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Process intensification 

Structures and methods which lead to a 

considerable compression of the equipment 

size, and to a more efficient, selective and 

clean production 

Raw material Products Process 



Process intensification 

Intensification methods 

 
Ultrasonic techniques 

Microwave techniques 

Integrated reaction and separation 

Reactions under extreme conditions 

Unsteady state operation 

Enhancement of mass and heat transfer... 



Process intensification 

Intensification equipment 

 
Structured reactors  

(monoliths, foams, fibre structures, columns) 

Reactors with internal heat exchangers 

Microreactors 

Equipment for reactive separation  

Spinning disk reactors... 

 



Reaction intensification 

Intensification of the chemical reactor 

performance is a vital part of chemical reaction 

engineering and process intensification 

Reactant molecules  Product molecules Chemical reactor 



Batch and continuous reactors 



Three-phase reactors  
in laboratory scale 



New catalyst materials have emerged 

 monoliths 

 fibres/cloths 

 foams 

 

Benefit: low pressure drop, suppressed diffusion 

resistance inside the catalyst particle 

Challenge: activity, selectivity, metal particle size, 

chemical state 



Monolith catalysts 



Continuous reactor – 
KATAPACK column 



Fibre catalysts 

4 nm 

TEM image of the 5 wt.% Pt/Al2O3  

(Strem Chemicals)  catalyst 
SEM image of the 5 wt.% Pt/SiO2  

fiber catalyst 

1 mm 

125-90 m 
particles 

D = 27% 

dPt= 4 nm 

D = 40% 

dPt= 2.5 nm 



Catalysts in micro and nanoscale 

5 m 

TEM image SEM image 

4 nm 
5 m 

• 5wt.% Pt/SF (Silica fibre)              5wt.% Pt/Al2O3 (Strem) 

4 nm 



Reaction and mass transfer in three-
phase reactors - bottlenecks 

Bulk   Film Bulk           Film           Solid 



Reaction and diffusion 

 Even though the governing phenomena of 

coupled reaction and mass transfer in porous 

media are principally known since the days 

of Thiele and Frank-Kamenetskii 



Reaction and diffusion 

 They are still not frequently used in the 

modeling of complex organic systems, 

involving sequences of parallel and 

consecutive reactions.  

 Evaluation of Thiele modulus and Biot 

number for first-order reactions are not 

sufficient for such a network comprising slow 

and rapid steps with non-linear reaction 

kinetics. 
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Porous particle 

  










 

dr

rNd
rr

dt

dc S

iS

pip
i  1

 
j

jjiji aRr 

Reaction, diffusion and catalyst  

deactivation in porous particles 

Particle model 

Rates 



Separable and reversible deactivation kinetics 
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Porous particle model 
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Boundary conditions 



Batch reactor 
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Liquid phase mass balance 

Liquid-solid flux 

Gas-liquid flux 



Example systems 

Hydrogenation of 
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Modelling results 
Citral hydrogenation 
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trilobic catalyst particle 
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Lactose hydrogenation to lactitol 
Intrinsic kinetics 
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Lactose hydrogenation - diffusion 
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4FeSO4 + O2 + 2HSO-
4 + 2H3O

-  ® 

 

2Fe2(SO4)3 + 4H2O 

Proceeds as a gas-liquid reaction but catalyst helps 

Catalyst: Active carbon 

Oxidation of ferrous sulphate to ferric sulphate 

Simultaneous catalytic  
and non-catalytic reaction 



FeSO4 oxidation in Katapack 

 Non-catalytic process can be enhanced by 

addition of a heterogeneous catalyst 

 Diffusion resistance in catalyst particle 

 Gas-liquid equilibria 

 



Kinetic model 
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Non-catalytic reaction rate 

Catalytic reaction rate 
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Catalytic and noncatalytic 
oxidation 
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Catalyst particles  
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Model simulation and verification 
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Catalyst reactivation and ultrasound 

 

 Deactivation is serious problem in heterogeneous catalysis  

 - help is needed 

 

The aim of the study: 

a) to determine the effect of ultrasound on deactivation kinetics 

b) to model quantitatively the effect of ultrasound on kinetics 
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reactor 

 
  

 

 

• The catalyst activity declines at each batch even at low temperatures 

• The reason is very often the fouling by organic compounds 

• More catalyst is added -> mass transfer limitations enter 

• Can ultrasound prolong the catalyst lifetime? 

 

A + H2 -> P 

 



 In situ ultrasound equipment 

Electric

connection

Horn
M odified

Rushton

turbine

Pressurized

autoclave
High-pressure autoclave with in 

situ ultrasonic irradiation system 

(in-house design) : 

 Power input 0-100 W 

Operating frequency 20kHz 

Slurry reactor 



Multi-transducer set-up 

Generator  (0-600W) 

20 kHz 

 Reactor pot inserted 

 

6 transducers 

 

A time-variable  

power input 

 



Case studies 

 

Case Catalysts 

D-fructose hydrogenation Raney-Ni, Cu/SiO2, 

Cu/ZnO/Al2O3 

1-phenyl-1,2-propanedione 

hydrogenation 

Pt/SF, Pt/Al2O3 , Pt/ SiO2 , 

Pt/C 



D-fructose hydrogenation 
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Reaction conditions 

• Pressurised batch autoclave (VL=250ml) 

• Stirring rate 1800 rpm  

• pH2
 = 30 bar 

• T=110C 

• Nominal ultrasound intensity 130 Wcm-2  

• Solvent: deionised water 

• Catalyst: Raney-Ni 

 

 



Catalyst characterisation 

 

The spent Raney-Ni catalyst treated in 

the absence of ultrasound. 

The ultrasonic treated spent Raney-Ni 

catalyst. 
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Kinetic modelling 



Simple kinetic model 

Test of pseudo-first order kinetics. T = 110°C,                

pH2 = 30 bar. X = conversion of D-fructose. 
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Ultrasound effect and model 

simulation 

Example fit using the graphically obtained rate constants,             

T = 110°C, pH2 = 30 bar. (Fructose: ○ = silent, ● = ultrasound; 

Mannitol: □ = silent, ■ = ultrasound; Sorbitol: ◊ = silent, ♦ = 

ultrasound). 
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1-Phenyl-1,2-propanedione 

hydrogenation 
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Reaction conditions 

 Pressurised batch autoclave (VL=200ml) 

• Stirring rate 2000 rpm  

• pH2
 = 10 bar 

• T=15C 

• Nominal ultrasound intensity 78 Wcm-2 

• Catalyst modifier (M): cinchonidine cM = 0.1mg/ml  

• Solvents: toluene, methyl acetate, mesitylene 
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The spent Pt/SF catalyst 

treated in the absence of 

ultrasound (SEM image).  

The ultrasonic treated spent Pt/SF 

catalyst (SEM image). 

Catalyst characterization 



Catalyst deactivation – experiments 

in a fixed bed 
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Solvent and ultrasound effect on 

conversion on Pt/Silica fibre catalyst 
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Hydrogenation kinetics of 

1-phenyl-1,2-propanedione 
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Parameter values 

Solvent kd  

(100*min-1) 

kd,US  

(100*min-1) 

 

kd-kd,US  

(100*min-1) 

Toluene 1.74 1.22 0.52 

Mesitylene 14.1 13.0 1.1 

Methyl 

acetate 

1.45 1.07 0.39 



Data fitting and model simulation 

Batch reactor 
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Continuous, dynamic fixed bed 
with axial dispersion  

Liquid phase 

 

 

Gas phase 

 

 

The effectiveness factor (    ) is obtained from the pellet model (   ). 

 

Special cases:                          : plug flow reactor  

   all flows zero                           : batch reactor     
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Dynamic modelling of continuous bed 

Non-steady 

state kinetics 
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Experiences from ultrasound 

Acoustic irradiation 

• Can sometimes improve reaction rate and selectivity 

• Prevents catalyst deactivation by surface cleaning and smoothening 

•  Effects are solvent dependent 

•  Catalyst and reaction specific effects are visible  

 

• The applications are not limited to catalysis –  

the approach works for liquid-solid reactions 

  

 

 



Conclusions and future aspects 

 Reaction intensification is a part of process intensification – keep the 
entire process in mind 

 

 Fundamental understanding on kinetics, thermodynamics, flow 
structures should be the basis of reaction intensification 

 A lot of reactor and catalyst structures are available – they shoud be 
evaluated critically 

 

 Intensification methods are very promising, but scale-up is a challenge 

 Implementation of catalysts is an intensification approach as such 

 Active search for new application areas is needed 

 More imagination is needed 



 

 

A structured reactor 

 

Design by Victor Vasarely (1908-1997 ) 

A famous Hungarian-French painter 

 

 

”Colours are the vitamines of our life” 

 

Art shows the way 
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