416509.0 The Forest Based Biorefinery: Chemical and Engineering Challenges and Opportunities (5cr) 3.-7.5.2010

Metals in Biorefineries

5.5.2010: 13.15-14.15

Ari Ivaska Process Chemistry Centre Åbo Akademi University

E-mail: ari.ivaska@abo.fi

Why are metals of importance ?

It is important to understand the natural existence and distribution of metal ions in tree material and the reactions of the metal ions with wood fibres and other chemicals in different stages of the paper making process and in the energy conversion processes.

The reasons to study

- Chemical forms of metals in wood, pulp and process liquors varies from metal to metal
- Study on metals gives important information to predict their behavior in different parts of paper making and energy conversion processes as well as their environmental impact.

Objectives

Effects of metals on:

- Flows, Balances, Processes and products
- Metals in wood= metals in fuels
- Important to understand because of:
 - Fouling of equipment (K, Ca, Si)
 - Corrosion of hot heat transfer surfaces (K, Zn, Pb)
 - Emission

(EU directive for heavy metals: As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Tl, Sb, V)

Metals are important for the growth of the tree and excist as natural components in tree material

Elemental distribution of different concentration ranges for stem wood of Scots pine (*Pinus sylvestris*) tree

Concentration range, ppm (<i>mg/kg</i>)	Elements
1000 - 100	Ca, K, Mg
100 - 10	F, Fe, Mn, Na, P, S
10 - 1	Al, B, Si, Sr, Zn, Ti
1 - 0.1	Ag, Ba, Cd, Cr, Cu, Ni, Rb, Sn
0.1 - 0.01	Bi, Br, Ce, Co, I, La, Li, Pb, Se, W
0.01 - 0.001	As, Eu, Gd, Hf, Hg, Mo, Nd, Pr, Sc, Sb

Elements in red are from the EU list of "dirty dozen".

Metals in wood are significant!

Metal management is important

Characterization of biofuel

Chemical fractionation

Objective

- to investigate the forms of metal binding in Scandinavian wood-fuels by
 - sorption of a color dye
 - step-wise leaching in H₂O, NH₄Ac and HCI
 - element analyzes of the leachates
 - ion-chromatography of the leachates
 - potentiometric titration
- of the pure biomass from tree samples

Metals associated with fuel matrix

Johan Werkelin, Maria Zevenhoven

Major Ash Forming Matter in Fuels

Main Ash-forming Matter

© Maria Zevenhoven

Heavy Metals (EDD12+Zn)

© Maria Zevenhoven

Ash Elements in Spruce

© Johan Werkelin

Balance for Pine wood, bark & foliage

Conclusion

- Metal binding in trees was determined
- Metals: in wood: in bark: in foliage:
 - as salts 5 10% 5 10% 10 30%
 - anionic gr 80 90% 20 50% 20 50%
 - as oxalate 0 10% 20 50% 10 40%
- Chemical mode of ash-forming elements
 - Influence ash chemistry and deposit formation

Metals in wood

Sampling for microanalysis

Ν

Andrey Pranovich

Scheme used for chemical microanalysis of wood samples

Andrey Pranovich

Metal content in spruce stemwood (average from 1989 and 1994 annual growth rings across the stem)

Binding of metal ions to wood fibres

Ion-exchange equilibria in wood fibres

Ion-exchange equilibria in wood fibres

Determination of stoichiometry of the ion exchange reaction

pH:4-10

Ca - nK

Mg - nK

The column chromatographic method

Study on metal ion affinities to oxygen delignified hardwood kraft pulp by a column chromatographic method

Procedure:

- A column (65.2 cm and 120.2 cm) packed with pulp
- Natural ion content removal (EDTA, HNO₃) and a rinsing with deionized water
- Addition of mixtures of metal ions (loading) and washing away the excess (unbound) of metal ions with deionized water
- Elution of metal ions with 0.005 M HNO₃
- Collection of fractions (5 or 10 ml) during elution
- Determination of metal-ion concentrations in the fractions

Fig. 1. pH and the number of mikromoles (n) of magnesium ions as function of the volume (V) of eluate in the collected fractions.

$$MR_{2} + nH^{+} \leftrightarrow 2HR + M^{2+} (n-2)H^{+} \qquad K_{2H}^{M} = \frac{[HR]^{2}[M^{2+}]}{[MR_{2}][H^{+}]^{2}}$$

Fig. 2. The number of mikromoles (n) of Ba^{2+} , Ca^{2+} , Mg^{2+} and Sr^{2+} as function of the volume (V) of eluate in the collected fractions.

Fig. 3. pH and the number of mikromoles (n) of Fe²⁺ and Mn²⁺ as function of the volume (V) of eluate in the collected fractions.

Fig.4. The redox potential and pH plotted as function of the volume (V) of eluate for the sorption of Fe^{2+} and Mn^{2+} .

Table 1. Calculation of the Fe³⁺ /Fe²⁺ ratios from the mean values of the redox potentials and pH from the data presented in fig. 4.

Level	Redox Potential (mV)	рН	$\log \frac{[Fe(III)]}{[Fe(II)]}$	Fe(III) (%)	Fe(II) (%)	α _{Fe(III)(OH)}	$\alpha_{\rm Fe(II)(OH)}$	$\log \frac{\left[\text{Fe(III)'}\right]}{\left[\text{Fe(II)'}\right]}$	Fe(III) (%)	Fe(II) (%)
1	290	8.2	-4.0	0.01	99.9	$10^{9.7}$	1	5.7	~100	0
2	354	3.8	-2.9	0.1	99	10 ^{1.2}	1	-1.7	2	98
- 3	514	2.7	-0.25	36	64	10 ^{0.2}	1	-0.05	47	53

Fig. 5. The number of mikromoles (n) of Fe^{3+} and Mn^{2+} as function of the volume (V) of eluate in the collected fractions.

Fig. 6. The number of mikromoles (n) of Ba²⁺, Cd²⁺, Cu²⁺, Mg²⁺, Mn²⁺, Na⁺, Pb²⁺ and Zn²⁺ as function of the volume (V) of eluate in the collected fractions.

Order of affinities to the pulp:

 $Fe^{3+} > Pb^{2+} > Cu^{2+} > Cd^{2+} > Zn^{2+} > Ba^{2+} > Ca^{2+} > Mn^{2+} > Fe^{2+} > Sr^{2+} > Mg^{2+} > K^{+} > Rb^{+} > Na^{+} >$

Pingping Su, Paul Ek

Pingping Su, Paul Ek

LA-ICP-MS scan along a single wood fiber

The distribution of the metals in the single fibre of the unbleached kraft softwood

Pingping Su, Paul Ek

Distribution of metal ions in tree

Objectives

Detailed localisation of metals in different wood species (spruce, aspen, birch, larch) and tissues (sapwood, heartwood, EW, LW) by chemical microscopy

Elena Tokareva

ToF-SIMS imaging of radial section from spruce sapwood.

Ca, Na, Mg, K, Fe dominate in bordered pit tori. Only little lignin was observed in the same regions. Elena Tokareva

LA-ICP-MS of radial section from spruce sapwood

Labelling of anionic groups

ToF-SIMS images

Original spruce section

Sr²⁺ impregnated section

Elena Tokareva

Speciation of calcium in black liquor

Construction of all-solid-state Ca²⁺ ISE (= ion-selective electrode)

1. Electrosynthesis of poly(3,4-ethylenedioxythiophene) (PEDOT)

- = electically conducting polymer
- 2. Drop-casting of Ca²⁺ selective cocktail
- 3. All-solid-state Ca²⁺ ISE

Original, evaporated sample, 78% dry matter

3 % dry matter, diluted with water

Durability test of Ca²⁺-ISE in black liquor

Selectivity coefficients

	lg K _{Ca,Na}	lg K _{Ca,K}	lg K _{Ca,Mg}	lg K _{Ca,Al}
Before	-1.8	-2.2	-3.8	-4.3
After 48 h	-1.8	-1.7	-3.6	-4.0

Calcium distrubution at the membrane surface

LA-ICP-MS

LA-ICP-MS Sodium distrubution at the membrane surface

LA-ICP-MS Depth profile of Calcium in the membrane

Membrane thickness: ~200 µm

Laser: spot size = 40 µm, effect = 35 %, 5 Hz

Depth profile of Sodium in the membrane

Titration of Ca²⁺-solution with EDTA using Ca²⁺ ISE

(100 ml of 2*10⁻⁴ M CaCl₂ \rightarrow 0.02 mmol Ca²⁺)

Potentiometric titrations with EDTA using Ca²⁺-ISE

Conclusions

- The Ca²⁺-ISE can be "conditioned" in black liquor to eliminate the potential drift
- It is possible to measure Ca²⁺ ions in diluted black liquors
- The selectivity coefficients for the Ca²⁺-ISE remains high after black liquor measurments
- A speciation of complexed Ca²⁺ ions and uncomplexed Ca²⁺ ions seems to be possible