepsilon_L \tau_L\right)^{-1} \frac{\partial c_{Li}^2}{\partial z^2} - \left(\varepsilon_L \tau_L\right)^{-1} \frac{\partial c_{Li}}{\partial z} + N_{Li} \alpha_V / \varepsilon_L + \eta_{ei} r_i \rho_B$$

Gas phase

$$\frac{\partial c_{Gi}}{\partial t} = (Pe_G \varepsilon_G \tau_G)^{-1} \frac{\partial c_{Gi}^2}{\partial z^2} - (\varepsilon_G \tau_G)^{-1} \frac{\partial c_{Gi}}{\partial z} + N_{Gi} \alpha_V / \varepsilon_G$$

The effectiveness factor ( $\eta_{ei}$ ) is obtained from the pellet model ( $N_{i}$ .





# **Numerical approach**

- PDEs discretizied with finite difference formulae
- The ODEs created solved with a stiff algorithm (BD, Hindmarsh)
- Parameters estimated with a hybrid Simplex-Levenberg-Marquardt method





# Stages of the catalytic project

- Screening of potential reactions
- Catalyst screening
- Test of mass transfer resistance
- Kinetic experiments
- Optimization of reaction conditions
- Detailed kinetic and diffusion modelling
- Experiments in continuous reactors
- Modelling of the behaviour of continuous systems
- Continuous production technology should be the final goal !





# **Typical view of Finland**







# 338000 km<sup>2</sup> of which 70% forest







# Papermaking

#### • Wood chips

- This is where paper making begins.
- A typical wood chip measures 40 x 25 x 10 mm.







### Wood

• Each chip comprises water, cellulose fibres, hemicelluloses and the binding agent lignin.









# **Reactions in chemical pulping**

The reactions in chemical pulping are numerous. Typical pulping chemicals are NaOH and NaHS





Lignin+Cellulose+Hemicelluloses+OH+HS -> Dissolved components + Cellulose fibres





# Hemicelluloses – a great potential

The wood material contains a lot of hemicelluloses:

Galactoglucomannane Arabinoglucuronoxylane (*Betula verrucosa*) Arabinogalactane (*Larix sibirica, 15%*)

Some of them can be recovered from chemical pulping, but the best way is to extract them from wood by water -Supercritical or not !







# From hemicelluloses to chemicals





# The role of sugar alcohols

- Sugar alcohols are polyols derived from regular sugars
- Alternative sweeteners which are metabolized slower than normal sugar
- Other uses:
  - Used as excipients for drugs
  - Components in coatings
  - Role in inflammatory responses (Galactitol)





# **Sugar hydrogenation**

- Open chain reaction
- Catalytic reaction
- Reduction of the sugar to produce polyols (sugar alcohols)

. .





Η



### **Kinetic experiments: Catalyst**

- Ruthenium over activated carbon
- Fine powder
- ~2,5% Ruthenium content
- Surface area 690 m<sup>2</sup>/g





#### **Kinetic experiments: Catalyst**



250X 1.000X SEM and TEM pictures







### Kinetic experiments: (Semi)batch reactor setup

- Bubbling chamber
- Temperature and pressure controller
- Reactor effective volume: ~120 ml
- Rector total volume: 300 ml






### **Three-phase reactor in reality**







### **Reactor properties**

- Semi-batch stirred tank reactor
  - Well agitated, no concentration differences appear in the bulk of the liquid
  - Gas-liquid and liquid-solid mass transfer resistances can prevail
  - The liquid phase is in batch, while hydrogen is continuously fed into the reactor.
  - The hydrogen pressure is maintained constant.
  - The liquid and gas volumes inside the reactor vessel can be regarded as constant





### **Kinetic experiments**

- Temperatures: 90, 105, 120 and 130 °C
- Pressures: 40, 50 and 60 bar
- Running time: 180 minutes
- Agitation speed: 1800 rpm

Galacillo

| Sugar       | Concentration | Cat. Load |
|-------------|---------------|-----------|
| D-Maltose   | 40%           | 3,0 %     |
| L-Arabinose | 10%           | 0,9 %     |
| L-Rhamnose  | 10%           | 0,9 %     |
| D-Galactose | 4%            | 0,9 %     |
|             |               |           |





### **Pressure effect**

## The influence of pressure on **D-Maltose** and **L-** Arabinose









### **Pressure effect**

### The influence of pressure on D-Galactose and L-Rhamnose









### **Temperature effect**

The influence of temperature on **D-Maltose** and **L-Arabinose**









### **Temperature effect**

## The influence of temperature on D-Galactose and L-Rhamnose









### **Kinetic observations**

- The corresponding sugar alcohols always were the dominating products.
- For the specific cases of D-Maltose and L-Rhamnose, by-products were relatively more abundant.
- L-Arabinose and D-Galactose hydrogenation byproduct yields were negligible.





### **Kinetic observations**

- Some of D-Maltose by-products have been identified by GC-MS or HPLC:
  - Sorbitol
  - Arabitol
  - Glucose
  - Inositol
  - Hexanetetrol
- For L-Rhamnose, GC-MS analysis only revealed the presence of a deoxy-pentitol.





## **Modelling principles**

- Kinetic regime assumed
- Surface reaction rate controlling
- Competitive hydrogen adsorption
- Simplified reaction network
- Parameter estimation and simulation carried out with non-linear regression (ModEst)





### Modelling – Arabinose I





### Modelling – Arabinose II





### Modelling – Maltose I







### Modelling – Maltose II





### Modelling – Galactose I







### **Modelling – Galactose II**





### **General remarks**

- Ru/C has proven to be an effective catalyst for the reaction
- 100% conversion is achievable
- Very good selectivity towards the sugar alcohols (desired products).
- Reaction rate increases with higher temperatures and pressures
- Hydrogenation reactions well described by the models





### **Reaction and diffusion: Lactose**

- Lactose is inexpensive
- There is a lot of lactose (by-product of cheese manufacturing)
- Lactose intolerance is common
- Lactose can be isomerized
- Lactose can be oxidized
- Lactose can be hydrogenated
- Lactitol is a sweetening agent
- Lactulose is a laxative
- Lactobionic acid is an organ preserving liquid







# Catalysts for lactose hydrogenation kinetics



Ru and Raney-Nickel catalysts



Fresh catalyst sample

#### Recycled catalyst sample

$$a_{j} = a_{j}^{*} + (a_{0j} - a_{j}^{*})e^{-k_{j}t}$$
$$a_{j} = a_{j}^{*} + ((a_{0} - a_{j}^{*})^{n-1}k_{j}^{'}(n-1)t)^{-\frac{1}{n-1}}, n \neq 1$$

1





### **Preliminary kinetic plots**

The reaction scheme is complicated Detailed kinetic analysis is needed







### **Effect of catalyst amount**



![](_page_56_Picture_3.jpeg)

![](_page_57_Picture_0.jpeg)

### Effect of hydrogen pressure

![](_page_57_Figure_2.jpeg)

![](_page_57_Picture_3.jpeg)

![](_page_58_Picture_0.jpeg)

### Linear plots obtained

![](_page_58_Figure_2.jpeg)

Reaction is of first order with respect to organics (Ni and Ru)

![](_page_58_Picture_4.jpeg)

![](_page_59_Picture_0.jpeg)

### **By-products**

- The behaviour of by-products is complicated
- It can be revealed with yield-conversion plots
- How sorbitol and galactitol are formed ?

![](_page_59_Picture_5.jpeg)

![](_page_60_Picture_0.jpeg)

PCC

### **Plots of by-products**

![](_page_60_Figure_2.jpeg)

![](_page_61_Figure_0.jpeg)

![](_page_62_Picture_0.jpeg)

### **Alternative reaction schemes in brief**

#### Alternative 1

```
Lactose \rightarrow lactitol \rightarrow sorbitol+galactitol (1,5)
Lactose \rightarrow lactulose \rightarrow lactulitol (2,4)
Lactose \leftrightarrow lactobionic acid (3)
```

#### Alternative 2

 $\begin{array}{l} \mbox{Lactose} \rightarrow \mbox{lactilol} \\ \mbox{Lactose} \rightarrow \mbox{lactobionic acid} \\ \mbox{Lactose} \leftrightarrow \mbox{lactobionic acid} \\ \mbox{Lactose} \rightarrow \mbox{sorbitol} + \mbox{galactitol} \end{array}$ 

![](_page_62_Picture_6.jpeg)

![](_page_63_Picture_0.jpeg)

### Mass balances and rate equations

$$\frac{dc_i}{dt} = \sum v_{ij} r_j \ \rho_B$$

$$R_{j} = \frac{k_{j}c_{A}c_{H2}^{nH2}}{\left(1 + K_{H_{2}}c_{H2}^{nH2}\right)\left(1 + \sum K_{l}c_{l}\right)}$$

$$R_{1} = k'_{1}C_{A}$$

$$R_{2} = k'_{2}C_{A}$$

$$R_{3} = k'_{3}C_{A} - k'_{-3}C_{D}$$

$$R_{4} = k'_{4}C_{C}$$

$$R_{5} = k'_{5}C_{B}$$

![](_page_63_Figure_5.jpeg)

![](_page_64_Picture_0.jpeg)

### **Solution in time domain**

$$c_A / c_{0A} = \exp(-(k'_1 + k'_2 + k'_3)\rho_B t))$$

$$c_{B} / c_{0A} = (k'_{1} / (k'_{5} - k''))(\exp(-k'' \rho_{B}t) - \exp(-k'_{5} \rho_{B}t))$$
  
$$c_{C} / c_{0A} = (k'_{2} / (k'_{4} - k''))(\exp(-k'' \rho_{B}t) - \exp(-k'_{4} \rho_{B}t))$$

$$c_{D} / c_{0A} = (k'_{3} / k'')(1 - \exp(-k'' \rho_{B}t))$$
  

$$c_{E} / c_{0A} = (k'_{1}k'_{4}) / (k'_{4} - k''))((1 / k'')(1 - \exp(-k'' \rho_{B}t) - (1 / k'_{4})(1 - \exp(-k'_{4} \rho_{B}t)))$$
  

$$c_{F} / c_{0A} = (k'_{1}k'_{5}) / (k'_{5} - k''))((1 / k'')(1 - \exp(-k'' \rho_{B}t) - (1 / k'_{5})(1 - \exp(-k'_{5} \rho_{B}t)))$$

![](_page_64_Picture_5.jpeg)

![](_page_65_Picture_0.jpeg)

### **Solution in conversion domain**

$$CB / COA = \alpha_1 / (\alpha_5 - 1)((1 - X) - (1 - X) * \alpha_5)$$
  

$$CC / COA = \alpha_2 / (\alpha_4 - 1)((1 - X) - (1 - X) * \alpha_4)$$
  

$$CD / COA = \alpha_3 X$$
  

$$CE / COA = \alpha_2 / (\alpha_4 - 1)(\alpha_4 X + (1 - X) * \alpha_4 - 1))$$
  

$$CF / COA = \alpha_1 / (\alpha_5 - 1)(\alpha_5 X + (1 - X) * \alpha_5 - 1)$$

![](_page_65_Picture_3.jpeg)

![](_page_66_Picture_0.jpeg)

### **Preliminary data fitting results**

![](_page_66_Figure_2.jpeg)

0.5 0.4 °-8 0.3 Lactobionic-acid 0.2  $\diamond$ 0.1  $\nabla$ 100 200 150 250 50 300 time (min)

By products, T=110, pres=70 bar

![](_page_66_Picture_5.jpeg)

Pressure 20 & 70 bar

![](_page_67_Picture_0.jpeg)

### Improved data fitting results

![](_page_67_Figure_2.jpeg)

![](_page_67_Picture_3.jpeg)

![](_page_68_Picture_0.jpeg)

### The truth is revealed

![](_page_68_Figure_2.jpeg)

![](_page_69_Picture_0.jpeg)

![](_page_69_Figure_1.jpeg)

![](_page_70_Picture_0.jpeg)

### Lactose hydrogenation

Concentration profiles Inside catalyst particle <sup>1.2</sup> With different particle sizes <sub>1</sub>

Lactose Lactitol

![](_page_70_Figure_4.jpeg)

![](_page_70_Picture_5.jpeg)

![](_page_71_Picture_0.jpeg)

### Lactose hydrogenation

Concentration profiles Inside catalyst particle With different particle sizes

Lactulose Lactulitol

![](_page_71_Figure_4.jpeg)

![](_page_71_Picture_5.jpeg)


# **Concentration profiles of lactose inside a catalyst particle**





Concentration profiles of arabinose inside the catalyst particle –effect of particle size

L-arabinose concentration profiles inside a catalyst particle with different particle sizes [mm]:



| VS5 | Resultados Johan           |
|-----|----------------------------|
|     | Víctor Sifontes; 23.9.2009 |



#### Arabinose profiles inside the catalyst particle







#### The path towards structured reactors





### Three-phase continuous system: Monolithic catalysts

- Ru over sibunite monolithic catalysts
- Impregnation process carried out at the laboratory.
- Dimensions:
  - Diameter: 12.30 mm
  - Length: 65.46 mm
  - Channels: ~96
  - Channel area: 0.32 mm
- Surface area: 442 m<sup>2</sup>/g





#### VS4 pix and dimensions Víctor Sifontes; 22.9.2009



# Monoliths into the reactor and go ahead!











- Kinetic studies challenging for complex systems where the concentrations of byproducts are very low but have a high importance (food products, pharmaceuticals)
- Detailed kinetic analysis reveals the true reaction path
- Catalyst deactivation is a big challenge, particularly for new reactor technologies





# Conclusions

- Development of new catalyst and reactor technologies is the key issue for better processes and products
- Mathematical modelling should cover all aspects: from quantum chemistry to kinetics, from mass transfer and flow modelling to process modelling – in a balanced way





### **Future aspects**

- More and more complex molecules and mixtures from the **nature** enter the arena: chemical reaction engineering should go to new applications
- A lot of molecular properties have to be estimated
- Advanced lumping techniques have to be applied
- Modelling can come to a *cul de sac* if it becomes too complicated
- The model should be kept as simple as possible





## **Further reading**

- E.Tirronen, T.Salmi, Process development in the fine chemical industry, *Chem. Eng. J*. **91** (2003) 103.
- T.Salmi, D.Yu.Murzin, J.-P. Mikkola, J. Wärnå, P. Mäki-Arvela, E. Toukoniitty, S. Toppinen, Advanced kinetic concepts and experimental methods for catalytic three-phase processes, *Ind. Eng. Chem. Res.* 43 (2004) 4540.
- D.Yu. Murzin, T. Salmi, Catalytic kinetics, Elsevier, 2005
- T.Salmi, J.-P. Mikkola, J.P. Wärnå, Chemical reaction engineering and reactor technology, CRC Press, Taylor&Francis Group, 2010





### **Final comment**

Product-oriented approach without solid chemistry and chemical engineering is just *Alchemia* !





#### Teknisk kemi och reaktionsteknik



