Project owner	Projectc name	country	Technology	Raw material	Product	Facility Type	Status	Start-up year	Web	Technology brief
Aalborg University Copenhagen	BomBiofuels optimization	Denmark	biochemical conversion	ignocellulosics; wheat straw, cocksfoot grass	ethanol; biogas;	pilot	operational	2009	www.sustainablebiotechnology.aau.dk	BomBiousis Optimization involves the further optimization of the 2nd generation beerhand concept behind the BomBiousies (EUDP) deem project of the company Biogada, bouch of energy and external enzymes, and improving the process robustness of the While borefinery scheme. Pilot testing will be performed on an optimized process integration including modified pretraxment and hydrohysis, an alte enzyme production, and with optiental process resources, relevant for the BomBiodines product.
Abengoa Bioenergy Biomass of Kansas, LLC	Commercial	United States	biochemical conversion	lignocellulosics; corn stover, wheat traw, switch grass;	Ethanol;	commercial	under contruction	2013	www.abengoabioenergy.com	Steam explosion coupled with biomass fractionation, C5/C6 fermentation, distillation for ethanol recovery. Heat and power is provided by means of biomass gasification.
Abengoa Bioenergy New	Pilot	United States	bioquemical conversion	lignocellulosics; corn stover	Ethanol;	pilot	operational	2007	www.abengoabioenergy.com	-
Abengoa Bioenergy, Biocarburantes	Demo	Spain	biochemical conversion	lignocellulosics; cereal straw (mostly	Ethanol;	demo	operational	2008	www.abengoabioenergy.com	Steam explosion, no fractionation, Enzymatic Hydrolysis (glucose)
Abengga Bigenergy S A	Abennoa Arance EC demonstration	France	biochemical conversion	lignocellulosics; agricultural and	ethanol:	demo	planned	2013	www.abenggabigenergy.com	Steam explosion , Saccharification, C6 sugars fermentation, Enzymes, Distillation, Anaerobic
nocigou biocnergy, s.n.		in the second		forest residues lignocellulosics: switchgrass, grass		ucino .	planned		www.ubengoublocitergy.com	digestion process
Aemetis AliphaJet Inc.	Pilot Aliphajet Pilot Plant	United States	chemical conversion	seed, grass straw and corn stalks oils, fats; Oils from soy, beef tallow, waste veg. oil, and oil crops such as camelina, jatropha, pennycress, and pongamia	etnanoi; diesel; jet fuel;	pilot	planned	2008	www.aebiorueis.com www.aliphajet.com	ambent temperature starkny cellulose hydroxysis (AISLH) Alphajet's proteinary catalytic decoxynanton ("decoxynanton") technology converts any renewable oils and fats (such as waste vegetable oil, tallow, algal oil, and non-fodd oil crops like pemyrctes, camlein, ai torpha, and pongamia), into true "dropin" hydrocarbon teles including diesel (F-76), jet Hui (let-A, JPS, JPA), and high-octane gasoline. It does this by catalytically creaving the oxygen from the fatty acids contained in triggerefield bits.
Amyris, Inc.	Amyris Antibioticos	Spain	biochemical conversion	fermentable sugars; sugar beet; dextrose	hydrocarbons;	commercial	operational	2011	www.amyris.com	Conversion of ferrentable sugars to a 15-carbon hydrocarbon, called beta-famesene using genetically modified microorganisms in fermentation. Famesene can be converted to render: a. Fuels (primarily diesel) b. Lubricants c. Polymers and Plastic Additives d. Cosmettics e. Consumer Products Ingredients f. Flavors and Fragancies
Amyris, Inc.	Amyris Biomin	Brazil	biochemical conversion	fermentable sugars; sugarcane	hydrocarbons;	commercial	operational	2010	www.amyris.com	Conversion of fermentable sugars to a 15-carbon hydrocarbon, called beta-farnesene using genetically modified microorganisms in fermentation. Farnesene can be converted to render: a. Fuels (primarily disce) b. Lubricants. C.Polymers and Plastic Additives d. Cosmetics e. Consumer Products Ingredients f. Flavors and Fragancies
Amyris, Inc.	Amyris Paraiso	Brazil	biochemical conversion	fermentable sugars; sugarcane	hydrocarbons;	commercial	planned	2012	www.amyris.com	Conversion of fermentable sugars to a 15-carbon hydrocarbon, called beta-famesene using genetically modified microorganisms in fermentation. Famesene can be converted to render: a. Fuels (primarily diesel) b. Lubricants c. Polymers and Plastic Additives d. Cosmetics e. Consumer Products Ingredients f. Flavors and Fragancies
Amyris, Inc.	Amyris Pilot & Demonstration Plant	Brazil	biochemical conversion	fermentable sugars; sugarcane	hydrocarbons;	demo	operational	2009	www.amyris.com	Conversion of fermentable sugars to a 15-carbon hydrocarbon, called beta-famesene using genetically modified microorganisms in fermentation. Famesene can be converted to render: a. Fuels (primarily diesel) b. Lubricants c. Polymers and Plastic Additives d. Cosmetics e. Consumer Products Ingredients f. Flavors and Fragancies
Amyris, Inc.	Amyris Sao Martinho	Brazil	biochemical conversion	fermentable sugars; sugarcane	hydrocarbons;	commercial	planned	2013	www.amyris.com	Conversion of fermentable sugars to a 15-carbon hydrocarbon, called beta-farmesene using genetically modified microorganisms in fermentation. Farmesene can be converted to render: a. Fuels (primarily diesel) b. Lubricants c. Polymers and Plastic Additives d. Cosmetics e. Consumer Products Ingredients f. Flavors and Fragancies
Amyris, Inc.	Amyris Tate & Lyle	United States	biochemical conversion	fermentable sugars; corn dextrose	hydrocarbons;	commercial	operational	2011	www.amyris.com	Conversion of fermentable sugars to a 15-carbon hydrocarbon, called beta-famesene using genetically modified microorganisms in fermentation. Famesene can be converted to render: a. Fuels (primarily diesel) b. Lubricants c. Polymers and Plastic Additives d. Cosmetics e. Consumer Products Ingredients f. Flavors and Fragancies
Amyris, Inc.	Amyris USA	United States	biochemical conversion	fermentable sugars; sugarcane	hydrocarbons;	pilot	operational	2008	www.amyris.com	Conversion of fermentable sugars to a 15-carbon hydrocarbon, called beta-famesene using genetically modified microorganisms in fermentation. Famesene can be converted to render: a. Fuels (primarily diesel) b. Lubricants c. Polymers and Plastic Additives d. Cosmetics e. Consumer Products Ingredients f. Flavors and Fragancies
BBI BioVentures LLC	Commercial	United States	biochemical conversion	lignocellulosics; pre-collected feegnocellulosics; pre-collected feestocks that require little or no pretreatmentstocks that require little or no pretreatment	ethanol;	commercial	plans abandoned	2010	www.bbibioventures.com	
Beta Renewables (joint venture of Mossi & Ghisolfi Chemtex division	Pilot	Italy	biochemical conversion	lignocellulosics; corn stover, straw, husk, energy crops (Glant Reed)	ethanol; various chemicals;	pilot	operational	2009	www.betarenewables.com	Enzymatic conversion of selected Biomasses. Pretreatment, handling of pre-treated material and hydrolysis done in equipment specifically designed. Production of oher biotherate will be the 12 2021
Beta Renewables (joint venture of Mossi & Ghisolfi Chemtex division	IBP - Italian Bio Fuel	Italy	biochemical conversion	lianocellulosics:	ethanol-	commercial	under construction	2012	www.hetarenewables.com	Enzymatic conversion of selected Biomasses. Pretreatment, handling of pre-treated
with TPG) BFT Bionic Fuel Technologies AG	OFT Alyssa	Denmark	other innovative conversion	lignocellulosics; straw pellets	diesel; hydrocarbons;	demo	stopped	2008	www.microfuel.eu	Isome microtive! Technology transforms biomass to highed using advanced microwave technology. The bioinic fuel Technologies Group (BPT) has significantly enhanced a method for a catalytic low temperature depolymerization of hydrocarbons. The method iself and its chemo physical foundations have been well known for immay decades and have proven their the application of microwave technology as the primary source of reaction energy. With his approach the scene of only possible to overcome all obstacles associated with earlier plant developments, but also additional beneficial effects could be achieved. During a pre- tection of the scene of the developments, but also additional beneficial effects could be achieved. During a pre- ference of the scene of the developments, but also additional beneficial effects could be achieved. During a pre- ent development of the scene of the scene of the scene of the scene of the scene scenes. A scene of the scene of the scene of the scene of the scene of the scene scenes. A scene of the scene of the scene of the scene of the scene of the scene scenes. A scene of the scene of the scene of the scene of the scene of the scene scenes. A scene of the scene of the scene of the scene of the scene of the scene scenes. A scene of the scene of the scene of the scene of the scene of the scene scenes. A scene of the scene of the scene of the scenes of the scene of the scene of the scene scenes. A scene of the scene of the scene of the scene of the scene of the scene scenes. A scene of the scene of the scene of the scene of the scene of the scene scenes. A scene of the scene of the scene of the scene of the scene of the scene of the scene of the scene of the sce
Bioenergy 2020+ Bioenergy 2020+	Mixed alcohols	Austria	thermochemical conversion thermochemical conversion	wood chips	mixed alcohols	pilot	operational	2014	www.bioenergy2020.eu www.bioenergy2020.eu	-
BioGasol	BomBioFuel2	Denmark	biochemical conversion	lignocellulosics; straw, various	ethanol; biogas; lignin; fertilizer	demo	planned	2016	www.biogasol.com	Integration of core BioGasol technologies into a complete plant; Reduce technical and financial risk for future full-scale plants; Demonstrate technical feasibility and feedstock
				grusses, garueri waste.						flexibility; Test centre for technology developments at semi-industrial scal
BioGasol	BomBioFuel1	Denmark	biochemical conversion	lignocellulosics; flexible	ethanol; pretreated biomass;	pilot	operational	2008	www.biogasol.com	CS fermentation) at pilot capacity scale; Maturation core technologies (Pfetdeatheit and CS fermentation) at pilot capacity scale; Maturation and up-scaling of core technology to industrial standards; Proof-of-technology to achieve commercially viable soluti
Biomassekraftwerk Guessing	SNG demo	Austria	thermochemical conversion	lignocellulosics; syngas from gasifier	SNG;	demo	operational	2008	www.eee-info.net	After iab testing in a scale of 10 kW during the last few years, the pilot and demonstration will be a scale of the scale
Blue Sugars Corporation (formerly	Blue Sugars	United States	biochemical conversion	lignocellulosics; Sugarcane bagasse	ethanol: lignin:	demo	operational	2008	www.bluesugars.com	-
KL Energy)				anu other biomass lignocellulosics; sugarcane bagasse,						Chemical pretretment, saccharification with commercial enzymes, conventional
Borregaard AS	BALI Biorefinery Demo	Norway	biochemical conversion	straw, wood, energy crops, other lignocellulosics	ethanol; biogas; lignin; hydrogen;	demo	operational	2012	www.borregaard.com	fermentation of hexoses, aeorobic fermentation or chemical conversion of pentoses, chemical modification of lignin
Borregaard Industries LTD	ChemCell Ethanol	Norway	biochemical conversion	lignocellulosics; sulfite spent liquor (SSL, 33% dry content) from sprucewood pulping	ethanol;	commercial	operational	1938	www.borregaard.com	Pulp for the paper mill is produced by cooking spruce chips with acidic calcium bisulfite cooking liquor. Hemicellulose is hydrolyzed to various sugars during the cooking process. After concentration of the S2L, the sugars are fermented and ethanol is distilled off in several steps. A part of the 96% ethanol is dehydrated to get absolute ethanol.
BP Biofuels	Jennings Demonstration Facility	United States	biochemical conversion	lignocellulosics; dedicated energy crops	cellulosic ethanol;	demo	operational	2009	www.bp.com/biofuels	
Butamax Advanced Biofuels LLC	Biobutanol demo	United Kingdom	other innovative conversion	other; various feedstocks	biobutanol	demo	planned	2010	www.butamax.com/	-
Chempolis Ltd.	Chempolis Biorefining Plant	Finland	biochemical conversion	lignocellulosics: non-wood and non- food lignocellulosic biomass such as straw, reed, empty fruit bunch, bagasse, corn stalks, as well as wood residues	ethanol: pulp;	demo	operational	2008	www.chempolis.com	Chempolis core products are the two patented biorefining technologies: 1) formicobio " for the production of cellulosis ethania and biokenicalis for mon-food biomasses and 2) formicolib " for the production of papermaking fibers (i.e., puip) and biochemicals from non- wood biomasses. These two technologies share a common technology platform that enables selective fractionation of various biomasses with a novel biosohert, ful recovery of portfable and environmentally sustainable biorefining deriving from higher revenues and reduced operating costs while CO2 emissions and other pollution to atmosphere and waterways can be eliminated practically completely.
Chemrec	BioDME	Sweden	Thermochemical conversion	Liquefied biomass - black liquor from forest raw material	DME	large pilot / demo	operational	2011	www.biodme.eu	The recovery boiler in the paper mill is replaced or supplemented by a gasification based fuel generating and puip mill cooking chemicals recovery system. The BioDME pilot is an integrated part of heavy DME fuelled which effect trials.

		·					1	1		
CHOREN Fuel Freiberg GmbH & Co. KG	beta plant	Germany	thermochemical conversion	lignocellulosics; dry wood chips from recycled wood and residual forestry wood; additionally in the future fast growing wood from short-rotation	FT-liquids;	demo	stopped	Start up was originally planned for 2012	www.choren.com	
CHOREN Industries GmbH	sigma plant	Germany	thermochemical conversion	Ingnocellulosics; dry wood chips from recycled wood; fast growing wood from short-rotation crops	FT-liquids;	commercial	stopped	2016	www.choren.com	•
Coskata	pilot	United States	biochemical conversion	lignocellulosics; various	ethanol;	pilot	operational	2003	www.coskata.com	-
Coskata	Lighthouse	United States	biochemical conversion	lignocellulosics; wood chips. natural gas	ethanol;	demo	operational	2009	www.coskata.com	The plant will employ the Plasma Center's gasifier to superheat raw materials at temperatures up to 170 degrees fahrenkelt (100°C), then release the resulting synthetic gas, or "tyngas." into a bioreastor, where it will become floot for microarganisms that from a toor of resolution, compared with of galance produced from the same amount of corn, and that the fuel will cost tests than 51 a gallot to produce. Coskata is commercializing a projectary protection of save subscription of a wide variety of input conversion process: 1. Incoming material converted to synthesis gas (gasification) 2. Fermentation of synthesis gas into factor and lob rememeration 3. Separation and recovery of ethanol (begarations). Ethanic (an be manufactured using this cutting edge technology at a During gasification, cathon-based input materials are converted into syngas using well- established gasification technologies. After the ensuing syngas into establishe gas-to-liquid conversion process. Is a converted to synthesis gas (cathon established pas-to-liquid conversion process has occurred, the resulting syngas into establishe establishe the need for costly ensymatic pertensions, "Coskata" profestary microgramisms estimated the need for costly ensymatic pertensions and the boorderserver (from the gasatation, Coskata y proprietary microgramisms and the boorderserver (from the gasatation estimation y discourse) the resulting epiton of scowered from the gasatation technology damatically introves the separation perton of y costance exclusion using "proves the separation schology damatically introves the separation schology component of includes a gasifier, gas clear-up, fermentation and capatal costs. Coskata sexulsively licensed includes a gasifier, gas clear-up, fermentation and separation (biotilitation and membrane esparation (biotilitation and membrane esparation) is chology damatically in the theoreas intervencey component of includes a gasifier, gas clear-up, fermentation and separation (biotilitation and membra
DuPont	DuPont Cellulosic Ethanol Demonstration plant	United States	biochemical conversion	lignocellulosics; corn stover, cobs and fibre: switchgrass	ethanol;	demo	operational	2010	www.dupont.com	enzymatic hydrolysis
Dynamic Fuels LLC	Geismar Project	United States	chemical conversion	oils, fats; hydrotreatment of animal	diesel-	commercial	operational	2010	www.dvnamicfuelsllc.com	Hydroprocessing of animal fats, used cooking greases and the like, into renewable synthetic
-,				fats, used cooking greases						diesel meeting ten US ASTM D975 diesel spec. Production of Substitute Natural Gas from woody biomass using MILENA gasification. OLGA
ECN	pilot	Netherlands	thermochemical conversion	demolition wood	SNG; syngas;	pilot	operational	2008	www.ecn.nl	tar removal, gas cleaning, gas upgrading and methanation
ECN	demo	Netherlands	thermochemical conversion	lignocellulosics; biomass /biomass coal blends:	SNG; heat;	demo	planned	2013	www.ecn.nl	•
Enerkem	Sherbrooke pilot plant and research center	Canada	thermochemical conversion	Municipal solid waste (MSW), Municipal solid waste (MSW) from numerous municipalities and more than 25 different feedstocks, including wood chips, treated wood, sludge, petcoke, spent plastics, wheat straw. Feedstocks can be in solid, slurry or liquid form.	ethanol; methanol; power; syngas; acetates;	pilot	operational	2003	www.enerkem.com/en/facilities/innovation- centers/sherbrooke-quebec-canada.html	
Enerkem	demo	Canada	thermochemical conversion	biomass /biomass coal blends; Treated wood (i.e. decommissioned electricity poles, and railway ties), wood waste and MSW	ethanol; methanol; hemicelluloses; power; syngas;	demo	operational	2009	www.enerkem.com/index.php? module=CMS&id=11&newlang=eng	Energent bevelops biolues and chemicals rolm waste, with its prophetary thermitorhemical technology. Energence moneyers abundantly available municipal solid waste (mixed textiles, plastics, fibers, wood and other non-recyclable waste materials) into chemical-grade syngas, and then methanol, ethanol and other chemical intermediates that form everyday products. Enerkem develops biofuels and chemicals from waste. With its proprietary thermochemical
Enerkem	Edmonton Waste-to-Biofuels Project	Canada	thermochemical conversion	biomass /biomass coal blends; Post- sorted municipal solid waste (MSW)	ethanol; methanol; syngas;	commercial	under construction	2013	www.enerkem.com/en/facilities/plants/westbury- quebec-canada.html	technology, Enerkem converts abundantly available municipal solid waste (mixed textiles, plastics, fibers, wood and other non-recyclable waste materials) into chemical-grade syngas, and then methanol, ethanol and other chemical intermediates that form everyday products. Fiberkem develons bindiels and chemicals from waste. With its proprietary thermochemical
Enerkem - Varennes Cellulosic Ethanol L.P.	Varennes commercial facility	Canada	thermochemical conversion	biomass /biomass coal blends; Sorted industrial, commercial and institutional waste	ethanol; methanol; syngas;	commercial	planned		www.enerkem.com/en/facilities/plants/varennes- quebec-canada.html	technology, Enerkem converts abundantly available municipal solid waste (mixed textiles, plastics, fibers, wood and other non-recyclable waste materials) into chemical-grade syngas, and then methanol, ethanol and other chemical intermediates that form everyday products. Enerkem develops biofuels and chemicals from waste. With its proprietary thermochemical
Enerkem Mississippi Biofuels LLC	Enerkem Mississippi Biofuels	United States	thermochemical conversion	biomass /biomass coal blends; Sorted municipal solid waste and wood residues	ethanol; methanol; syngas;	commercial	planned	-	www.enerkem.com/en/facilities/plants/pontotoc- mississippi.html	technology. Enerkem converts abundantly available municipal solid waste (mixed textiles, plastics, fibers, wood and other non-recyclable waste materials) into chemical-grade syngas, and them methanol, ethanol and other chemical intermediates that form everyday products.
Fiberight LLC	Commercial Plant	United States	biochemical conversion	municipal solid waste;	ethanol; biogas; power; sugars;	commercial	under construction	2013	www.fiberight.com	such as contaminated paper, foot wastes, yard discards and other degradaties for the production of cellulas and hemicellulae influe discards and the degradaties for the blockenicals using ensymatic hydrolysis and fermentation. The plastic fraction and detectivity to good the second sec
Fiberight LLC	Integrated Demonstration Plant	United States	biochemical conversion	municipal solid waste;	ethanol; biogas; power; sugars;	demo	operational	2012	www.fiberight.com	-
Flambeau River Biofuels Inc.	Project Trixie	United States	thermochemical conversion	lignocellulosics; Forest residuals, non-merchantable wood	FT-liquids;	demo	plans abandoned	Start up would have been in 2013.	www.flambeauriverpapers.com	Thermochemical conversion of biomass using advanced gasification technologies followed by FT catalytic conversion into renewable liquid fuels and waxes. Currently pilot plant testing: start of construction anticipated for fail 2011.
Cåttabara Eporal AP	CoRiCos Plant Phase 1	Swodon	thermechemical conversion	lignocellulosics; Forest residues,	biomethane:	domo	under construction	2012	unuu aabiaas sa	
GATEBOIG EIIEIGI AB	Gobigas Flant - Flase 1	Sweden	chemical conversion	wood pellets, branches and tree tops	biomediane,	dento	ander construction	2015	www.gobigas.se	
GraalBio	GraalBio plants	Brazil	biochemical conversion	bagasse and straw	ethanol;	commercial	planned	-	www.betarenewables.com	•
Greasoline GmbH	sts-plant	Germany	thermochemical conversion	oils, fats; bio-based oils and fats, residues of plant oil processing, free fatty acids, used bio-based oils and fats	diesel; hydrocarbons; gasoline type fuel;	pilot	operational	2011	www.greasoline.com	Catalytic cracking of bio-based oils + fats primarily produces diesel fuel-range hydrocarbons. Preferred catalysts are activated carbons. Variation in process conditions, catalysts and input material lead to alkenes, LPG, gasoline and drop-in jet fuels.
GTI Gas Technology Institute	Tex-Fuel and Advanced Gasification Test Facilities, Wood to Gasoline	United States	thermochemical conversion	tops, bark, hog fuel, stump material	FT-liquids;	pilot	Operational	2004	www.gastechnology.org	ŀ
GTI, Gas Technology Institute	IH2 å€" 50 Continuous Pilot Plant	United States	thermochemical conversion	lignocellulosics; Wood, Corn-stover, Bagasse, Algae	FT-liquids; gasoline type fuel;	pilot	operational	2012	httpwww.gastechnology.org	The Ht2 plot plant contains a first stage fluidized bed catalytic hydropyrolysis reactor, and second stage hydroconversion reactor. Hydrogen produced in the process is continuously recycled. The biomass is continuously fed while liquid, gas, and char products are continuously removed. The pliot plant operates 24 hours a day in test campaigns lasting 30 days or longer.
Inbicon (DONG Energy)	pilot 1	Denmark	biochemical conversion	lignocellulosics; straw	ethanol; c5 molasses; solid biofuel;	pilot	operational	2003	www.inbicon.com	hydrothermal pre-treatment, high gravity hydrolysis, yeast fermentation
Inbicon (DONG Energy)	demo	Denmark	biochemical conversion	lignocellulosics; wheat straw	ethanol; c5 molasses; solid biofuel; ethanol; c5 molasses; solid biofuel;	demo	operational	2009	www.inbicon.com	-
INEOS Bio	Indian River County Facility	United States	biochemical conversion	lignocellulosics; Vegetative Waste,	ethanol;	commercial	under construction	2012	www.ineosbio.com	
logen Corporation	demo	Canada	blochemical conversion	lignocellulosics: wheat, harley and oat straw; com stover, sugar cane bagasse and other agricultural residues	ethanol;	demo	operational	2004	www.logen.ca	Ingen technology makes It economically feasible to convert biomass into cellulosis ethanol using a combination of thermai, chemical and biochemical techniques. The yield of cellulosis ethanol is more than 340 litres per tome of fibre. The lignin in the plant fibre is due to drive the process by generalized is and an advectively, that elimination the need for pertreatment method to increase the surface area and "accessibility" of the plant fibre is envymes. We achieve this through our modified steam explosion process. This improves ethanol yields, increases pretreatment efficiency, and reduces overall cost. Enzyme to the specific pretreatment efficiency, and reduces overall cost. Enzyme to the plant paper, textiles and animal feed industries. Enzymatic Hydrolysis: logen diversion of the structure of the structure of the structure of the structure stage hydrolysis process. Ethanol Fernentation: logen uses advanced microorganisms and preducing of premetations that odditied using conventional technology to produce advanced by fermentation is then distilled using conventional technology to produce produced by fermentation is demonstration consolities advanced microorganisms and produced by fermentation is demonstration and economical, logen bas successfully produced by fermentation is demonstration accellana, technology to produce produced by fermentation is demonstration corrolling and conventional technology to produce produced that make the overall process efficient and acconomical, logen has successfull production that make the overall process efficient and accellated cellulosis ethanol. The fact of the plant fact and the structure of the distructure and cellulosis the distructure fact and acconomical cellulosis technology to produce production that make the overall process efficient and acconomical, logen has successfully advalated these integrations, where the conomical cellulosis ethanol. The fact and acconomical cellulosis ethanol fact the distructure of the distructure of the structure of the structure of t
Iowa State University	BioCentury Research Farm	United States	biochemical and thermochemical conversion	lignocellulosics: grains, oilseeds, vegetable oils, glycerin	ethanol; FT-liquids; biodiesel; pyrolysis olis;	pilot	operational	2009	www.biocenturyresearchfarm.iastate.edu	The structure of university subceture years of refit is an integrated reset(i) and demonstration failly dedicated to biomass production and processing. Activities at the Farm include culture development and testing; biomass harves, storage, and direft three different lines for processing ground and pretented biomass. Ta biochemical train, a hermochemical train, and a bioprocessing train (hybrid technologies). The products can be fuelds and their biobased products. Byproduct recycling to the field shall be optimized.
Karlsruhe Institute of Technology (KIT) LanzaTech - Concord Enviro System	bioliq	Germany	thermochemical conversion	lignocellulosics; Any gas containing Carbon	diesel; gasoline type fuel;	pilot	under construction	2013	www.bioliq.de	gasoline-synthesis Status: Fast pyrolysis: no peration: Gasification, DME- and gasoline synthesis under construction finished end of 2011
PVT Ltd.			sischemical conversion	Monoxide; Municipal solid waste	control,	acina	province		www.suizacecii.com	n ucincy using municipal solid wasterdenved syngas.
LanzaTech New Energy Technology Co., Ltd.)	Waste Gas to Fuel	China	biochemical conversion	Any gas containing Carbon Monoxide; Industrial off gas Any gas containing Carbon	ethanol;	demo	under construction	2013	www.lanzatech.com	Convertion of CO-rich rases from steel production facilities into funk and electricate
LanzaTech BaoSteel New Energy	Waste Gas to Fuel	11 F11F1-4	A CONTRACT OF A	-						the second the second the second the second se

LanzaTech New Zealand Ltd	waste gas to fuel	New Zealand	biochemical conversion	Any gas containing Carbon Monoxide; industrial flue gasses	ethanol;	pilot	operational	2008	www.lanzatech.com	waste gas to fuel conversion using proprietary microbial catalysts
LanzaTech, Inc.	LanzaTech Freedom Pines Biorefinery	United States	biochemical conversion	lignocellulosics; Biomass syngas	ethanol;	commercial	planned	2013	www.lanzatech.com	Gas fermentation process using biomass syngas derived from forestry residues
Licella	Commercial demonstration plant	Australia	thermochemical conversion	lignocellulosics; Radiata Pine, Banna Grass, Algae	bio-oil;	demo	operational	2008	www.licella.com.au	Using our proprietary Catalytic Hydrothermal Technology (Cat-HTR), Licella can use any form of lignocellulosic biomass feedstock to produce its Bio-Crude oil. Licella's process can in one step produce a high energy density (3-3-3 M(N/g) Bio-Crude within 30 minutes, that can be blended with traditional lossil event, dense and dropped in to existing refineries to make the same range of fuels e.g. perchi, disel and jet and chemical feedstocks.
Lignol Energy Corporation	pilot	Canada	biochemical conversion	lignocellulosics; hardwood & softwood residues	ethanol; cellulose; lignin; various chemicals; sugars;	pilot	operational	2009	www.lignol.ca	Lignol Innovations is commercializing its unique integrated cellulose to ethanol process technology for bioteching ethanol (the alcohol), pure lignin and other valuable co-production benefining technology that was developed by General Electric and Repap Enterprises at a cost of over 3100 million. The Lignor delignification process was first developed by General ethanology that was developed by General Electric and Repap Enterprises at a cost of over 3100 million. The Lignor Enterprise technology that be the process was strated developed by General clean burning gas turbine (twi. The process was subsequently septided to the puip and paper multity.commercialized by Repaper Enterprises between 1897 and 1997 to generate wood puip. Repair refocused the Alcell delignification process as a pulping process in which lignin featilisate/mentoelluloe wood puip.
Lignol Energy Corporation	demo	United States	biochemical conversion	lignocellulosics; hardwood & softwood residues; agri -residues	ethanol; lignin;	demo	plans abandoned	originally planned to start 2012	www.lignol.ca	-
Mascoma Corporation	Demonstration Plant	United States	biochemical conversion	lignocellulosics; Wood Chips, Switchgrass and other raw materials	ethanol; lignin;	demo	operational	2003	www.mascoma.com	The unique technology developed by Mascoma Corporation uses yeast and bacteria that are engineered to produce large quantities of the enzymes necessary to break down the cellulose and ferment the resulting sugars into ethanol. Combining these two steps lenzymatic digetion and fermentation) significantly reduces costs by deminisating the need or "CBP", will ultimately enable the conversion of the solar energy contained in plants to ethanol in just are dogs.
Neste Oil	Porvoo 1	Finland	chemical conversion	oils, fats; hydrotreatment of palm oil rapeseed oil and animal fat	biodiesel;	commercial	operational	2007	www.nesteoil.com	
Neste Oil	Porvoo 2	Finland	chemical conversion	oils, fats; hydrotreatment of oils and fats	biodiesel;	commercial	operational	2009	www.nesteoil.com	-
Neste Oil	Rotterdam	Netherlands	chemical conversion	oils, fats; hydrotreatment of oils and fats	biodiesel;	commercial	operational	2011	www.nesteoil.com	
Neste Oil	Singapore	Singapore	chemical conversion	oils, fats; hydrotreatment of oils and fats	biodiesel;	commercial	operational	2010	www.nesteoil.com	-
New Energy and Industrial Technology Development Organization (NEDO)	Development of an Innovative and Comprehensive Production System for Cellulosic Bioethanol	japan	biochemical conversion	lignocellulosics; wood chips	ethanol;	pilot	operational	2011	www.ojipaper.co.jp/ Nippon Steel Engineeringi½š http://www.nsc-eng.co.jp/ AIST14šhttp://www.aist.go.jp/	Mechanochemical Pulping Process for conversion of cellulose to ethanol. The project& ⁺ rs goal is to develop a coherent bioethanal production system from biomass plantation to ethanol production. The targeted cellulosic biomass in the project is wood from eucalyptus. The development includes basic studies on raw material production, preterament using pulping technology, simultaneous saccharification and fermentation using thermal and acid biomant yeast, and saving energy technology with self-hast recuperation.
NREL (National Renewable Energy Laboratory)	Integrated Biorefinery Research Facility (IBRF)	United States	biochemical conversion	lignocellulosics;	ethanol;	pilot	operational	1994 (expansion completed 2011)	www.nrel.gov/biomass/	
NREL (National Renewable Energy Laboratory)	Thermochemical Users Facility (TCUF)	United States	thermochemical conversion	lignocellulosics;	various chemicals; transport fuels;	pilot	operational	1985 (expansion in progress)	www.nrel.gov/biomass/	-
NSE Biofuels Oy, a Neste Oil and Stora Enso IV	demo	Finland	thermochemical conversion	lignocellulosics; forest residues	FT-liquids;	pilot	stopped	2009	www.nesteoil.com; www.storaenso.com	Fischer-Tropsch production of paraffins from biomass; fluid bed gasifier with tar reformer
NSE Biofuels Oy, a Neste Oil and Stora Enso IV	commercial reference plant	Finland	thermochemical conversion	lignocellulosics; forest residues	FT-liquids;	commercial	plans abandoned	-	-	Fischer-Tropsch production of paraffins from biomass; fluid bed gasifier with tar reformer
Pacific Ethanol	West Coast Biorefinery (WCB)	United States	biochemical conversion	lignocellulosics; wheat straw, corn	ethanol: biogas: lignin:	demo	plans abandoned	Originally planned for start up	www.pacificethanol.net	
Petrobras	Bioethanol second generation production	Brazil	biochemical conversion	sugarcane bagasse;	ethanol;	pilot	plans postponed	-		Acid hydrolysis as pretreatment and enzymatic hydrolysis to convert cellulose into glucose and fermentation with Saccharomyces cerevisae yeast. The sugars of five carbons from hemicellulose fraction are submitted to the fermentation process using Pichia stylics yeast.
Petrobras	Pilot	Brazil	biochemical conversion	sugarcane bagasse;	ethanol;	pilot	operational	2007	-	Acid hydrolysis as pretreatment and enzymatic hydrolysis to convert cellulose into glucose and fermentation with Saccharomyces cerevisae yeast. The sugars of five carbons from hemicellulose fraction are submitted to the fermentation process using Pichia stiptis
Petrobras and Blue Sugars	Second generation ethanol demo plant	United States	biochemical conversion	sugarcane bagasse;	ethanol;	demo	operational	2011	-	Specific Petrobras test programm that has been running on Blue Sugars demo plant of which name plate capacity is described in the Blue Sugars fact sheet.
POET	Scotland	United States	biochemical conversion	lignocellulosics; corn fiber, corn cobs and corn stalks	ethanol;	pilot	operational	2008	www.poet.com	Enzymatic Hydrolysis
POET-DSM Advanced Biofuels	Project Liberty	United States	biochemical conversion	lignocellulosics; agricultural residues	ethanol; blogas	commercial	under construction	2013	www.projectliberty.com	Integrated technology package that converts corn crop residue to cellulosic bio-ethanol to third parties, as well as the other 26 existing corn ethanol plants in POET's network. The process makes use of corn stover that passes through the combine during harvesta. We use approximately 25% of the material, leaving about 75% on the ground for ension control, nutrient replacement and other important farm management practices.
PROCETHOL 2G	Futurol Project	France	biochemical conversion	lignocellulosics; flexible; woody and agricultural by-products, residues, energy crops	ethanol;	pilot	operational	2011	www.projet-futurol.com	
Queensland University of Technology	Mackay Renewable Biocommodities Pilot Plant	Australia	biochemical conversion	lignocellulosics, sugarcane bagasse, trash, wood chip, sweet sorghum, energy grasses, stover	ethanol, lignin, chemicals	pilot	Operational	2010	www.ctcb.qut.edu.au/programs/pilot.jsp	Soda pulping and ionic liquid based pretreatments, lignin recovery, saccharification with commercial enzymes, conventional fermentation of hexoses To theorem commercial enzymes complexed by Brane Suide insuring time charge Step 1. Solide to the theorem of the second secon
Range Fuels, Inc.	K2A Optimization Plant	United States	thermochemica conversion	lignocellulosics: Georgia pine and hardwoods and Colorado beetle kill pine	mixed alcohols:	pilot	Stoped	2008	www.rangefuels.com/	Case Biomass (all pinkt and plaint-derived material) that cannot be used for food, such as adjuctural values is fed into a converter. Using heat, pressure, and steam the feedstock is converted into synthesis gas (syngas), which is cleaned before entering the second step. transformed into model alcohols: These alcohols are then separated and processive to maximize the yield of ethanol of a quality suitable for use in blending with gasoline to fuel vehicles. A Single Process Because sue enzyme, vesses, and other blonglar almost not fuel vehicles. A Single Process because use enzyme, vesses, and other blonglar almost and pressure. Other conversion processes use enzyme, vesses, and other blonglar almost not wide range of organic feedbacks of various types, sizes, and mote blonglar almost not wide range of organic feedbacks of various types, sizes, and mote blonglar almost not wide range of organic feedbacks of various types, sizes, and mote blonglar almost non-food feedbacks commercial process related to furtuations in feedmater and ensures success in the real world, far from laboratory controlled conditions, trated and over eight years. Over 3.000 hours to optimize the compression word builder non-food feedbacks with varying mostsure contents and sizes, including wood vaster, elive gas, and more, Range Fuel Scontinue to optimize the oversion technology that will be generation plict plant in Deriver, Cloarada that we have been operating since the first quarter of 2008.
Range Fuels, Inc.	commercial	United States	thermochemical conversion	lignocellulosics: Wood and wood waste from nearby timber harvesting operations	ethanol; methanol;	commercial	plans abandoned	Start up would have been in 2010.	www.rangefuels.com/	Range tuels is focused on commercially producing low-carbon blorket, including cellulosic ethanol, and class networked power using refreeable and sustainable supplies of bornast process to convert biornass, such as wood chips, switchigrass, com stover, sugarcane bagasse and olive pists to clean refravable power and cellulosic biothesis. In the first step of renewable power, in the second tapt the cleaned synapsis is passed over a proprietary process to convert biornass. Each as wood chips, switchigrass, com stover, sugarcane bagasses and olivery bits to clean refravable power and cellulosic biothesis. In the first step of synthesis gas or synaps. Excess energy in this step is recovered and used to generate clean renewable power. In the second tapt the cleaned synapsis is passed over a proprietary processed to yield a wartery of low carbon biothus, including cellulosic thanol and methanol. This such of products can be used to signer as clean clean regulation and and the second tapt on the used to signer and the cleaned synapsis of the second tapt of products can be used to signer as clean clean and methanol. This second tapt on the used to signer activities building locks; and and the second tapt of the second tapt of the second tapt of the second tapt of the second tapt of the s

Research Triangle Institute	Synfuel production	United States	thermochemical conversion	lignocellulosics;	PT-liquids; mixed alcohols;	pilot	under construction		www.rtl.org/process	Biomass-derived syngas will be generated in the University of Utah's pilot-scale spatingation system from woody biomass and a combination of wood and liquin-itch system called the "therminator" into the gasification process. The "therminator" which operates between 600-700°C (112:13227) will an one elitition-resistant triple function process the system of the system of the system of the system called the "therminator" which gas the system of the system of the system called the thirdset-bed reactors to continuously regenerate the decivated catalyst. The gas leaving the therminator will be coded and fifteed before it enters the second (policiting) tabage. The system called the system of the second triple system can be decivated of catalyst. The gas leaving the therminator will be coded and fifteed before it enters the second (policiting) tabage. The system called the system of the system of the decivated catalyst can be directly used in a downstream process for synthesis of liquid transportation fuels. Once installed in validated built of the system of the system of the system of the system of the system that a downstream process for synthesis of liquid transportation fuels. Once installed in validated during the system for mised to the system for hydrocatom production or as sublate for a leaving and industry, will be used to direct the selection of the gas to liquid statyst earlied the system for mised action products on as the successful demonstration of the gas cleanu technology to produce a clean syngas that subalte out the system for mised catolog syngas that constructions will need or system for mised catolog syngas that catify downstream for the second rung departed for blocks to all build actify downstream of the terminator and operated for 500 hours (at least 100 hours continuously) in an integrated biomass gasifications gas cleanu panga cleanu to hydrocatom to clean and secure Energy that will be responsible for the particet and build for clean and secure Energy that will be responsible for the gas and
Schweighofer Fiber Gmbh	biorefinery	Austria	biochemical conversion	lignocellulosics; sulfite spent liquor (SSL, 33% dry content) from spruce wood pulping	ethanol:	demo	plans postponed	-	www.schweighofer-fiber.at	Public for the paper mill is produced by coloning spruce rings wind solution tagetesum bound to the paper mill be produced by coloning spruce rings wind solution tagetesum bound to increase the the combustion belief to produce serves and electricity, whereas magnetium oxide and sulfur dioxide are recycled to produce new cooking liquor. The coloning spruce rings are also and the spruce rings are also also also also also also the spruce rings are also also also also also also also also
SEKAB	commercial plants	Sweden	biochemical conversion	lignocellulosics;	ethanol;	commercial	plans postponed	Start up was originally planned for 2016.	www.sekab.com	reference plant on best method
SEKAB	planned demo plant	Poland	biochemical conversion	lignocellulosics; Wheat straw and corn stover	ethanol;	demo	planned	2014	www.sekab.com	Enzymes with pretreatment of diluted acid in one step.
SEKAB Industrial Development AB	IDU	Sweden	biochemical conversion	lignocellulosics; flexible for wood chins and sugarcane bagasse	ethanol;	demo	plans abandoned	originally planned to start 2011	www.sekab.com	Enzymes with pretreatment of diluted acid in one step.
SEKAB/EPAP	demo plant	Sweden	biochemical conversion	lignocellulosics; primary wood chips; sugarcane bagasse, wheat, com stover, energy grass, recycled waste etc have been tested.	ethanol;	pilot	Operational	2004	www.sekab.com	2 step diluted acid + enzyme hydrolysis
Southern Research Institute	technology development laboratory and pilot plant - thermochemical	United States	thermochemical conversion	lignocellulosics; Cellullulosics, Municipal wastes, syngas	FT-liquids; mixed alcohols; bio-char; power;	pilot	operational	2007	www.SouthernResearch.org	thermochemical conversion, catalytic liquids synthesis, hot and cold syngas cleaning
Sued-Chemie AG	sunliquid	Germany	biochemical conversion	lignocellulosics; wheat straw	ethanol;	demo	operational	2012	www.sunliquid.com	Sobechnological process for the conversion of lipocelluloxic feedback to celluloxic ethanol we enzymack hydrolysia and termatation. turn-key technology solution from petretament pretreated feedback, feedback and process specific enzymes (gatented), one-batch- termentation of Can dG Sugar (Strikheiter and Canada and Sugar Canada and termatation), ethanol purification on the basis of an adsorption-decorption-process fermentation of the anale (Sugar Canada and Sugar Canada and termatation), ethanol purification on the basis of an adsorption-decorption-process and the ethanol superimentation of the state of the adsorption and the state and the ethanol superimentation and the state of the state and the state and the ethanol superimentation of the state of the state and the state and the state of the state and the state and the state and the state and the state and the state and the state and the state and the state and the state and the state and the state and the state and the state and the state and the state and the state and the state and the state term the state and the state and the state and the state the state the state term the state and the state and the state and the state the state the state term the state and the state and the state the state the state the state the state term the state and the state and the state the st
Technical University of Denmark (DTU)	Maxifuel	Denmark	biochemical conversion	lignocellulosics; wheat straw, corn fibre	ethanol; biogas; lignin;	pilot	stopped	2006	www.biogasol.com	-
Tembec Chemical Group	demo	Canada	thermochemical conversion	lignocellulosics; spent sulphite liquor	ethanol;	demo	operational	2003	www.tembec.com	
Terrabon	Energy Independence I	United States	biochemical conversion	Inervasuce IngroceTuloosics: municipal solid waste, sewage sludge, manure, agricultural residues and non-edible energy crops	ethanol; mixed alcohols; various chemicals;	demo	operational	2009	www.terrabon.com/	The MixICaBE technology converts biomasts to biofuel using carboytic acid fermentation followed by conventional chemistry that processes the resulting carboytic satis into valuable chemicals that can be further refined through separate, well-established processes in the chemical hadry to produce revenable biolacis. The technology uses conventional competitive capital and operating casts. Depending on the light content, the biomass can be pretreated before being fet to a mixed cuture of acid forming microorganisms derived from a saline environment. An organic acid broth is created, which is then converted to its corresponding organic salit with a bindler used to manage pH at the optimal biological pandies to the sality of the s
TNO	Superheated steam pilot plant	Netherlands	blochemical conversion	lignocellulosics: Wheat straw, grass, corn stover, bagasse, wood chips	pretreated biomass ;	pilot	operational	2002	www.tno.nl	In a restor a continuous flow of 5H5 passes through a heap of grass or straw, in contrast, with the usual stoppint and statured detain. By using 5H5 the heat is not introllered by probably higher. Such high dry matter content decreases the use of thermal energy since a bave around roll mass is heated. Moreover, is at result to lower valer controllered less add bave around roll mass is heated. Moreover, is at result to lower valer control less add desired increase in acid concentration can be created. High dry matter concentrations are important for the economy of fermation and downstram processing, as higher ubstrates control with the economy of the second to be added to be added to be added to be added to be received. The fast temperature protocil control water the final dry mithin a few recovery more as be, control water and the second to be added to be added to be added to be values between 30% and 60% www. The amount of water evaporation can be adjusted by concentration has been observed as well. The user can choose between fractions of 16 with 30% with the amount of water evaporation can be adjusted by concentration has been observed as well. The user can choose between and a temperature of 16 works and dry reference within can be placed within the fastest and coldest existing thermal mild adj pertentament procession, which adds to a favourable economy of the process. After: 55% pertensions it a conversion of more think the fastest and a condest existing thermal mild adj pertentament procession, which adds to a favourable economy of the process. After: 55% pertensions it conversion of more than 55% of collober and a temperature of 16 works are constrained to the adjusted to the short of high. Samples have been successfully subjected to ethanol fermentation at 38%. Mr. The pertensions is a can be carried on in TNO& are supervised to short residence times and higher process. After: 55% provides the adjusted to short residence times and higher process. After: 55% provides the adjusted to short residence times
TUBITAK	TRIJEN (Liquid Fuel Production From Biomass and Coal Blends) Membro	Turkey	thermochemical conversion	biomass /biomass coal biends; combination of hazehut shell, ione cake, wood chip and lighte biends	FT-liquids; - Ethanh linnin sunar: -	pilot	planned	2013	trijen.mam.gov.tr/	The aim of the project is to develop and demonstrate the technologies for fliguid flag systems. The technological areas within the score of the project are pagital fastion, gas classi- up, gas conditioning, CO2 separation and liquid fuel production via Fischer-Tropsch (FT) synthesis. Activities related to the technological reason state and the pre-design of testing at plot scale. In the qualification step, two types of gasifiers and pre-strong scale signifier and pressurised fluidabed gasifier have been studied in laboratory scale (130 testing at plot scale. In the qualification step, two types of gasifiers and pressory scale (130 testing at plot scale. In the qualification step, two types of gasifiers and pressory scale (130 testing at plot scale. In the qualification step, two types of gasifiers have been designed for plot testing at class clean-up technologies have been used in laboratory scale testing at clean scale and cold gas clean-up plot system has been designed. The thrid and capture CO2 +12CO7 notion in grays with be adjuted in a water gas have the thrid and capture CO2 +12CO7 notion ingrays with be adjuted in a water gas have syntheses reactor applications have been performed in this work package. Low temperature FT process with multi tubular fred bed test or produce synthetic dised in plot plates, and met of the gabit scale system size to produce synthetic dised in plot plates, and met of the gabit scale system size to produce synthetic dised in plates plates, and met of the gabit scale system size to produce synthetic dised in plates plates, and met of the gabit scale system size under covervicing size the plate test dised in plates the dised in plates the dised in plates the dised in plates the dised in plates and plates and the test fits above the system size under covervicing size the size the size the size the size the size test on the size
weyland AS	weyland	Norway	Diocnemical conversion	mostly spruce & pine	Etnanoi; lignin; sugars;	pilot	operational	2010	www.weyland.no	-

Vienna, University of Technology	FT synthesis	Austria	thermochemical conversion	wood chips	FT diesel, FT waxes, FT kerosene	pilot	operational	2005	www.vt.tuwien.ac.at	"Alm of the work is to convert the product ase (Rs) of the Biomass gashication plant with a Facher-Tropsch (T) process to law lead their, septeally to deta. A F.F.900 (process, Facher-Tropsch (T) process to law lead their, septeally to deta. A F.F.900 (process, PLA Structure) and the set of of the gas. After the compression stop, chicner is espanded with ABE scrubber to used to dry the gas. After the compression stop, chicner is espandiated with catalyst and the H25 is chemically separated with Zinc coxide. Both is realised in fixed bet reactors in alternative to the H05 also activated catabota there are detained by the set activation of the stury reschor. In on and colatal based catalyst are used. The results from a nailanes. The into based catalystic with more and oxygenated compounds. The analyses of the disest fraction from the distillation of the FT-raw product show that the scalar of the disest fraction from the distillation of the FT-raw product show the the scalar of the disest fraction from the distillation of the FT-raw product show that the scalar products of the disest fraction from the distillation of the FT-raw product show that the scalar products and the start products and the scalar product show that the scalar products and the scalar products and the scalar product show that the scalar products and the scalar products and the scalar product show that the scalar products and the scalar products and the scalar products and the scalar product show that the scalar products and the scalar products and the scala
Virent, Inc.	Eagle Demonstration Plant	United States	thermochemical conversion	lignocellulosics; Cane sugar, beet sugar, corn syrup, hydrolysates from cellulosic biomass including pine residues, sugarcance bagasse and corn stover	various chemicals: gasoline type fuel: industrial sugars: lignin specialty chemicals;	demo	operational	2009	www.virent.com	Vensitä ⁴⁴⁷ s BolFormingÅle platform is based on a novel combination of Apaeous Phase Reforming (APR) technologi with modified convertional catalyce processing. The APR technologi was discovered at the University of Wisconsin in 2001 by Ventitä ⁴⁷⁴ so obunders. The BioForming platform expands the utility of the APR process by continging APR with catalysis and reactor systems similar to hose found standard petroleum oil efficients and petrohemical complexes. The BioForming process converts aqueous catahysiste solutions in this intuities of #deathors in Hydrocahors. The process has been demonstrated with conventional sugars obtained from existing sugar sources (conv wet mills, upgrarea mills, eci) as vet as wick veriefy of calidocis biomass from modo Sources. A kay advantage to the BioForming process is the ability to produce hydrogen in-situ from the catahydrate feedatock or utilize other sources of hydrogen such as naturating as for higher visida and lower costs.
ZeaChem	Demonstration scale biorefinery	United States	biochemical conversion	lignocellulosics: ppoplar trees, wheat straw	ethanol; mixed alcohols; diesel; acetates; jet fuel;	demo	operational	2011	www.zeachem.com	The conversion process uses naturally-occurring organisms and proven, industrial equipment in order to reduce scale up or fix. Non-CRO bacts in ferment cellulacis sugart processes deliver a 40% yield advantage compared to other processes. Like a perconsist deliver a 40% yield advantage compared to other processes. Like a perconsist deliver a 40% yield advantage compared to other processes. Like a perconsist of the second scale advantage compared to other processes. Like a settro-field relative constraints in the second scale advantage advantage production to the highest margin products. Fuel products include ethanol, jet fuel, progresses, ethics in the second scale advantage advantage orgowiese. Second scale advantage advantage advantage advantage production advantage advantage production advantage percent perce
ZeaChem Inc.	Commercial scale biorefinery	United States	biochemical conversion	lignocellulosics; poplar trees, wheat straw	ethanol; acetates;	commercial	planned	2014	www.zeachem.com	The conversion process uses naturally-occurring organisms and proven, industrial equipment in order to reduce scale up or Kis. Non-GMO bacteria ferremet cellulosis sugars with nearly 100% carbin efficiency with the combination of biological and them of the performance of the state of the state of the state of the state of the performance of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state state and end the state of the state state and end the state of the state state. State of the state state state of the state state and the state state state of the state state. State of the state state state state state state state state state state state state states states state states and the states states states states states states states and the states states states states states states states states states and the states states states states states states states and the states st