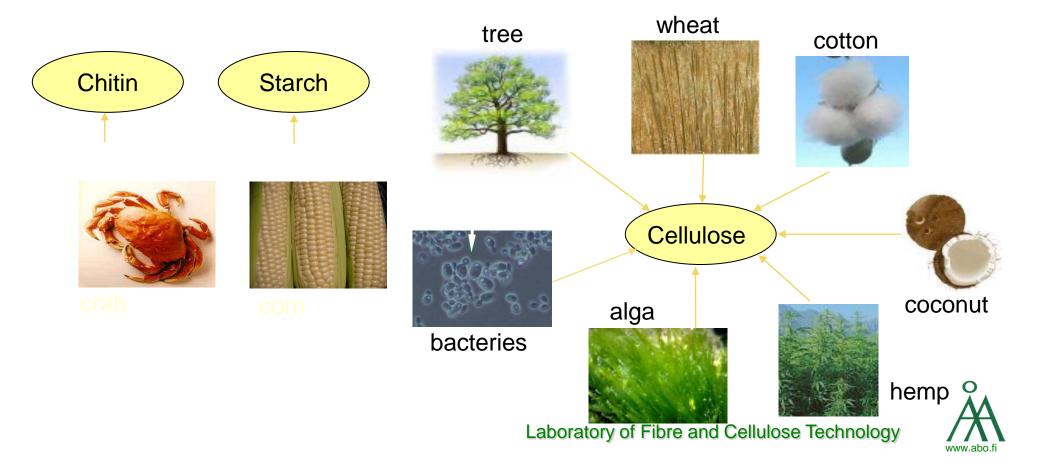
Forest Based Biorefinery

A BALLER AND A BALL

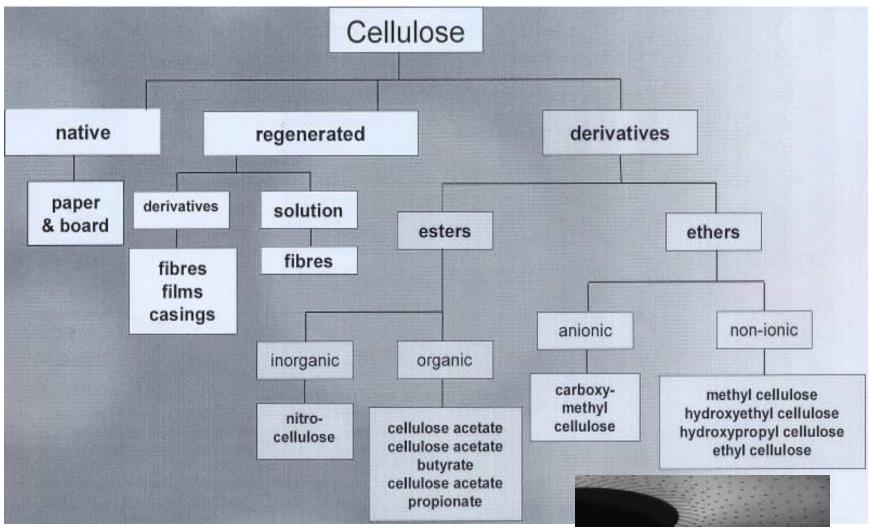
"Chemical and Engineering Challenges and Opportunities "

Cellulose Technology

Pedro Fardim, Jan Gustafsson



Åbo Akademi 2010



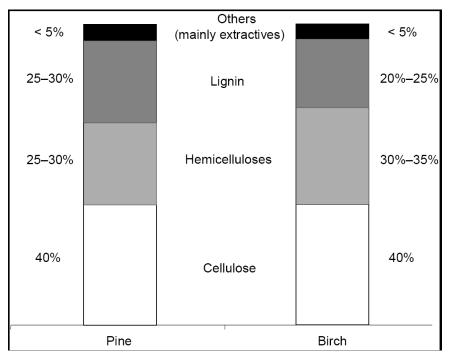
Polysaccharides

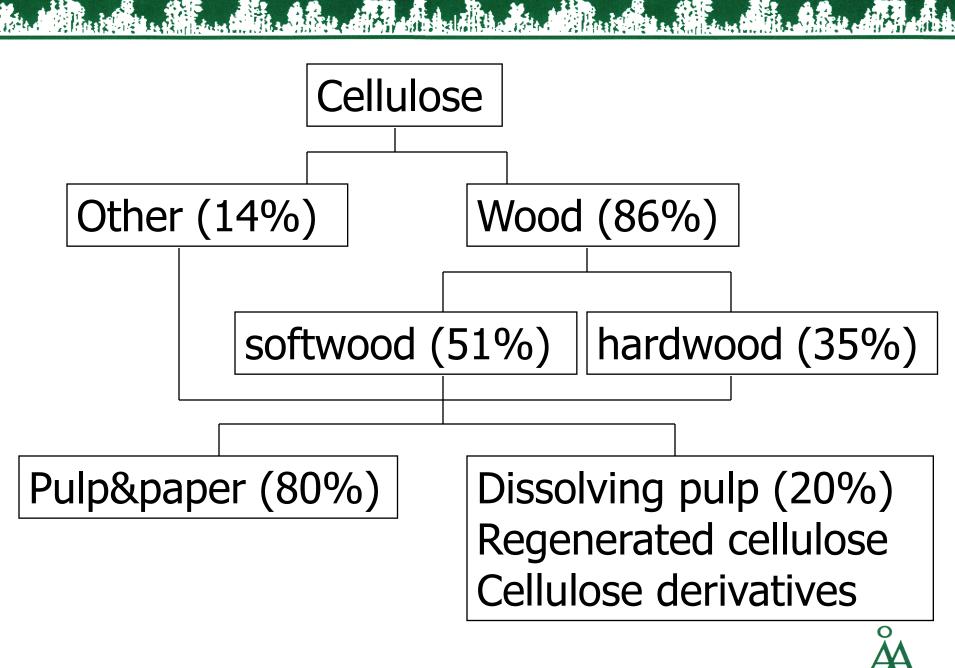
- Natural polymers such as starch, cellulose, chitin, carrageenan
- Produced by plants and animals

What is Cellulose Technology ?

Cellulose

- 50 % of biomass on earth
- 100-150 billion-ton per year
- One tree: ~14 g of cellulose per day


- Vegetal (plants)
- Seaweed (valonia, microdycon)
- Biosynthesised by bacteria (acetobacter xylonium)

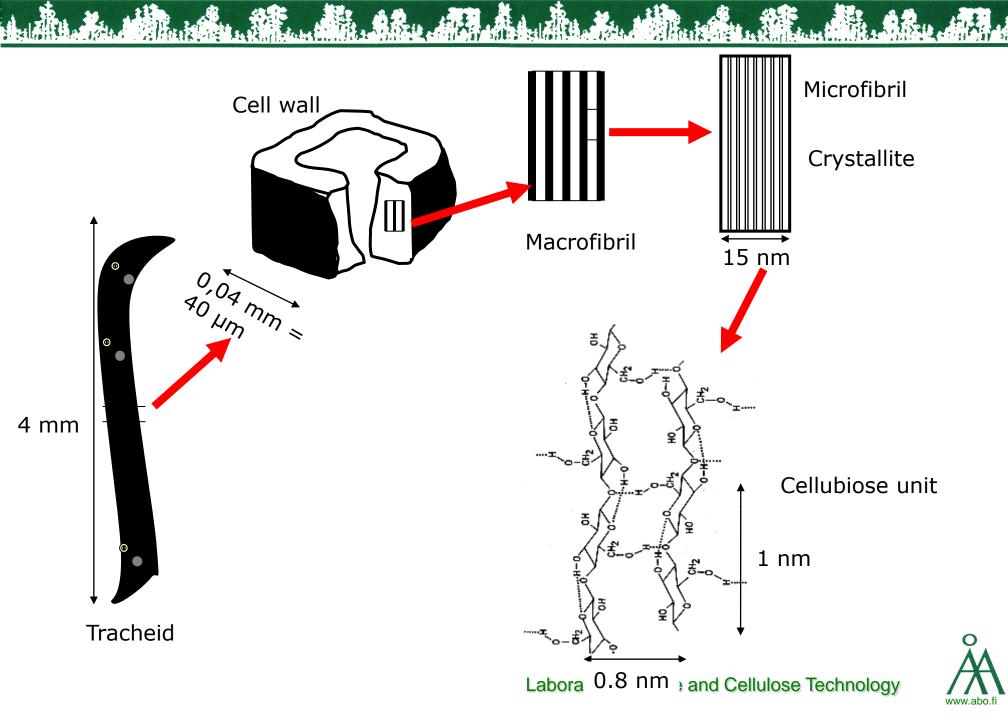

Cellulose sources

Plant material	Cellulose content (dried material, %)
Corn	17-20
Bamboo, Straw, Sugar Cane	40-50
Flax, Hemp, Ramie	70-75
Cotton	95-99

Wood is the main source

Dissolving pulp processes

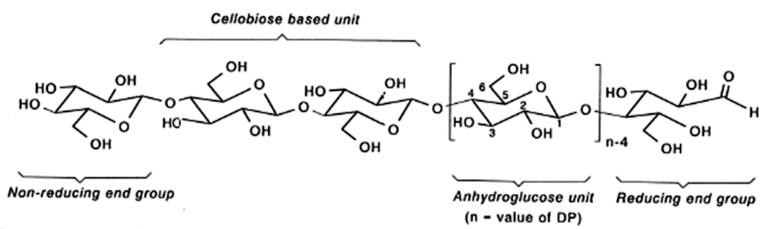
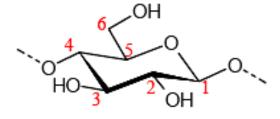
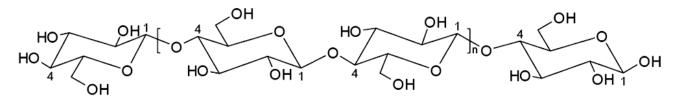
- Target: remove hemicelluloses and lignin
- Chemical pulping processes:
 - Bisulphite
 - -Sulphite-soda
 - -Prehydrolysis kraft

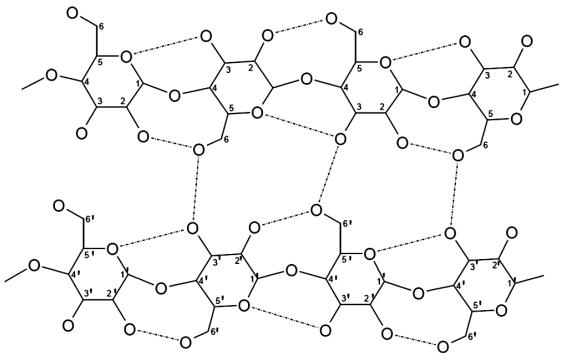

• Bleaching (TCF)

Degree of polymerization of cellulose from different raw materials

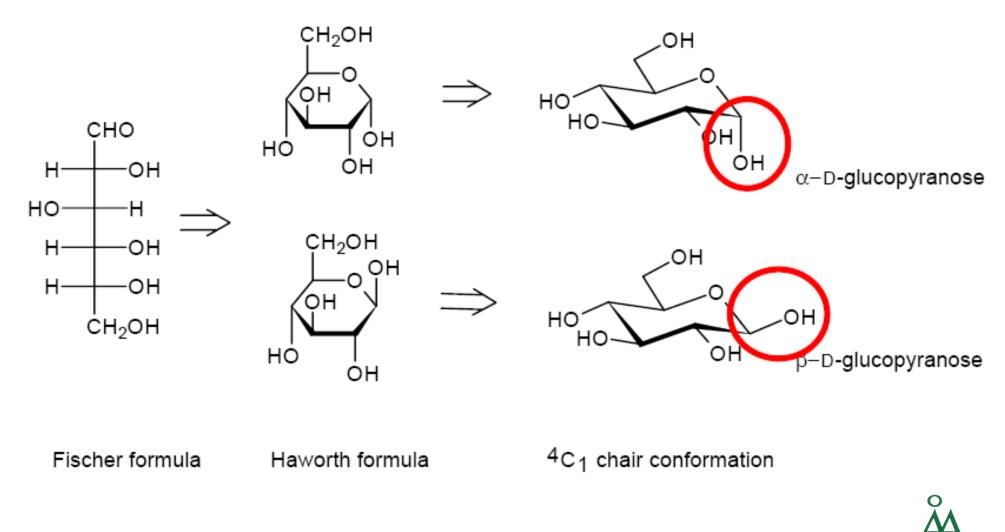
Vegetal species	DP
Algae Valonia	26 000
Cotton	10 000
Flax, Hemp	9 000
Spruce	8 000
Wood pulp	500 - 1000

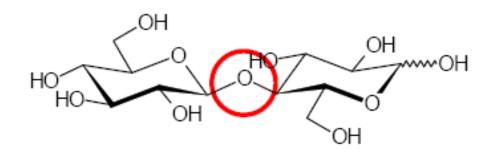
Cellulose chemistry and nanostructure


Figure 2.1.1. Molecular structure of cellulose.

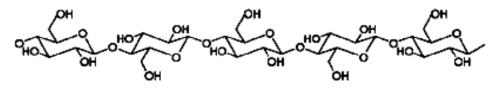
Comprehensive Cellulose Chemistry Vol 1 D. Klemm, et al. (Eds.) Wiley-VCH, Chichester, 1998

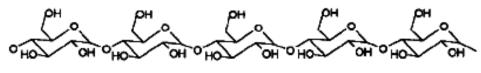



f Fibre and Cellulose Technology

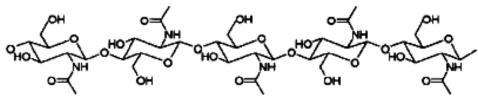
HO

• The glycosidic bond


β-D-4-glucopyranosyl glucose β-D-Glcp-(1,4)-Glcp cellobiose α-D-4-glucopyranosyl glucose α-D-Glcp-(1,4)-Glcp maltobiose


OH

ΟН


····OH

cellulose

amylose

chitin

chitosan

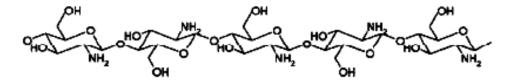
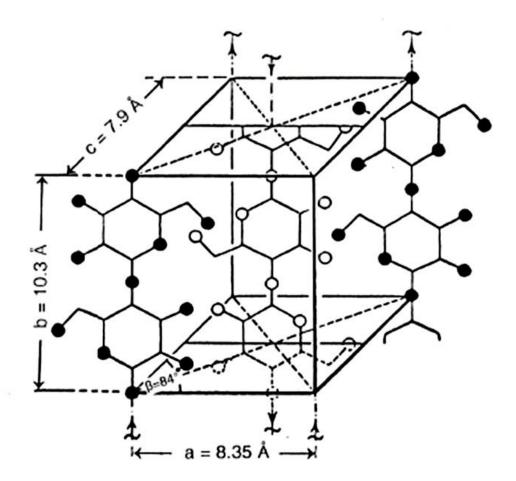


Figure 5.1 CMC with DS 0.75

of Fibre and Cellulose Technology

 Table 2.1.2. Content of carboxylic acid and carbonyl groups in some specimens of native cellulose (Schleicher and Lang, 1994)

Specimen	mmol of acid groups/kg	mmol of carbonyl groups/kg
Cotton linters	<10	_
Sulfite-dissolving	20-30	7–20
pulp		
Prehydrolyzed	8–30	2–5
sulfate pulp		
Paper pulp	20-300	-


Table 2.1.3. DP range of various cellulose materials

Material	Range of DP
Native cotton	up to 12000
Scoured and bleached cotton linters	800-1800
Wood pulp (dissolving pulp)	600-1200
Man-made cellulose filaments and fi-	250-500
bers	
Cellulose powders (prepared by partial	100-200
hydrolysis and mechanical disintegra-	
tion)	

Comprehensive Cellulose Chemistry Vol 1 D. Klemm, et al. (Eds.) Wiley-VCH, Chichester, 1998

and all all that the

Comprehensive Cellulose Chemistry Vol 1 D. Klemm, et al. (Eds.) Wiley-VCH, Chichester, 1998

Figure 2.1.8. Unit cell of cellulose I according to the Meyer-Misch model.

Cellulose Polymorphs

- Four polymorphs identified by X-ray diffraction
- Cellulose I
- Cellulose II
- Cellulose III
- Cellulose IV

Solid state ¹³C-NMR

23

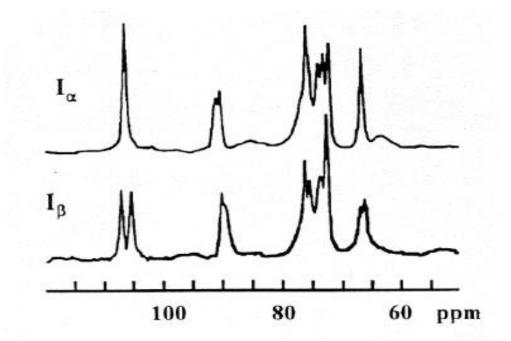


Figure I.6: NMR spectra of celluloses I_{α} and I_{β} . [Vanderhaart et al, 1984]

Facts about Cellulose I

- Wood, cotton, shells of certain marine animals are : cellulose Iβ
- Primitive organisms, such as bacteria: Ia cellulose
- The crystalline phases Ia and Iβ are in various proportions depending of the origin of the cellulose
- Allomorph I β is thermodynamically more stable than Ia.
- Transformation of the Ia phase into Iβ is irreversible.

Cellulose II

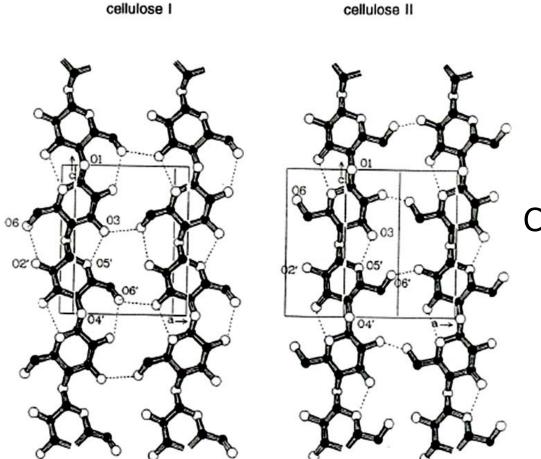


Figure 2.1.5. Most probable hydrogen bond patterns of cellulose allomorphs (Kroon-Batenburg et al., 1986).

Cellulose I, native cellulose

- C(3´) O(5´)
- C(2´) C(6´)
 - C(6) C(3[´])

Cellulose II, regenerated cellulose

C(5) - C(3') C(2) - C(6')

Comprehensive Cellulose Chemistry Vol 1 D. Klemm, et al. (Eds.) Wiley-VCH, Chichester, 1998

Cellulose II

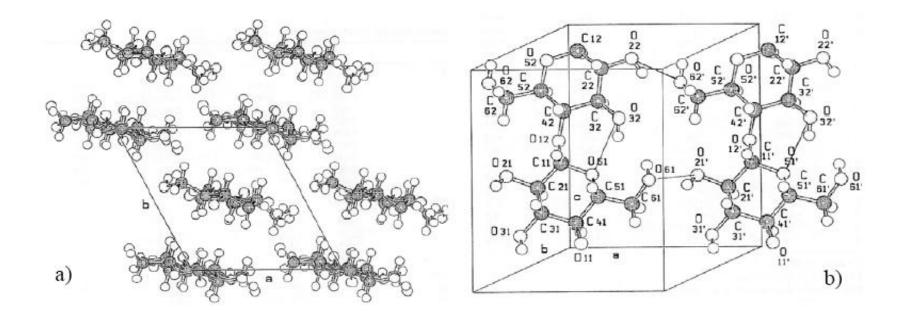


Figure I.9: Model of cellulose II: a) perpendicular projection to the (ab) plane and b) molecules in the crystallographic plane (010) [Zugenmaier, 2001]

XRD of Cellulose I and II

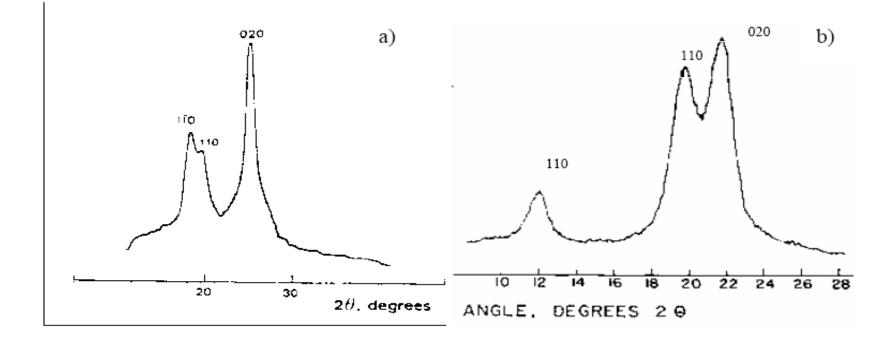


Figure I.11: X-ray diffractograms of two polymorphs of cellulose: a) cellulose I [Chanzy et al, 1983] and b) cellulose II [Nelson et al, 1964]

Facts about Cellulose I and II

A.A. 193

- Polymorph II is energetically more stable than polymorph I. This is the reason why it is possible to convert cellulose I into cellulose II but not the contrary.
- The fibrillar arrangement of regenerated cellulose differs somewhat from the one of native cellulose, as arrangement in distinct layers does not exist.
- In the same way, the helicoidal structure, which exists in the cellular walls of native cellulose, does not exist in precipitated or regenerated cellulose fibres.

Cellulose III

-

 A treatment with ammonia or with certain amines as the ethylene diamine allows the preparation of cellulose III either from the cellulose I (which leads to cellulose III₁) or from the cellulose II (which leads to cellulose III₂).

Cellulose IV

- Cellulose III, heated at high temperatures in glycerol, is transformed into cellulose IV. There are two forms: cellulose IV₁ and cellulose IV₂ obtained from cellulose III₁ and III₂, respectively.
- Cellulose IV is a disordered form of cellulose I, which explains why it can be found in X-ray diffractions for native cellulose of some plants.

Туре			Unit (Å	, °)		
	α	β	γ	а	b	с
Iα	117	113	81	6.74	5.93	10.36
I_{β}	90	90	96.3	7.85	8.27	10.38
II merc.	90	90	117.1	8.10	9.05	10.31
III_1	90	90	122.4	10.25	7.78	10.34
IV_1	90	90	90	8.03	8.13	10.34
IV_2	90	90	90	7.99	8.10	10.34

1.21

Table I.3: Unit cell dimensions of cellulose polymorphs [Zugenmaier, 2001]

Cellulose microfibril

and the state

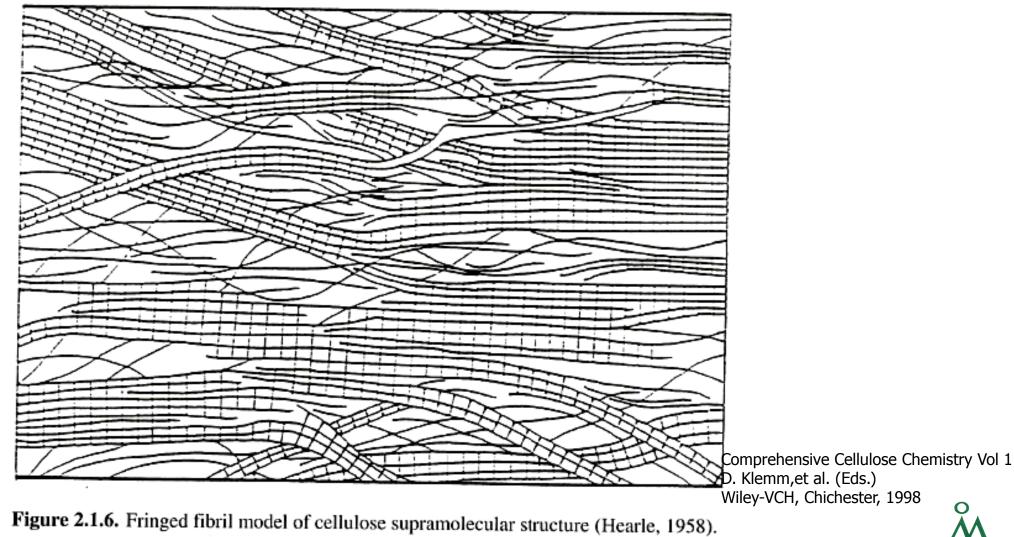
ter al al a state at a state

Table 2.1.4. X-ray crystallinity $\overline{x_c}$ of some cellulose materials (Fink and Walenta, 1994)

Sample	Comments	$\overline{x}_{c}(\%)$	
Cotton linters (scoured and	Samples of various origin	56-63	
bleached)			
Sulfite dissolving pulp	Samples of various origin	50-56	
Cellulose powder	Spruce sulfite pulp hydro-	54	
	lyzed		
Sulfate pulp	Prehydrolyzed -	46	
Viscose rayon	Samples of various origin	27-40	
Regenerated cellulose film	Samples of various origin	40-45	
Experimental cellulose II	Filament spun from a so-	42	
filament	lution of cellulose in N-		
	methylmorpholine-N-oxide		
	into water		
Experimental cellulose II	Filament spun from tri-	11	Comprehensive Cellulose Chemistry Vol 1
filament	methylsilyl cellulose solu-		D. Klemm,et al. (Eds.)
	tion into an acid bath		Wiley-VCH, Chichester, 1998

Table 2.1.6. Size and degree of disorder of crystallites of cellulose I and II (Fink and Walenta, 1994)

Sample	Allomorph	Average crystallite size		Area of cross	Disorder
		Crystallite length (nm) ^a	Crystallite width (nm) ^b	section (nm ³)	parameter ^c $\sqrt{e^2}$
Valonia cellulose	I	-	8.9-10.1	-	0.01-0.02
Cotton linters	I	8.5-10.0	4.7-6.0	33-36	0.012-0.07
Sulfite dissolving pulp	I	7.5-9.7	4.1-4.7	16-21	-
Mercerized linters	п	-	5.9	-	0.027
Viscose rayon	п	-	4.2	-	0.032
Viscose staple	п	-	3.9	-	0.034


^aCrystallite length calculated from 040 WAXS peak.

^bCrystallite width calculated by Scherrer calculation (Klug and Alexander, 1974).

^cCalculated according to (Hofmann and Walenta, 1987).

Comprehensive Cellulose Chemistry Vol 1 D. Klemm,et al. (Eds.) Wiley-VCH, Chichester, 1998

Fibre Ultrastructure

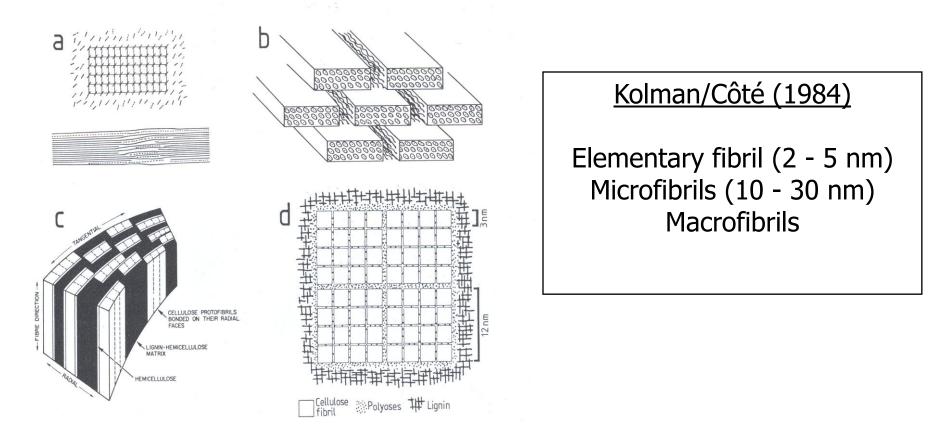
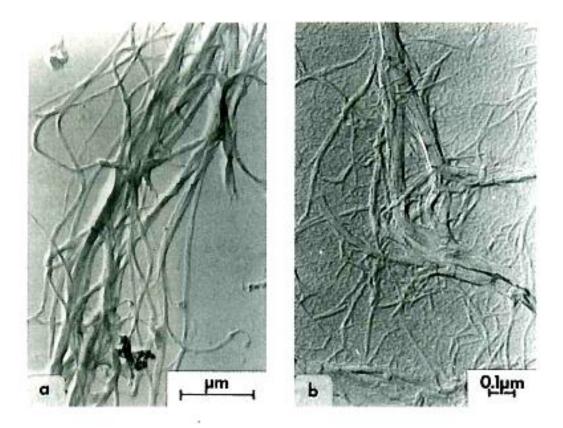



Fig. 8–5. Models of the association of the cell wall components developed by various authors. a) Preston (1962); b) Marchessault (1964); c) Kerr and Goring (1975); d) Fengel (1970).

Morphological structure

ter beine Barrets.

Comprehensive Cellulose Chemistry Vol 1 D. Klemm, et al. (Eds.) Wiley-VCH, Chichester, 1998

Figure 2.1.10. Isolated microfibrils of cellulose of different origin (a) cotton linters, (b) spruce sulfite pulp (Fink et al., 1990).

Morphological structure

Table 2.1.7. Range of microfibril diameters of various cellulose samples (Fink et al, 1990)

Sample	Microfibril diamete (nm)	
Bacterial cellulose	4–7	
Cotton linters	7–9	
Ramie	10-15	
Dissolving pulp	10-30	
Valonia cellulose	10-35	

Comprehensive Cellulose Chemistry Vol 1 D. Klemm, et al. (Eds.) Wiley-VCH, Chichester, 1998

Pore structure

Table 2.1.9. Voids in cellulose by mercury porosimetry (Quinn, 1963; Paul and Bartsch, 1972; Gröbe, 1989; Buschle-Diller et al., 1995)

Sample	Covered Pore size (nm)	Pore volume (cm ³ /g)	Porosity ^a (%)
Cotton	>800	0.087	_
	>150	0.045	6.6
Spruce sulfite pulp	8000-400000	0.072	17.3
Viscose rayon	1100-150	0.073	-
	>15	0.018	_
Viscose staple fiber	8000-400000	0.018	6.6

^a The term 'porosity' denotes the total percentage of pores including the large ones (>1000 nm).

Comprehensive Cellulose Chemistry Vol 1 D. Klemm, et al. (Eds.) Wiley-VCH, Chichester, 1998

Surface area

Table 2.1.11. Inner surface of cellulose fibers determined by water vapor sorption

Sample	Inner surface (m ² /g)	References
Spruce pulp ^a	1000 ^b	Stone and Scallan, 1967
Cotton	135	Krässig, 1993
Cotton flake	152	Brederick, 1989
Viscose cord rayon	292	Brederick, 1989
Viscose staple	292	Brederick, 1989
Microcrystalline cotton cellulose	135	Stone and Scallan, 1967
Microcrystalline cotton cellulose, mercerized	171	Stone and Scallan, 1967
'Amorphous' cellulose	434	Stone and Scallan, 1967

Table 2.1.10. Inner surface of some cellulose samples calculated from N₂ sorption (Jacobasch, 1984)

^aNever dried. ^bSize-exclusion.

Sample	Pretreatment	Surface (m ² /g)	Comprehensive Cellulose Chemistry \	Vol 1
Spruce sulfite pulp	-	0.35	D. Klemm,et al. (Eds.) Wiley-VCH, Chichester, 1998	
Spruce sulfite pulp	H ₂ O swollen, freeze-dried	5.3		
Cotton	-	0.60-0.72	Ind Cellulose Technology	
Viscose rayon staple	-	0.3-0.4	www.abo	.fi

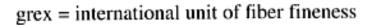
Thermal properties of cellulose

the literation of the

Table 2.1.21. Thermal data on cellulose (according to Gröbe, 1989)

Glass transition temperature	230 °C
	230—245 °C
Specific heat cotton	0.291 cal/g degree
rayon	0.317
Thermal conductivity rayon staple	ca. 5 x 10 ⁻⁴ cal/g cm degree
	0.071 W/m degree
Coefficient of thermal expansion	
cotton linters	$(-30-25^{\circ}C)$: 4 x 10 ⁻⁴ degree ⁻¹
Heat of crystallization, extra purified,	25.3 ± 1.2 cal/g
100% crystallinity	
Heat of transition Cell I \rightarrow Cell II	38.1 kJ/kg
Heat of thermal transition	109—147 J/g
at 120-140 °C	

Comprehensive Cellulose Chemistry Vol 1 D. Klemm, et al. (Eds.) Wiley-VCH, Chichester, 1998



Mechanical properties of cellulose

 Table 2.1.17. Mechanical data of cellulose filaments and fibers of various origin

 (Meredith, 1946)

Specimen	Initial Young's modulus	Breaking elongation	Breaking strength	Work of rup (toughness)	ture
	(g/grex)	(%)	(g/grex)	(g cm/grex)	
Cotton	50	7.3	3.1	0.10	
Flax	183	3.0	5.5	0.08	
Hemp	183	2.6	4.7	0.06	
Jute	176	1.8	3.6	0.03	
Ramie	149	3.7	6.0	0.11	
Textile viscose	58	21	1.9	0.23	
Stretched viscose	153	5.8	5.0	0.15	
Acetate rayon	28	29	1.2	0.22	Comprehensive Cellulose Chemistry Vol 1
Silk	77	26	4.4	0.74	D. Klemm, et al. (Eds.)
Nylon	27	26	4.8	0.77	Wiley-VCH, Chichester, 1998
Wool	25	38	1.3	0.32	O

noloav

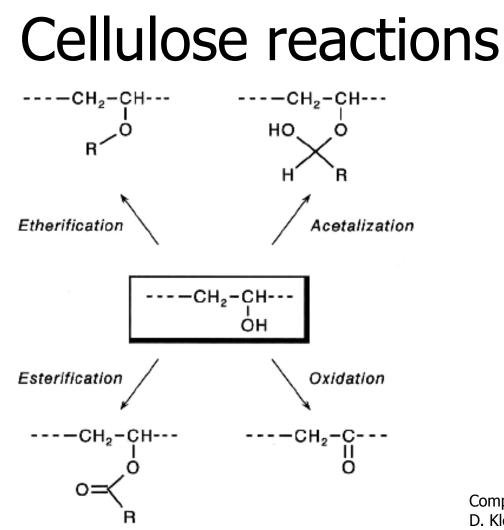
Cellulose reactivity

the state of the s

the strate

82

Cellulose activation


Table 2.4.1. Routes to cellulose activation

Spacing via intermolecular or covalent interaction ('chemical' methods)	Disordering of structure via energy in- put ('physical' methods)
Swelling in polar liquids like H ₂ O, NH ₃ , EtOH, DMSO	High-energy irradiation like electron beam irradiation; γ-ray irradiation
Inclusion of high boiling liquids like	
oligoethylene glycols	Heat treatment under defined conditions (120-180 °C, < 1 h)
Surface modification by surfactants	
-	Mechanical disintegration by:
Transient formation of addition compounds with NaOH/H ₂ O (mercerization), R ₄ NOH/H ₂ O, NH ₃ or R-NH ₂ , N ₂ O ₄ /CH ₃ COOH, Br ₂ /H ₂ O	shredding conventional milling in a cutting or attrition mill ball milling vibration milling
Covalent derivatization to low DS by grafting with acrylonitrile, etherification with ethylene oxide	Sonication
Hydrolytic chain cleavage	

Comprehensive Cellulose Chemistry Vol 1 D. Klemm, et al. (Eds.) Wiley-VCH, Chichester, 1998

re and Cellulose Technology

Comprehensive Cellulose Chemistry Vol 1 D. Klemm, et al. (Eds.) Wiley-VCH, Chichester, 1998

Figure 2.4.1. Sheme of typical reactions of a hydroxy group in a polymer chain.

Cellulose reactions

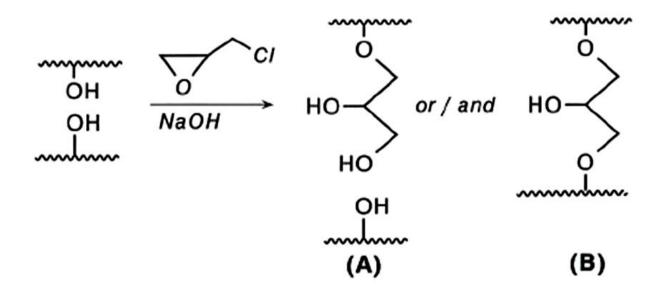


Figure 2.4.2. Mono- (A) and bifunctional (B) reaction of a crosslinking agent (epichlorohydrin) with hydroxy groups.

> Comprehensive Cellulose Chemistry Vol 1 D. Klemm, et al. (Eds.) Wiley-VCH, Chichester, 1998

Cellulose reactions ОН ОН .0 HO -HO. HO нο он OH OH OH Redox system ΟН OH 0 HO-HO. но но 0 ΟН radicalic site NC ОН ОН HOно HO-HO o OH NC NC NC

Figure 2.4.3. Scheme of cellulose grafting with acrylonitrile.

Comprehensive Cellulose Chemistry Vol 1 D. Klemm, et al. (Eds.) Wiley-VCH, Chichester, 1998

Cellulose derivatives

The state

Some cellulose derivatives of commercial or scientific relevance

ensine

Product	DS range	Areas of application
Nitratea	23	Coatings, films, explosíves
Acetatea	23	Films, fibres, cigarette filtres
Xanthogenate ^a	0.20.6	Soluble intermediates (viscose process)
Sulfuric acid halfesters	0.2-2.8	Gel former, anticoagulant, polyelectrolyte complex component
Anionic cellulose phosphate		Cation exchanger
p-Toluene sulfonate	0.5-2.5	Reactive intermediate
Methyl ether ^a	1.52.0	Thickener, adhesive, dispering agent
Ethyl ether ^a	1-2.5	Thickener, laquers, adhesives, tabletting
Hydroxycthyl cthera	0.8-2.5	Thickener, binder, colloid stabilizer
Carboxymethyl ethera	0.5-1.0	Gel former, adhesives, viscosity enhancer, oil drilling
Cyanoethyl ether ^a	< 0.5;	Rot prouving of textiles
	>2	organo soluble derivative
Benzyl ether ^(a)	>2	Melt processable plastics
Trialkylsilyl cthcr	1.53	Reactive intermediate
Triphenylmethyl ether	l (in C-6)	Reactive intermediate

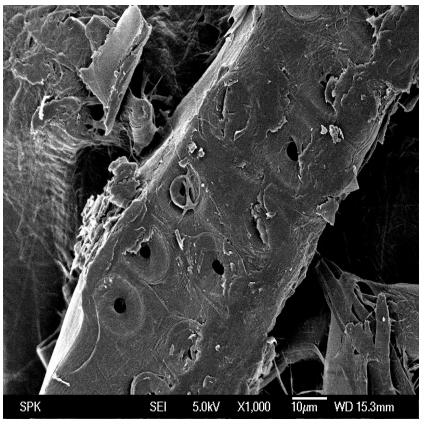
^a commercial product; ^(a) temporary commercial product

Cellulose Based Materials

A ALLER ALLER

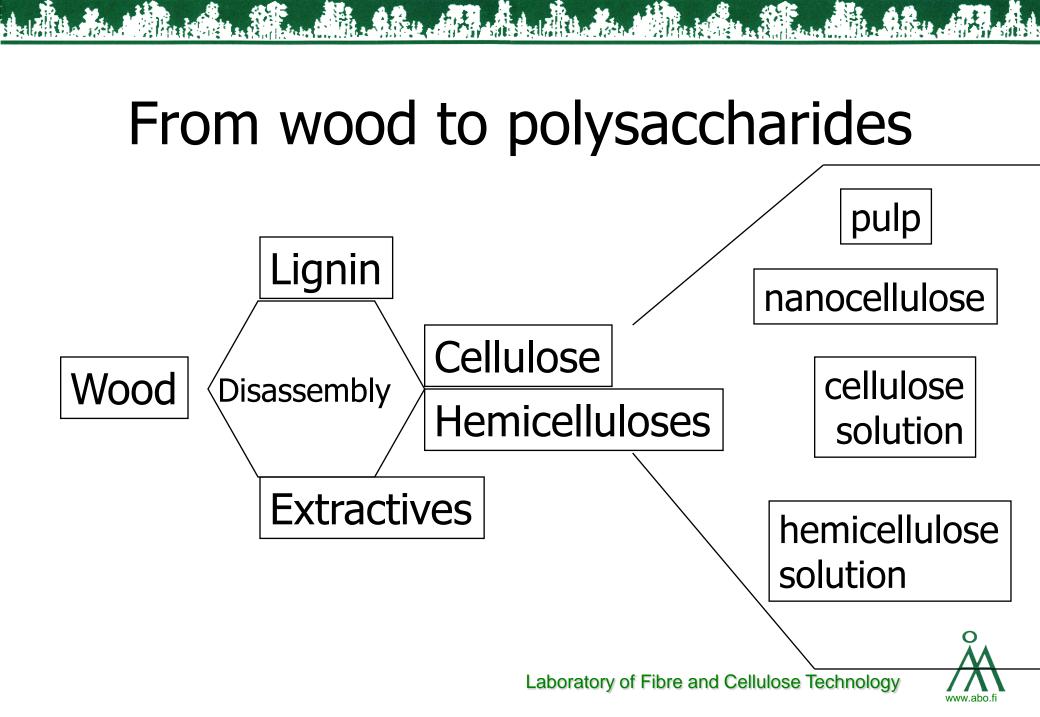
1. 白虎

- Fibres
- Fibrills and nanorods
- Particles and beads



Cellulose Fibres

Regenerated fibres (Textiles)

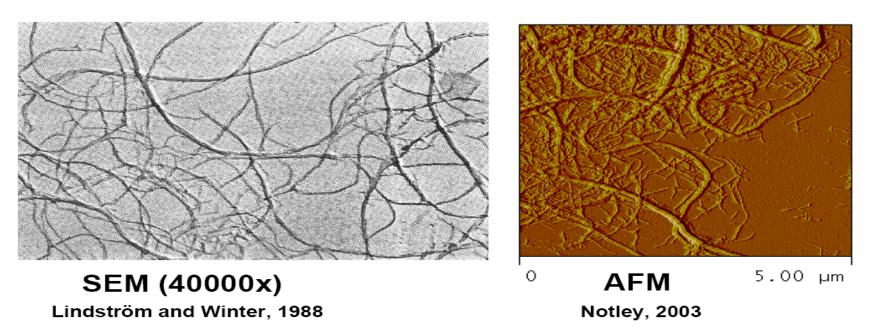

(e) 000143 WD11. 7mm 15. 0kV x4. 0k 10um SE

Wood fibres (Papermaking)

WWW.abo.fi

Zhang et al, Carbohydrate Polymers 59 2005, 173

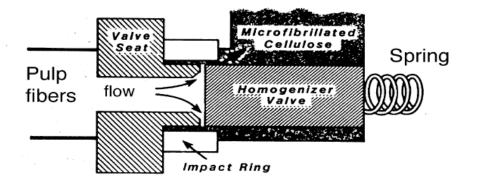
Disassembly of wood polysaccharides

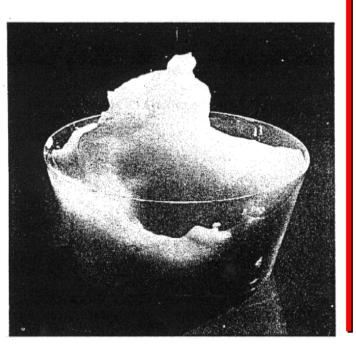

446

www.abo.t

Method	Products
Microfluidization of pulp	microfibrillar cellulose (nanocellulose)
Acid treatment of pulp	Cellulose nanorods
Chemical pulping (sulfate, pre- hydrolysis sulfate, sulfite)	Paper pulp, dissolving pulp, lignin
Organosolv pulping (ethanol, acetic acid, others)	Paper pulp, dissolving pulp, lignin
Ionic liquids (ILs)	Fractionation of wood components
Supercritical fluid extraction	Extraction, gasification, biofuels

Microfibrillar cellulose (MFC)

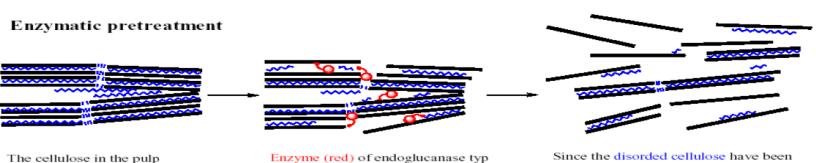

SEM and AFM of MFC


Preparation of MFC

Disintegration (homogenization)

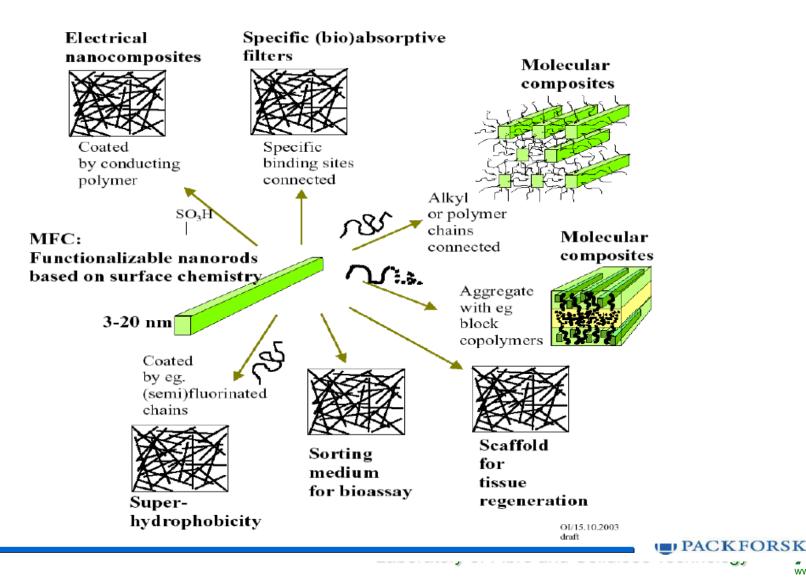
Microfibrillated Cellulose MFC

Turbak A F, Snyder F W and Sandberg K R (1983): J. Appl. Polym. Science. Applied Pol. Symp. <u>37</u>



Pulp pre-treatment

Enzymatic Hydrolysis

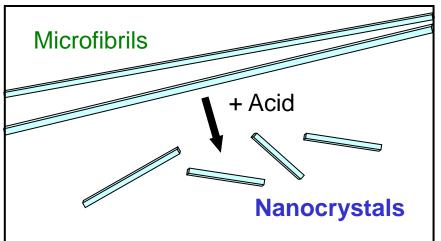


The cellulose in the pulp consists of crystalline microfibrils (black), and more dissorted cellulose (blue). Enzyme (red) of endoglucanase typ attacks almost exclusively the disorded cellulose. Since the disorded cellulose have been nicked and partly removed, homogenization creates more or less released microfibrils with realtively little damage on the microfibrills.

www.abo.f

Modification of MFCs

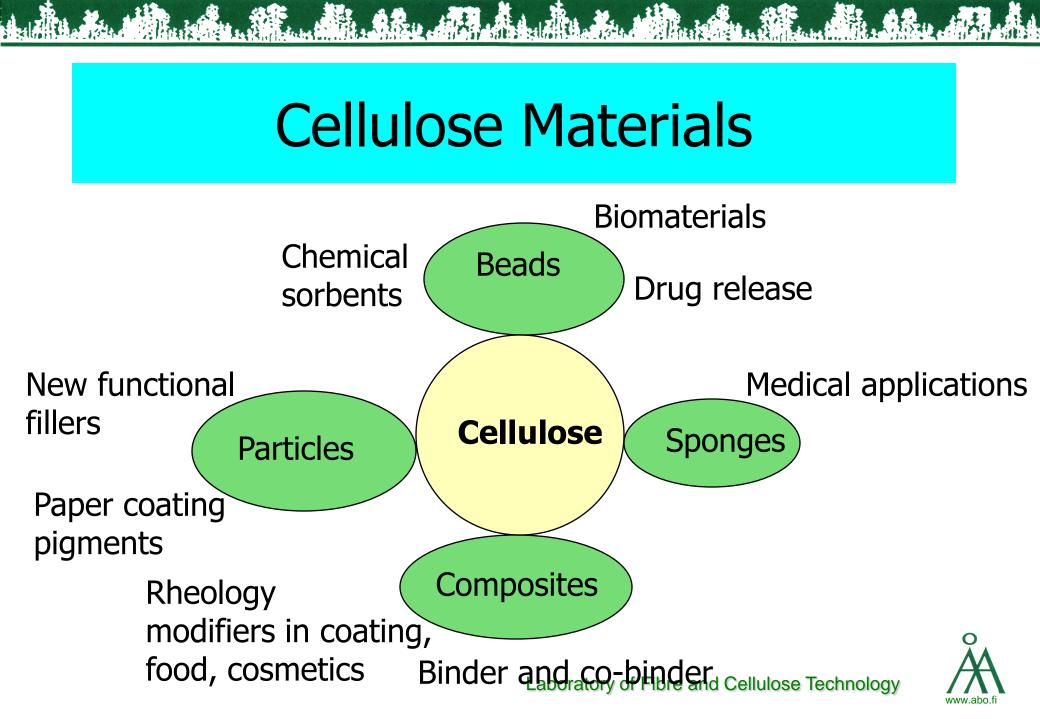
www.abo.fi

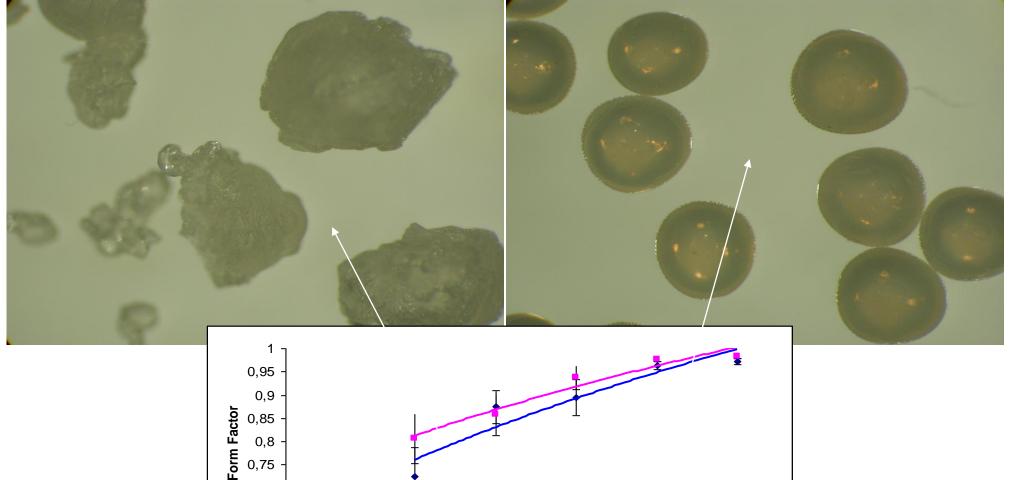

Some questions about MFCs

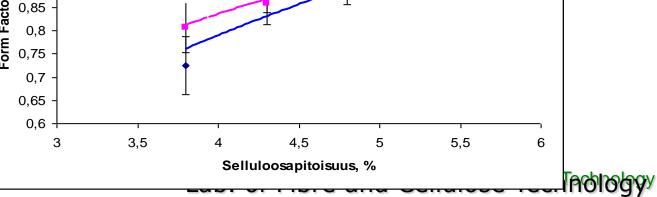
- Energy consumption in processing
- Usually produced to 2% dispersion in water
- Residual of hemicelluloses
- Surface modification/reactivity
- Balance between stabilization of dispersion/functionalisation

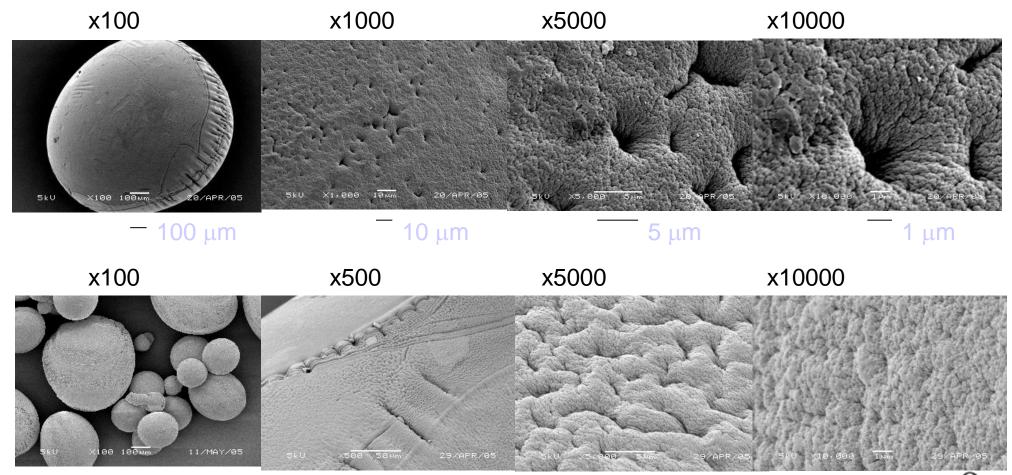
Cellulose nanorods (nanocrystals)

Pulp


acid (HCl, H_2SO_4) concentrations (65%) temperature (40°C) hydrolysis time (1 – 2 h) acid-to-substrate ratio (0.1 – 0.5 mol/g)


Some questions about cellulose nanocrystals


- Low yield
- Stabilization of nanocrystal dispersions
- Functionalisation of nanocrystals


Form factor

Beads of regenerated cellulose

Summary

- Cellulose can be modified using homegeneous or heterogeneous methods
- Cellulose derivatives have borad application areas
- Regenerated cellulose can be used as fibres, particles and sponges
- Cellulose fibrils have potential applications in several technological areas

