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Introduction

* Many mass and energy balances around
various “scenarios” for the biorefinery

* All scenario’s have technical challenges and
there are nth plant assumptions

* Energy, distribution of energy needs,
reduction in carbon footpring all variables that
should be considered
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Opportunities in Energy

* |ncreasing world-wide energy demand
* Increasing pressure for reduced CO, emisisons

» Finland not only has the possibility to produce
more bio-energy, but more importantly has the
potential to export more of the technology to
produce it

» Knowledge based economy

» This is a growth industry — existing technologies
have not been proven/optimized for biomass

> Entrepreneurial opportunities




Energy Use in Finland 2008

Natural
Gas
Wind 10.9% Oil
0.1% 22.9%
Tree based

combustion
21.9% \

\ Import
Electricity
Water power 3.3%
4.4% —
Nuclear
Peat - / 17.4%
5 9% Other Coal
2.9% 10.3%

* Total
e 1.45x10%%J/y

e Chemical

energy bound

in tree growth

in Finland

e ~9x10'7J/y
(100 Mm3, 500
kg/m3, 18
MJ/kg)



Chemical composition of pine (Pinus sylvestris) and birch
(Betula pendula), % dry substance
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Approx. Lower Heating Values of
Biomass Components

(MJ/kg)

Carbohydrates 13.6
Softwood lignin 26.9
Hardwood lignin 25.1

Resins, fatty acids 37.7



Pine Birch

LHV 18 MJ/kg LHV 17 MJ/kg
Extractives

Extractives
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Fractionation followed by Conversion

Harvesting +
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Minimum Value of Lignin —
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Lindgren, Karen. Potential lignin applications beyond energy 2nd Nordic Wood Biorefinery Conference.
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Example — BL Gasification to Liquid
Fuels

Energy from BL used to supply the pulp mill with
electricity and steam

Modern stand alone pulp mill is capable of
producing excess energy in the recovery boiler

BLG to liquid fuels would result in an export of
energy from the mill

In future BLG to liquid fuels may make sense
relative to biomass gasification in this sense —
combust biomass in biomass boiler and gasify BL



Syngas to Synthesis
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Integration Example: Impact of Gasifier
Pressure on Steam Production in Cooler

(MW) (GJIALX)
70 - 6
ara_l iiiiiE 293”:34:]”(:
- eat to 120°C
. §§§§§4 R LP Steam
'é §§ L 3 | EMP Steam
\

7 pzzzzzzzz:24— B
7z

p

0 \k&

2 5 10 15 20 25 30 35 40 45 50
Gasifier Pressure (bar)



Scale for Finland

 |f all of the BL in Finland was gasified, the
analysis by Ekbom et al. (2003) estimates that
~50% of Finland’s transportation fuels could
be replaced (based on 1999 fuel consumption

and 2000 BL production)

 Technology not yet proven
* Recovery boilers in Finland are relatively new



Economy of Scale

Feedstock to Liquid Liquids Capacity Capital Intensity
Transporation Fuels (barrels/d diesel equiv.) (S/ barrel/d)
Petroleum refining ~150 000 15 000

Gas to liquid fuels ~100 000 to 150 000 25 000 to 50 000
Coal to liquid fuels ~100 000 to 150 000 50 000 to 70 000
BL/Biomass to liquid ~1 000 to 7 000 60 000 to 150 000
fuels

Larson, E.D.; Consonni, S.; Katofsky, R.E.; lisa, K.; Frederick, W.J. Jr. A cost-benefit assessment of gasification-based biorefining in
the Kraft pulp and paper industry. Vol. 1: Main Report. Final Report DE-FC26-04NT42260, 21 Dec (2006), 152 pp.




BLGasification Combined Cycle

Generation Consumption Sales
kWh/ADt kWh/ADt kWh/Adt

New pulp mill w/ pressurized gasification

High Temp 2100 1050 1050
Low Temp 2100 920 1180
New pulp mill w/ RB
Conventional RB 1450 700 750
High power to heat RB 1700 730 970
Pulp Mill producing ~450 000 ADt/a — 70 Mwe gas turbine (GEGFA)

~1 600 000 ADt/a — 250 Mwe gas turbine (GE7FA)
Poor turndown so need natural gas to substitute for syngas when production drops
For gas valves on gas turbines (~500 °C is upper limit) so some gas cooling necessary
Na+K is manufacturer specific 0.1 ppm in the syngas
Sulfur ~10-20 ppm depending on flue gas emissions control

Grigoray, M.Sc. LUT 2009; Vakkilainen et al. Pulp Pap Can, 2008



Black Liquor Gasification — Current
Status

e MTRI steam reformer, 600 °C, 3 atm
— Norampac, Trenton, ON, June 2003
— 100 tds/day

— This technology is no longer pursued

e Chemrec DP-1: 30 bar; 950 °C; 02-blown
— Kappa Kraftliner in Pitea, Sweden (2005)
— 20tDS/24h (3 MWth)



Possible Mill Demonstration

* Domsjo Fabriker, Ornskoldsvik, Sweden

— Sulfite biorefinery producing specialty cellulose, lignin
(lignosulfonate), ethanol

— Plan to gasify 1100 t dry solids/day sulfite liquor

— Plan to use syngas to produce methanol (up to 450
tons/d) and/or dimethyl ether (DME) (up to 300
tons/d)

— Decision on approval of a 70 MS grant from the
Swedish Energy Agency to be made by EU by the end
of 2010



Thermal Conversion Routes w/o
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Example — Pyrolysis of Poplar
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BtL via pyrolysis + gasification

Advantage is transportation of biomass and larger scale of Gasification + Fischer-Tropsch
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Integration

» Gasification to Liquid Fuels/Chemicals — user
for steam produced from syngas cooling and
catalytic processes

* Pyrolysis to liquid fuels — hydrogen source,
refiner for bio-oil

* |Integration improves the economy of the
comparatively small scale



Well-to-Wheel Analysis
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Ekbom, T.; Lindblom, M.; Berglin, N.; Ahlvik, P. Technical and commercial feasibility study of black liquor gasification with methanol/DME
production as motor fuels for automotive uses — BLGMF. (ALTENER programme of the European Union, Contract No. 4.1030/Z/01-
087/2001), (2003)

Ahlvik, P., Brandberg, A., Hadell, O., Gustafsson, P., “Well-To Wheel Efficiency for alternative fuels from natural gas or biomass” Swedish
National Road Administration, Vehicle Standards Division October 2001



Challenges

Batteries & Fuel Cells

— More environmentally benign batteries with adequate performance

— Fuel cells that can handle more robust fuels

— In long term could significantly alter electricity/fuels consumption
Catalysis

— Pyrolysis oil upgrading (both post or in-situ)

— Pyrolysis + in-situ chemical processing

Materials

— High temperature corrosion (oxidizing and reducing gas atmospheres)
Gas turbines

— For lower heating value syngas
Process Integration

— Maximize heat integration & use of existing infrastructure

— Process integration when proceeded by some fractionation
Installation and maturation



