UNCERTAINTY ESTIMATION OF PHENOLIC COMPOUNDS DETERMINATION IN STANDARD SOLUTIONS

Camelia Draghici¹, Carmen Dima², Cristina Jelescu², Gheorghe Coman¹, Lucia Dumitrescu¹, Mihaela Sica¹, Ileana Manciulea¹

¹Transilvania University of Brasov, Romania

²Apa Company, Brasov, Romania

Analytical techniques for phenolic compounds determination

	Technique	Compounds	Matrix	LOD (µg/L)	Ref.
	UV-VIS Spectrometry	substituted phenols	tap water , suface water, wastewater	>1	[1]
	LC	chlorinated and nitro- fenols	tap water	0.01 - 0.1	[2]
			suface water	0.1 – 1.0	
	GS-FID	chlorinated phenols	suface and waste waters	0.14 - 16	[2] [3]
			soil, sludge	0.15 - 0.71	
	CE	chlorinated phenols	wastewater	0.1 – 1.0	[4] [5]
	HPLC-UV	phenols, aliphatic and aromatic acids, aldehides	degradation products in biomass hydrolisates	0.002 – 17	[6]

Study aim and objectives

Study aim

performances evaluation of a wastewater treatment laboratory, for the phenols content control

Objectives

- 1. method validation procedure development
- 2. **uncertainty estimation** associated to the phenolic compounds determination in standard solutions

NEW and not yet imposed by Romanian legislation

Validation procedure

- Selectivity different interfering compounds
- Concentration domain
- Precision
 - repeatability
 - intermediate precision
- Accuracy recovery test
- Limit of detection (LOD)
- Limita of quantitation (LOQ)
- Robusness different influecing parametres

Uncertainty estimation working steps

- Uncertainty sources identification
 - Ishikawa diagram

Different uncertainty types calculation standard uncertainty (u_x) relative standard uncertainty (u_x/x) combined relative standard uncertainty (u_c) extended standard uncertainty (U)

Result announcement as: $R = C \pm U$

Uncertainty sources identification Ishikawa diagram

Uncertainty types calculation

1. standard uncertainty (u_x)

$$u_{(y(x_1, x_2, \dots))} = \sqrt{\sum_{i=1, n} u(y, x_i)^2}$$

2. combined relative standard uncertainty (u_c)

$$\frac{u_{C_{fenol}}}{C_{fenol}} = \sqrt{\left(\frac{u_{P_{fenol}}}{P_{fenol}}\right)^2 + \left(\frac{u_{m_{fenol}}}{m_{fenol}}\right)^2 + s^2 + \left(\frac{u_{V_1}}{V_1}\right)^2 + \left(\frac{u_{V_2}}{V_2}\right)^2 + \left(\frac{u_{V_3}}{V_3}\right)^2 + \left(\frac{u_{V_4}}{V_4}\right)^2 + \left(\frac{u_{V_5}}{V_5}\right)^2 + \left(\frac{u_{V_6}}{V_6}\right)^2 + \left(\frac{u_{V_6}}{V$$

3. extended standard uncertainty (U) (k=2, P=95 %) $U_{(y(x1,x2...))} = u_c \cdot k$

Uncertainty estimation for standard solution

Symbol	Uncertainty sourse	Value (x)	Standard uncertainty (u _x)	Relative standard uncertainty (u _x /x)		
P _{phenol}	phenol purity (%)	99	0.0058	0.00006		
m _{phenol}	phenol mass (g)	1	0.008	0.008		
y=bx+a	calibration curve	-	0.002	-		
V ₁	standard volume (control) – pipette (mL)	5	0.006	0.0012		
V ₂	standard volume (control) – flask (mL)	250	0.136	0.00054		
V ₃	standard volume (control) – flask (mL)	100	0.06	0.0006		
\mathbf{V}_4	buffer solution volume – pipette (mL)	5	0.006	0.0012		
V ₅	volume of colouring agent – pipette (mL)	2	0.004	0.002		
V ₆	volum de hexacianoferat – pipette (mL)	2	0.004	0.002		
Statistic parametre			Calculated value			
Combined relative standard uncertainty, \mathbf{u}_{c} (mg/L)			0,.018			
Extended standard uncertainty, U pt k=2, P=95 %) (mg/L)			0.0036			

Phenol concentration in standard solution is: 0.2 ± 0.0036 mg/L

Conclusions

- The method was validated for the concentration interval required by the Romanian standard
 - it is selective, linear, precise, accurate, sensiteive robust (relative to pH)
- The uncertainty was estimated for the phenol and phenolic compounds determination from phenol standard solution
- The laboratory can deliver reliable results and ensures quality for the phenolic compounds determination in the municipal wastewaters

References

- [1] SR ISO 6439:2001, Calitatea apei. Determinarea indicelui de fenol. Metode spectrometrice cu 4-aminoantipirina dupa distilare, 2001.
- [2] Knutsson M, Jönsson J. A., Determination of Phenolic Compounds in Water, in Nollet M.L.L., (Ed.), *Handbook of Water Analysis*, Library of Congress Cataloging-in-Publication Data, New York, 2000.
- [3] US-EPA METHOD 8041, http://www.accustandard.com/.
- [4] Martinez, D., Cugat, M.J., Borrull, F., Calull, M., Solid-Phase Extraction Coupling to Capillary Electrophoresis with Emphasis on Environmental Analysis, *Journal of Chromatography A*, 902, 2000, 65–89.
- [5] Ful S., Lil F., Chul S., Xul X., The Determination of Chlorophenols in Wastewater by Capillary Zone Electrophoresis with an Organic Modifier, *Journal Cromatographia*, 56, 2002, 69-72.
- [6] Chen S.-F., Mowery R.A., Castleberry V.A., van Walsum G.P., Chambliss C.K., Highperformance liquid chromatography method for simultaneous determination of aliphatic acid, aromatic acid and neutral degradation products in biomass pretreatment hydrolysates, *Journal of Chromatography A*, 1104, 2006, 54–61.
- [7] SR ISO 8466-1/1999, Calitate apei. Etalonarea si evaluarea metodelor de analiza si estimarea caracteristicilor de performanta. Partea I: evaluarea statistica a functiei liniare de etalonare, 1999.

Possible contribution to COST PF0901 project

- HPLC-DAD determination of biomass secondary products – WG1
 - aliphatic and aromatic acids
 - aldehides
 - phenols
 - Metrological approach
 - method validation
 - uncertainty estimation
 - comparative methods and/or laboratory testing
 - PT proficiency testing
 - ILC interlaboratory comparisons

Certainty we wait for you to Brasov!

