Single Droplet and Pressurized Thermogravimetric Analyzer Experiments

Nikolai DeMartini

Outline

- Uses
- Experimental Plan
- Typical data output and some comments on interpretation

Droplet Furnace

Single Droplet Reactor - Uses

- Combustion characterization for single particles
- Detailed combustion chemistry
 - Measurement of pyrolysis loss
 - Interupted droplet tests
 - Analysis of gases
- Low heating rate of sample because of relatively large size – therefore not useful for studying chemical kinetics

Combustion Analysis

- Digital video
- CO+CO₂ infrared analyzers
- SO₂ infrared analyzers
- NO chemiluminescence analyzer
- O₂ analyzer
- Catalytic converter for total reduced sulfur (TRS) and NO precursors

Duration of Combustion Stages

- Determined from droplet combustion videos
- Drying time between insertion and flame
- Devolatilization time from beginning to end of flame
- Char burning time from end of flame to char collapse

Carbon Release – Black Liquor

Forssén et al. 2001

NO formation

Forssén et al. 2001

Experimental Plan – Single Droplet Reactor

- Bark, 1100 °C, 3 % O₂
- Wood, 1100 °C, 3% O₂
- Bark + Black Liquor, 50%/50% mixture by weight, 1100 °C, 3% O₂
- Wood + Black Liquor, 50%/50% mixture by weight, 1100 °C, 3% O₂
- Bark + Black Liquor, 50%/50% mixture by weight, 900 °C, 3% O₂

Daily Plan – Single Droplet Reactor

- 8:30 Reactor turned on (Luis)
- 9:15 Reactor at 900 °C, Calibrate Analyzers (Luis/Niklas)
- 9:45 Set reactor to 1100 °C and prepare samples (Luis/Niklas)
- 10:30 Begin burning 6 samples (students)
- 11:30 done, set reactor temp to 800 °C, download data (Niklas/Luis)
- 13:00 Increase reactor temperature to 1100 °C and prepare samples (Luis/Niklas)
- 13:30 Begin burning 6 samples (students)
- 14:30 done, turn off reactor furnace, download data (Niklas/LUis)

Experimental Plan – P-TGA

- Bark, 1000 °C, 1 bar total P, 0.2 bar CO₂/0.8 bar N₂
- Bark, 1000 °C, 1 bar total P, 0.2 bar CO₂/0.05 bar CO/0.75 bar N₂
- Bark, 1000 °C, 10 bar total P, 0.2 bar CO₂/0.05 bar CO/9.75 bar N₂
- Bark, 1000 °C, 10 bar total P, 2 bar CO₂/0.5 bar CO/7.5 bar N₂
- Bark, 1000 °C, 1 bar total P, 0.2 bar H₂O/0.05 bar H/0.75 bar N₂

Daily Plan — P-TGA

- 9:00 Prepare Reactor and Sample (Peter)
- 10:30 Gasify sample (Peter/students)
- 11:30 done, reduce reactor temperature download data (Peter)
- 13:00 Increase reactor temperature, prepare sample (Peter)
- 13:45 Begin gasifying sample (Peter/students)
- 14:45 done, turn off heater, download data (Peter)

Pressurized Thermogravimetric Analyzer (P-TGA)

- Temp up to
- Pressure up to

P-TGA - Uses

- Gives mass signal
- Has high heating rate for samples
- Used for studying kinetics of
 - Char gasification/oxidation
 - Adsorption reactions (such as SO₂ adsorption by limestone or dolomite for example)
- blah