eman ta zabal zazu

Universidad Euskal Herriko del País Vasco Unibertsitatea

LIGNIN FRACTIONATION. COMPARATIVE STUDY BETWEEN TWO DIFFERENT METHODS: ULTRAFILTRATION AND SELECTIVE PRECIPITATION

A. Toledano, A. Garcia, R. Llano-ponte, J. Labidi

Chemical and Environmental Engineering Department, University of the Basque Country

COST FP0901 meeting "Current needs in Biorefinery analytics" in Vienna, February 4-5, 2010

INTRODUCTION

Lignin can be defined as a threedimensional polymeric structure that results from the condensation of p-hydroxyphenyl alcohol (H), guaiacyl alcohol (G) and syringyl alcohol (S).

LIGNIN FRACCIONATION

Lignin structure (Adler)

ULTRAFILTRATION

Lignin separation and fractionation by ultrafiltration. Separation and purification technology 71 (2010) 38-43

METHODS

SELECTIVE PRECIPITATION

Characterization of lignins obtained by selective precipitation. Separation and purification technology 68 (2009) 193–198.

RESULTS

GPC

ULTRAFILTRATION				
Fraction	M _n	M_{w}	M_w/M_n	
Rough	1879	5654	3.01	
> 15 KDa	2032	6300	3.10	
15 KDa	1891	3544	1.87	
10 KDa	946	2022	2.14	
5 KDa	940	1806	1.92	

SELECTIVE PRECIPITATION				
Fraction	Mn	M_{w}	M_w/M_n	
pH = 0.72	1908	3501	1.84	
pH = 2.57	1311	2432	1.86	
pH = 5.40	1142	2120	1.86	
pH = 6.50	1430	1990	1.40	
pH = 9.16	1550	2160	1.41	

Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chemical Engineering Journal 157 (2010) 93–99

RESULTS

FT-IR

Figure 1. a) FT-IR spectra of the fractions obtained by ultrafiltration. b) Magnified region of FT-IR spectra of the ultrafiltatred fractions.

Figure 2. a) FT-IR spectra of the fractions obtained by selective precipitation. b) Magnified region of FT-IR spectra of the fractions obtained by selective precipitation.

Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chemical Engineering Journal 157 (2010) 93–99

RESULTS

¹H-RMN

Figure 3. ¹H-NMR spectra of fractions obtained by membrane technology

Figure 4. ¹H-NMR spectra of fractions obtained by selective precipitation

Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chemical Engineering Journal 157 (2010) 93–99

CONCLUSIONS AND AKNOWLEDGES

• Selective precipitation and ultrafiltration are effective techniques to fractionate and to extract lignin from the black liquor.

• Ultrafiltration fractions were less contaminated with hemicelluloses. The right cut-off the weight average molecular weight can be controlled. Also slightly depolymerisation was reached.

•Differential precipitation is an easier and simpler technique and the energy consumption is lower.

• Depending on the future use of the lignin, the right technique to obtain the fractions has to be chosen.

Spanish Ministry of Science and Innovation (CTQ2007-65074-C02-02)

