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Raw material —» Process — » Products

Structures and methods which lead to a
considerable compression of the equipment
size, and to a more efficient, selective and
clean production
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« 00000077

Intensification methods

Ultrasonic technigues

Microwave technigues

Integrated reaction and separation
Reactions under extreme conditions
Unsteady state operation

Enhancement of mass and heat transfer...
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Process Iintensification
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Intensification equipment

Structured reactors

(monoliths, foams, fibre structures, columns)
Reactors with internal heat exchangers
Microreactors

Equipment for reactive separation

Spinning disk reactors...
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Reaction intensification
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Reactant molecules Chemical reactor Product molecules
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Intensification of the chemical reactor
performance is a vital part of chemical reaction
engineering and process intensification
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Batch and continuous reactors
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Three-phase reactors
In laboratory scale
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New catalyst materials have emerged
c -]

e monoliths
e fibres/cloths
e foams

Benefit: low pressure drop, suppressed diffusion
resistance inside the catalyst particle

Challenge: activity, selectivity, metal particle size,
chemical state
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Monolith catalysts

Monolithic catalyst Channel Catalytic layer
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Continuous reactor —

KATAPACK column
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Fibre catalysts

125-90 ym D =40%
particles > Op= 25,r,‘m,
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SEM image of the 5 wt.% Pt/SiO, TEM image of the 5 wt.% Pt/Al,O,

fiber catalyst (Strem Chemicals) catalyst
~CC
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Catalysts in micro and nanoscale
S

* 5wt.% Pt/SF (Silica fibre) 5wt.% Pt/Al, O, (Strem)
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Reaction and mass transfer in three-
phase reactors - bottlenecks

A

c,
Gas Gas-liquid
Pa Liquid
Catalyst
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Reaction and diffusion

e Even though the governing phenomena of
coupled reaction and mass transfer in porous
media are principally known since the days
of Thiele and Frank-Kamenetskii



Reaction and diffusion

e They are still not frequently used in the
modeling of complex organic systems,
Involving sequences of parallel and
consecutive reactions.

e Evaluation of Thiele modulus and Biot
number for first-order reactions are not
sufficient for such a network comprising slow
and rapid steps with non-linear reaction s=R | X
Kinetics. i




Porous particle
S

Reaction, diffusion and catalyst
deactivation in porous particles

surface reaction /

Particle model ——=&, |10, dir
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Raney-
Nickel
Catalyst
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Porous particle model
S

dc, - d’c, sdc,
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Batch reactor

Liquid phase mass balance % = N_ap —Ngiag,
t I 1
Liquid-solid flux N, =k (c, —c.(R))
_ N _ Cgi B Kicltji
Gas-liquid flux 6L~ K 1
kLi ) kGi
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Example systems
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Modelling results
Citral hydrogenation
1 . . " T " 0.2
osf |
§ o7l ©\ citral , 4—/Hydrc>gM
g 0.6r ° 1 0.1%
X § 05 citronellal 3
§ 04 % o 1 E 0.1
.g 0.3r (e} o b Citral
§ 02r 5 0 o ] 0.05 %
0.1 o b Citronellal
0(5 56 160 _150 . 260 250 300 0O 0.1 0.2 03 04 05 0.6 d.? d.8 0‘.9 1
time (min) X
Intrinsic kinetics, trilobic catalyst particle concentration profiles
thin catalyst layers inside a trilobic catalyst
particle
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Lactose hydrogenation to lactitol
Intrinsic kinetics

2ver | actitol

A r r = 4
0 50 100 150 200 250 300
time (min)

T=110C, P=70 bar
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Lactose hydrogenation - diffusion
1.4;
Concentration profiles
inside catalyst particle L2
with different particle sizes ;|
= 0.8
Lactose % .
Lactitol
0.4
0.2
0(-) O.rl 0;2 0.3 0.4 0.r5 O.r6 0.7 0.r8 0.r9 1
Center ' Surface
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Concentration profiles of lactose

Inside a catalyst particle
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Deactivation

No deactivation
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Simultaneous catalytic
and non-catalytic reaction

Oxidation of ferrous sulphate to ferric sulphate

4FeSO, + O, + 2HSO, + 2H,0" ®

2Fe,(SO,), + 4H,0

Proceeds as a gas-liquid reaction but catalyst helps
Catalyst: Active carbon
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FeSO, oxidation in Katapack
«

e Non-catalytic process can be enhanced by
addition of a heterogeneous catalyst

e Diffusion resistance in catalyst particle
e Gas-liquid equilibria
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Kinetic model
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Non-catalytic reaction rate

2
’ d2 Cre Co (l—f )

r'=
dz
1+~ Cre
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Catalytic reaction rate

Ya 3/2

Co 1, C mm C
(K" =2-)(Cpe" CE Cr ————7—)
r = Cw+ KC zk” 1/2

C C ]
Ko’ cg®+1 ° e

ju
9
¢



-

B EMI

ITY

(ami =
Z0
<<

m=
> 5>
wng

Catalytic and noncatalytic
oxidation
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Fe(I)/weight-%

o = N w BN ol » ~ (0] ©
T T T T T

0 50 100 150 200 250 300
time/min

Experiments at 4 bar : from top 60°C, 80°C (0),
100°C (x) and 10 bar 100°C (+). Lines by simulation. zee /
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Catalyst particles
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Dynamic column model
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Model simulation and verification
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120 C 4.7 bar kla=0.116 /s
3
25 mol/I
2.4
2 2.2
2
15 1.8
1.6
1.4
1 1.2
1
05 0.8
0.6
o N4 o O
0 50 100 150 200 250
time (min)

0
Independent model verification in a

pilot reactor

Concentration of ferrous sulphate
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Catalyst reactivation and ultrasound

Deactivation is serious problem in heterogeneous catalysis

- help is needed

The aim of the study:
a) to determine the effect of ultrasound on deactivation kinetics

b) to model quantitatively the effect of ultrasound on kinetics
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Catalyst performance in batch
reactor

A+H,->P

~ Time__
» The catalyst activity declines at each batch even at low temperatures
* The reason is very often the fouling by organic compounds
* More catalyst is added -> mass transfer limitations enter

 Can ultrasound prolong the catalyst lifetime?
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In situ ultrasound equipment

Modified
Rushton
turbine

Electric
connection

High-pressure autoclave with in
situ ultrasonic irradiation system
(in-house design) :

Power input 0-100 W
Operating frequency 20kHz

Slurry reactor
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Generator (0-600W)
20 kHz
Reactor pot inserted

A time-variable

" power input
P PCS/
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Case studies

Case Catalysts

D-fructose hydrogenation Raney-Ni, Cu/SiO,,
Cu/ZnO/AlLO,

1-phenyl-1,2-propanedione Pt/SF, Pt/AL,O, , Pt/ SiO, ,

hydrogenation Pt/C
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D-fructose hydrogenation

CH,OH
) HO—CH
D-mannitol |
HO—CH
D-fructose HC—OH
H, |
CH,OH HC—OH
c=0 CH,OH
HO—CH
HC—OH
CH,OH
HC—OH H,
HC—OH
CH,OH
HO—CH
HC—OH
D-sorbitol e on

CH,OH

D-mannitol is a low caloric
sweetener widely used in
pharmaceutical and
alimentary industry.



Reaction conditions

* Pressurised batch autoclave (V, =250ml)
» Stirring rate 1800 rpm

* Py, = 30 bar

* T=110°C

« Nominal ultrasound intensity 130 Wcm-2
 Solvent: deionised water

 Catalyst: Raney-Ni




EHT=15.00k¥ WD= 9mm Signal A=lInLens

The spent Raney-Ni catalyst treated in
the absence of ultrasound.

The ultrasonic treated spent Raney-Ni
catalyst.



Deactivation of re-used catalyst
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Kinetic modelling

dc,

gt =—pg(l +1,)
CF _ 4 Pe(kitks)ep,t X :1—CF
= e ) COF
COF

—In(L— X) = pg (ky + ;)i t =K't
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Simple kinetic model
® silent, fresh 11 _ 1 (04
31 |esilent, 3rd reuse k - k C pB
Asono, fresh Ho
2.5 1 W sono, 3rd reuse
) J
X 21 K silent K sono
—
£.c
e fresh 2.27 2.19
1 -
3dre-use | 1.06 1.61
0 . . .
0 20 40 60 80
reaction time / [min] k ! _ ( )my m|n
Test of pseudo-first order kinetics. T = 110°C, (gcat )
Py, = 30 bar. X = conversion of D-fructose.
~CC
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Ultrasound effect and model
simulation

3rd reuse

=

concentration / [mol/l]
© o o
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1-Phenyl-1,2-propanedione
hydrogenation
c -]

Used for the

Q@ - @ - ﬁé@ synthesis of several

> pharmaceuticals e.g.

(1 (B) o _
] I ] ephedrine...
E) (A) )

| | |

(H) (€)

OH

(G)




Reaction conditions

G 721 Moer

cinchonidife

Pressurised batch autoclave (V,=200ml)
« Stirring rate 2000 rpm

* Py, = 10 bar

« T=15°C

« Nominal ultrasound intensity 78 Wcm™
« Catalyst modifier (M): cinchonidine c,, = 0.1mg/ml

» Solvents: toluene, methyl acetate, mesitylene
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Catalyst characterization

Jum EHT = 200kv WD = 1mm Signal A = InLens

The spent Pt/SF catalyst The ultrasonic treated spent Pt/SF
treated in the absence of catalyst (SEM image).
ultrasound (SEM image).
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Catalyst deactivation — experiments
In a fixed bed
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Solvent and ultrasound effect on
conversion on Pt/Silica fibre catalyst
100
Toluene
80 - A
’O\a O -
E 60 - US effect Methl acels :
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Hydrogenation kinetics of
1-ﬁhen¥I-1,2-ﬁroRaned|one
0.025 0.025
0.020 A ( 0.020 | B (R)- enantiomer
- B o
£ 0015 | £ 0015
5 i 5
£ 0010 | £ 0010
0.005 7 C 0.005 7 C (S)- enantiomer
i [ N
0.000 See S0 P 2 . \ 0.000 ¢ S
0 20 40 60 80 100 120 0 20 40 60 80 100 120

time (min) time (min)

Hydrogenation kinetics of 1-phenyl-1,2-propanedione (A) at 15°C and
6.5 bar hydrogen

H<: B (R)
H,™ C (S)
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Modelling of ultrasound

and deactivation
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L a
I =K;C\Cy.

(1
kK = koj(m (a+exp(—kd(1+a)t)j o = Kys /Ky

Kqg US

A+* T A* 2 A* — P+ *
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Parameter values

Solvent Kq Kd us Kg-Kg.us
(100*min-t) (100*min-t) | (100*mint)
Toluene 1.74 1.22 0.52
Mesitylene |[14.1 13.0 1.1
Methyl 1.45 1.07 0.39
acetate PCC
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Data fitting and model simulation
sBatch reactor
|
C
0.02 . . : . . 0.02
0.018 0.018
0.016 0.016 -
0.014 0.014 - A
,\ 0.012 0.012 Q
E 0.01 % 0.0L- 0
0.008 ° 0.008/- < o
0.006 0.006 - B = 0 ©
0.004 0.004 5 o © oC o
0.002 0.002- 5 5TE
00 2ro 4ro sro sro 1(;0 120 S 2 40 ga ;) 100 120

time (min) time (min)

A: 1-Phenyl-1,2-propanedione, B: (R)-1-hydroxy-1-
phenylpropanone, C: (S)-1-hydroxy-1-phenylpropanone,
D+E: (R)+(S)-2-hydroxy-1-phenylpropanone
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Continuous, dynamic fixed bed
with axial dispersion

Liquid phase
OC, . _ 8C ; 1 0C i
Li :(PeLgLrL) ' L ( |_T|_) Tt |\|L|0[V /gL +776i%i Pg
Gas phase
oy s

= (Pec;‘cf'ez'c-;)_1

4 OCg;
5 —(&576) la—;-'_NGiaV/gG

The effectiveness factor ( 7. is obtained from the pellet model ( N).

Special cases: Pe ,Pe; — oo : plug flow reactor
all flows zero (7,75 — ®©) : batch reactor
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Dynamic modelling of continuous bed

Non-steady
state kinetics
INn continuous
fixed bed
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Experiences from ultrasound

Acoustic irradiation

« Can sometimes improve reaction rate and selectivity

* Prevents catalyst deactivation by surface cleaning and smoothening
» Effects are solvent dependent

» Catalyst and reaction specific effects are visible

* The applications are not limited to catalysis —

the approach works for liquid-solid reactions
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Conclusions and future aspects

Reaction intensification is a part of process intensification — keep the
entire process in mind

Fundamental understanding on kinetics, thermodynamics, flow
structures should be the basis of reaction intensification

A lot of reactor and catalyst structures are available — they shoud be
evaluated critically

Intensification methods are very promising, but scale-up is a challenge
Implementation of catalysts is an intensification approach as such
Active search for new application areas is needed

More imagination is needed
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Art shows the way

A structured reactor

Design by Victor Vasarely (1908-1997 )
A famous Hungarian-French painter

"Colours are the vitamines of our life”



ABO AKADEMI
§] RSITY

Thank you
for your kind attention

Laboratory of Industrial Chemistry and Reaction Engineering
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