

2010- University of Natural Resources- Vienna, Austria

Spin Traps and Spin Adducts

- \checkmark ST are molecules that form stable radical adducts;
- ✓ Radicals adducts are suitably detected using EPR;
- ✓ Using ST such as 5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide (DIPPMPO), adducts can be detected and quantified accurately by ³¹P-NMR;

Objectives

- Correlate the ³¹P-NMR chemical shifts to the nature of the radicals being trapped.
- Study the mechanism of oxidative enzymes
 HRP (Horse Radish Peroxydase)

Single Electron Oxidation of phenols → Phenoxy radical

Spin Trapping of Oxygen-Centered Radicals by DIPPIMPO

Oxygen-Centered Radicals

Species	Chemical shift (ppm)
DIPPMPO	22.2
DIPPMPO/-OH	25.3
DIPPMPO/-OOH	16.9, 17.1
Intermediate radical species	18.0, 18.3

Spin Trapping of Carbon-Centered Radicals by DIPPMPO

Carbon-Centered Radicals

Species	Chemical shift (ppm)
DIPPMPO	22.2
DIPPMPO/-CH ₃	23.1
DIPPMPO/-CH ₂ OH	22.6
DIPPMPO/-CH(OH)CH ₃	27.3
DIPPMPO/-C(O)CH ₃	30.2
DIPPMPO/-C(OH)(CH ₃) ₂	29.0
DIPPMPO/-C(OH)(CH ₃)Ph	28.0

Despite the long distance involved,

nature of carbon affects ³¹P-NMR chemical shift

3⁰ >2⁰ >1⁰

Spin Trapping of Ketyl Radical by DIPPMPO

L. Zoia, Argyropoulos., D. S., "Ketyl Radical Detection Using Quantitative ³¹P NMR Spin Trapping", Chemitry ; J. Phys. Org. Chem. 2009, DOI:10.1002/poc. 1561.

1-Phenylethanol-1-yl (Ketyl) Radical

MS of DIPPMPO/Ketyl

HRP-HET System with DIPPMPO

^{23.5 / 23.8} ppm

17.9 ppm

³¹P-NMR Spectra Interpretation

Spin Trapping of Phenoxy Radical by DIPPMPO

L. Zoia, Argyropoulos., D. S., "Phenoxy Radical Detection Using Quantitative ³¹P NMR Spin Trapping", J. of Physical Organic Chemistry; 22 1070–1077, (2009); www.interscience.wiley.com) DOI 10.1002/poc.1561, 2009.

Generation of phenoxy radical

Generation of phenoxy radical with Iron Cyanide

Generation of phenoxy radical

Generation of phenoxy radical

Generation of phenoxy radical with Iron Ferrocyanide

2,4,6 Tri-tert-Butylphenol

The phenolic group is hindered by *tert*-butyl groups The enzyme cannot approach to the phenolic group

Generation of phenoxy radical

Generation of phenoxy radical with HRP/HBT

2,4 Dimethyl phenol

2,4 Dimethyl phenol/ST Zutropf

Isoeugenol

Conclusions

- ✓ <u>DIPPMPO</u> spin trapping detected by <u>³¹P-NMR</u> is an <u>effective tool</u> for the identification and quantification of oxygen- and carbon-centered free radical species, such as:
 - Hydroxyl radicals
 - Superoxide radicals
 - Phenoxy radicals
 - Ketyl radicals
- ✓ These techniques could be used to <u>understand</u> <u>mechanisms</u> of radical activity in a variety of biomolecular processes.