Energy in Thermal Conversion

Nikolai DeMartini

Introduction

- Many mass and energy balances around various "scenarios" for the biorefinery
- All scenario's have technical challenges and there are nth plant assumptions
- Energy, distribution of energy needs, reduction in carbon footpring all variables that should be considered

Overview

- Opportunities
- Energy use in Finland
- Energy distribution in pine & birch
- "Minimum" value of lignin
- Example: energy use in BL gasification to liquid fuels
- Example: pyrolysis and catalytical hydrogenation of pyrolysis oil
- General comments on integration
- Well to wheel analysis

Opportunities in Energy

- Increasing world-wide energy demand
- Increasing pressure for reduced CO₂ emisisons
- Finland not only has the possibility to produce more bio-energy, but more importantly has the potential to export more of the technology to produce it
- Knowledge based economy
- ➤ This is a growth industry existing technologies have not been proven/optimized for biomass
- > Entrepreneurial opportunities

Energy Use in Finland 2008

- Total
 - $1.45 \times 10^{18} \text{ J/y}$
- Chemical energy bound in tree growth in Finland
 - ~9x10¹⁷ J/y

 (100 Mm³, 500 kg/m³, 18
 MJ/kg)

Chemical composition of pine (*Pinus sylvestris*) and birch (*Betula pendula*), % dry substance

Approx. Lower Heating Values of Biomass Components

Component	Heating Value (MJ/kg)
Carbohydrates	13.6
Softwood lignin	26.9
Hardwood lignin	25.1
Resins, fatty acids	37.7

Fractionation followed by Conversion

Lindgren, Karen. Potential lignin applications beyond energy 2nd Nordic Wood Biorefinery Conference. Helsinki, Finland Sept. 2-4, 2009.

Example – BL Gasification to Liquid Fuels

- Energy from BL used to supply the pulp mill with electricity and steam
- Modern stand alone pulp mill is capable of producing excess energy in the recovery boiler
- BLG to liquid fuels would result in an export of energy from the mill
- In future BLG to liquid fuels may make sense relative to biomass gasification in this sense – combust biomass in biomass boiler and gasify BL

Integration Example: Impact of Gasifier Pressure on Steam Production in Cooler

Scale for Finland

- If all of the BL in Finland was gasified, the analysis by Ekbom et al. (2003) estimates that ~50% of Finland's transportation fuels could be replaced (based on 1999 fuel consumption and 2000 BL production)
- Technology not yet proven
- Recovery boilers in Finland are relatively new

Economy of Scale

Feedstock to Liquid	Liquids Capacity	Capital Intensity	
Transporation Fuels	(barrels/d diesel equiv.)	(\$/ barrel/d)	
Petroleum refining	~150 000	15 000	
Gas to liquid fuels	~100 000 to 150 000	25 000 to 50 000	
Coal to liquid fuels	~100 000 to 150 000	50 000 to 70 000	
BL/Biomass to liquid	~1 000 to 7 000	60 000 to 150 000	
fuels			

Larson, E.D.; Consonni, S.; Katofsky, R.E.; Iisa, K.; Frederick, W.J. Jr. A cost-benefit assessment of gasification-based biorefining in the Kraft pulp and paper industry. Vol. 1: Main Report. Final Report DE-FC26-04NT42260, 21 Dec (2006), 152 pp.

BLGasification Combined Cycle

	Generation kWh/ADt	Consumption kWh/ADt	Sales kWh/Adt	
New pulp mill w/ pressurized gasification				
High Temp	2100	1050	1050	
Low Temp	2100	920	1180	
New pulp mill w/ RB				
Conventional RB	1450	700	750	
High power to heat RB	1700	730	970	

Pulp Mill producing

 \sim 450 000 ADt/a \rightarrow 70 Mwe gas turbine (GE6FA)

~1 600 000 ADt/a \rightarrow 250 Mwe gas turbine (GE7FA)

Poor turndown so need natural gas to substitute for syngas when production drops For gas valves on gas turbines (~500 °C is upper limit) so some gas cooling necessary Na+K is manufacturer specific ~0.1 ppm in the syngas Sulfur ~10-20 ppm depending on flue gas emissions control

Black Liquor Gasification – Current Status

- MTRI steam reformer, 600 °C, 3 atm
 - Norampac, Trenton, ON, June 2003
 - 100 tds/day
 - This technology is no longer pursued
- Chemrec DP-1: 30 bar; 950 °C; O2-blown
 - Kappa Kraftliner in Piteå, Sweden (2005)
 - 20 tDS/24h (3 MWth)

Possible Mill Demonstration

- Domsjö Fabriker, Örnsköldsvik, Sweden
 - Sulfite biorefinery producing specialty cellulose, lignin (lignosulfonate), ethanol
 - Plan to gasify 1100 t dry solids/day sulfite liquor
 - Plan to use syngas to produce methanol (up to 450 tons/d) and/or dimethyl ether (DME) (up to 300 tons/d)
 - Decision on approval of a 70 M\$ grant from the Swedish Energy Agency to be made by EU by the end of 2010

Thermal Conversion Routes w/o Fractionation

Example – Pyrolysis of Poplar

Jones, SB; Holladay, JE et al. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case. PNNL DOE Contract DE-AC05 76RL 01830

BtL via pyrolysis + gasification

Advantage is transportation of biomass and larger scale of Gasification + Fischer-Tropsch

Integration

- Gasification to Liquid Fuels/Chemicals → user for steam produced from syngas cooling and catalytic processes
- Pyrolysis to liquid fuels → hydrogen source, refiner for bio-oil
- Integration improves the economy of the comparatively small scale

Well-to-Wheel Analysis

Ekbom, T.; Lindblom, M.; Berglin, N.; Ahlvik, P. *Technical and commercial feasibility study of black liquor gasification with methanol/DME production as motor fuels for automotive uses – BLGMF*. (ALTENER programme of the European Union, Contract No. 4.1030/Z/01-087/2001), (2003)

Ahlvik, P., Brandberg, Å., Hådell, O., Gustafsson, P., "Well-To Wheel Efficiency for alternative fuels from natural gas or biomass" Swedish National Road Administration, Vehicle Standards Division October 2001

Challenges

- Batteries & Fuel Cells
 - More environmentally benign batteries with adequate performance
 - Fuel cells that can handle more robust fuels
 - In long term could significantly alter electricity/fuels consumption
- Catalysis
 - Pyrolysis oil upgrading (both post or in-situ)
 - Pyrolysis + in-situ chemical processing
- Materials
 - High temperature corrosion (oxidizing and reducing gas atmospheres)
- Gas turbines
 - For lower heating value syngas
- Process Integration
 - Maximize heat integration & use of existing infrastructure
 - Process integration when proceeded by some fractionation
- Installation and maturation