p-TGA

Group 2 Linda, Pontus & Frida

p-TGA

- Provides weight change-rate
- Research areas:
- Study kinetics of char gasification/oxidation
- Study adsorption reactions
- Study combustion chemistry

Experimental plan

Sample	T(C)	P _{tot} (bar)	P _{CO2} (bar)	P _{H2O} (bar)	Group
Wood	800	1	0.4	0	4
Straw	800	1	0.4	0	3
Wood	800	10	0.4	0	2
Wood	800	10	4	0	1
Wood	800	1	0	0.4	5

Results

p-TGA 800°C

Suggestion for further experiments

- Repeat measurement for wood 10bar, 4bar CO₂
- Perform test on wood and straw chars after pyrolysis at same temperature in N₂
- Measure gas composition of the product gas during measurement
- Investigate effect of temperature

Evaluation of method

- ÷
- Can be used for fuel comparisons
- Can provides some information on T, P and gas composition
- More equipment can be added and give information about combustion gases, tar and formed particles
- Simple method
- Possibility to use pressure in this set-up

Evaluation of method

- Reaction takes place before program starts (set-up not suitable for fast reactions)
- The fuel need to be prepared and does not always represent the "true" case
- Not possible to study chemical kinetics at higher temperatures (>800C), due to mass transfer-control

Google

2000

2009

Cleaner Coal Plants May Use Pressurized Combustion System To Capture Carbon Dioxide ScienceDaily (Sep. 23, 2009)

 Researchers at MIT have shown the benefits of a new approach toward eliminating carbon-dioxide (CO2) emissions at coal-burning power plants.

(http://www.sciencedaily.com/releases/2009/09/090921134834.htm)