CONTRIBUTION REGARDING THE CHARACTERIZATION OF SOME LIGNOSULFONATES

LUCIA DUMITRESCU, VALENTIN I. POPA, CAMELIA DRAGHICI, GHEORGHE COMAN, ILEANA MANCIULEA, MIHAELA SICA, ANCA SAUCIUC

TRANSILVANIA UNIVERSITY OF BRASOV, ROMANIA GHEORGHE ASACHI TECHNICAL UNIVERSITY OF IASSY, ROMANIA

Transilvania University of Brasov view of the university Colin complex

ABSTRACT

• Lignocellulosic materials, important natural renewable resources, contain cellulose, hemicellulose and lignins, these polymers possessing many active functional groups susceptible to reaction [1, 2].

• Based on the variety of functional groups, etherification, esterification, alkylation, hydroxyalkylation, graft copolymerization, crosslinking and oxidation reactions have been conducted to produce eco-materials with many practical applications [1, 2, 3].

ABSTRACT

- A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass.
- The lignosulfonates, by-products from paper industry, represent a seriously pollution source. For a better resource reutilization and environmental protection, is interesting to use lignosulfonates as chemical reactants, or chemical modify them to improve their properties [3,4,5,6].

CHARACTERIZATION OF LIGNOSULFONATES

• LSNH4

- LSFe = LSNH4 + Fe(NO3)3
- LSCr = LSNH4 + Na2Cr2O7
- LSFe2+Cr = LSNH4 + Fe(NO3)2 + Na2Cr2O7
- LSFe3+Cr = LSNH4 + Fe(NO3)3 + Na2Cr2O7
- LSAI = LSNH4 + AICI3

CHARACTERIZATION OF LIGNOSULFONATES

Hydroxyl groups

- (a) reaction with phthalic anhydryde;
- (b) conductometric titration with LiOH
- Carbonyl groups
- (a) oximation method;
- (b) conductometric titration with HCl
- Carboxyl groups
- (a) ionic exchange method
- (b) conductometric titration with HCl

Lignosulfonates characterization

Determination of hydroxyl groups

Determination of carbonyl and carboxyl groups

IR absorption domain of lignosulfonates

Ligno- sulfonate	IR absorption domain (cm ⁻¹)										
LSNH ₄		1820- 1850		1600		1432- 1445			1170	1025	
LSFe	1950	1840- 1860	1780	1620- 1630	1505- 1550	1450	1370- 1390	1265	1190	1040	940
LSCr	1920-1990	1860- 1890	1780	1610- 1630	1510- 1540	1450	1370- 1390	1265	1190	1040	910- 980
LSFe ³⁺ Cr	1900-1990	1840- 1890	1720- 1750	1600- 1620	1500- 1540	1430	1350- 1380	1420	1160- 1170	1020- 1090	915- 940
LSFe ²⁺ Cr	1930-1950	1820- 1870	1720- 1760	1600	1520	1440- 1490	1360	1250	1100- 1160	1020- 1080	980
Interpre- tation	-OH (ROH, ArOH)	-OH H ₂ O	C=O lignin	-CH aryl	aryl lignin	-OH carbo-xyl	-CH aryl	OCH ₃	-SO ₃ H	-SO ₃ H	-OH phenol
		C=0	-COOH aryl	C=O lignin	-COO ⁻	-CH ₂ - lignin	-OH phenol	C=O lignin	-CH ₂	aryl	
				-COO ⁻	-CONH ₂		COOH aryl	-OH phenol			

Wood preservation agents based on acrylic copolymers, LSFeCr and ZnO nanoparticles

Wood preservation agents based on acrylic copolymers, LSFeCr and ZnO nanoparticles - AFM analysis

CONCLUSIONS

- The chemical modification of LSNH4 with metal cations performed by hydrolysis reactions of beta-etheric bonds from phenyl propane lignin structure, followed by oxidation of released hydroxyl groups to carbonyl and carboxyl groups.
- Due to the increased chemical reactive potential of the lignosulfonates they were used as reactive comonomers in the emulsion copolymerization of acrylic monomers, to obtain new wood eco-preservation agents [3-6].

References

- 1.Hon, D.N.S., (Ed). Chemical Modification of Lignocellulosic Materials. Mark Dekker, NY, 1996.
- 2.Zakis, G.F. Functional analysis of mlignin and their derivatives. TAPPI Press, Atlanta, Ga, 1994.
- **3.Dumitrescu, L.** *Research regarding the synthesis of some new wood bioprotection agents.* Ph.D.Thesis. "Gheorghe Asachi" Technical University, Iassy, Romania, 1999.
- **4.Dumitrescu, L., Manciulea, I., Sica, M., Baritz, M.** *Ecomaterials for Wood Preservation Based on Acrylic Copolymers and Lignin Derivatives.* Annals of DAAAM, Austria, p. 0455-0456, 2008.
- **5. Dumitrescu, L., Manciulea, I.,** *New ecomaterials for wood preservation.* EEMJ, p.793-796, 2009.
- 6. Dumitrescu, L., Perniu, D., Manciulea, I. Nanocomposites based on acrylic copolymer, iron lignosulfonate and ZnO nanoparticles used as wood preservatives. Solid State Phenomena Vol. 151 (2009) p. 139-144.