

COST-Action FP0901, Analytical Techniques for Biorefineries, WP2

Biomass characterisation by NIR techniques

Torbjörn A. Lestander

Associate professor, head of unit

Biomass Technology and Chemistry Faculty of Forestry Swedish University of Agricultural Sciences (SLU) SE 901 83 Umeå Sweden

Phone: +46-907868795; +46-706640406 E-mail: torbjorn.lestander@btk.slu.se

Focus for the SLU BTC research group: Biorefinery and energy combine concept

Field of interest: Tailor made biomaterials

SLU BTC Research pilot plant for solid biofuels

Involvement in some R&D projects

Biofuel Pellet Platform; PI; 2007-2010

 - a 4.6 M€ → Objective: widening of raw materials and improving of the pelletizing process and biofuel pellet quality

BIO4ENERGY

- **Bio4Energy** co-PI, 2010-2014
- 20 M€ → Objective: find novel and innovative process routes and biorefinery products
- 3 universities cooperate in 8 platforms
- our research group: pretreatment

Characterization of ash elements in biofuels - PI, 2009-2012
 - 0.4 M€ → Objective: use process analytical tools to predict ash

elements in biomass.

Special interest: On-line characterization of rapid biomass streams

Overall vision for my research group:

'Intelligent' and uniform biorefinery feedstock

Interaction of radiation with matter \rightarrow on-line

Spectroscopic characterization – inst. mod.: Near Infrared

- organic part of biomass
- structural groups: C-H, O-H, N-H, S-H, C=O, C=C, ... nearly all bonds except C-C and inorganic
- simultaneous collection at all wavelengths
- 256 channels at 5 nm increments 950-1700 nm
- 100 spectra per second

Some instruments available at

the research group:

From spectroscopic signal via screen to process operator

Prediction models based on NIR spectra – example I

Moisture content, ash content and energy content

Table 3 Overview of results in BPLS modelling of moisture content, ash content and gross calorific value

Model	wavelength region/nm	Rank #	RMSEE	RMSEP	Q^2	Bias
DIR-BPLS	780-2498	4	0.973	0.726	0.997	0.035
DIR-BPLS OSC-BPLS	1400-2400 780-2498	4 4	0.980 0.956	0.827 0.712	0.997	-0.098
OSC-BPLS	1400-2400	4	0.968	0.793	0.997	-0.065
DIR-BPLS DIR-BPLS	780-2498 1400-2400	6 6	0.108 0.119	0.077 0.113	0.992	0.023
OSC-BPLS ^a OSC-BPLS	780-2498 1400-2400	5 3	0.108 0.136	0.077 0.099	0.992 0.986	0.022 0.004
DRY-BPLS DRY-BPLS	780-2498 1400-2400	6 8	0.120 0.167	0.101 0.108	0.986	0.021
DIR-BPLS DIR-BPLS	780-2498 1400-2400	5 9	0.090 0.078	0.100 0.109	0.971	-0.042 -0.020
OSC-BPLS OSC-BPLS	780-2498 1400-2400	4	0.090 0.091	0.100 0.112	0.972	-0.037 -0.051
DRY-BPLS DRY-BPLS	780-2498 1400-2400	3 6	$0.114 \\ 0.146$	0.100 0.128	0.972 0.954	-0.020 -0.020
	Model DIR-BPLS DIR-BPLS OSC-BPLS OSC-BPLS DIR-BPLS OSC-BPLS OSC-BPLS DRY-BPLS DRY-BPLS DIR-BPLS OSC-BPLS OSC-BPLS OSC-BPLS OSC-BPLS DRY-BPLS DRY-BPLS	Model region/nm DIR-BPLS 780–2498 DIR-BPLS 1400–2400 OSC-BPLS 780–2498 OSC-BPLS 780–2498 OSC-BPLS 1400–2400 DIR-BPLS 1400–2400 DIR-BPLS 1400–2400 OSC-BPLS 1400–2400 OSC-BPLS 1400–2400 OSC-BPLS 1400–2400 DRY-BPLS 780–2498 DRY-BPLS 1400–2400 DR-BPLS 1400–2400 OSC-BPLS 1400–2400 DR-BPLS 1400–2400 DR-BPLS 1400–2400 DR-BPLS 1400–2400 OSC-BPLS 1400–2400 DR-BPLS 1400–2400 DRY-BPLS 1400–2400	Model region/nm Rank # DIR-BPLS 780–2498 4 DIR-BPLS 1400–2400 4 OSC-BPLS 780–2498 4 OSC-BPLS 1400–2400 4 DIR-BPLS 1400–2400 4 OSC-BPLS 1400–2400 6 DIR-BPLS 780–2498 6 DIR-BPLS 1400–2400 8 OSC-BPLS 1400–2400 3 DRY-BPLS 1400–2400 8 DIR-BPLS 1400–2400 9 OSC-BPLS 1400–2400 9 OSC-BPLS 1400–2400 3 DIR-BPLS 780–2498 4 OSC-BPLS 1400–2400 3 DRY-BPLS 1400–2400 3 DRY-BPLS 1400–2400 3 DRY-BPLS <	Model region/nm R ank # RMSEE DIR-BPLS 780–2498 4 0.973 DIR-BPLS 1400–2400 4 0.980 OSC-BPLS 780–2498 4 0.956 OSC-BPLS 780–2498 4 0.968 DIR-BPLS 1400–2400 4 0.968 DIR-BPLS 780–2498 6 0.108 DIR-BPLS 780–2498 6 0.108 DIR-BPLS 1400–2400 6 0.119 OSC-BPLS 1400–2400 3 0.136 DRY-BPLS 1400–2400 3 0.136 DRY-BPLS 780–2498 6 0.120 DRY-BPLS 1400–2400 8 0.167 DIR-BPLS 1400–2400 9 0.078 OSC-BPLS 1400–2400 9 0.078 OSC-BPLS 1400–2400 3 0.091 DIR-BPLS 780–2498 4 0.090 OSC-BPLS 780–2498 3 0.091 <td>Model region/nm R ank # RMSEE RMSEP DIR-BPLS 780–2498 4 0.973 0.726 DIR-BPLS 1400–2400 4 0.980 0.827 OSC-BPLS 780–2498 4 0.956 0.712 OSC-BPLS 1400–2400 4 0.968 0.793 DIR-BPLS 1400–2400 4 0.968 0.793 DIR-BPLS 780–2498 6 0.108 0.077 DIR-BPLS 1400–2400 6 0.119 0.113 OSC-BPLS 1400–2400 3 0.136 0.099 DRY-BPLS 1400–2400 3 0.136 0.099 DRY-BPLS 1400–2400 8 0.167 0.108 DIR-BPLS 1400–2400 8 0.167 0.108 DIR-BPLS 1400–2400 8 0.167 0.108 DIR-BPLS 1400–2400 9 0.078 0.109 OSC-BPLS 780–2498 5 0.090 0.100</td> <td>Model region/nm R ank # RMSEE RMSEP Q² DIR-BPLS 780-2498 4 0.973 0.726 0.997 DIR-BPLS 1400-2400 4 0.980 0.827 0.997 OSC-BPLS 780-2498 4 0.956 0.712 0.998 OSC-BPLS 1400-2400 4 0.968 0.793 0.997 DIR-BPLS 780-2498 6 0.108 0.077 0.992 DIR-BPLS 780-2498 6 0.108 0.077 0.992 DIR-BPLS 780-2498 6 0.108 0.077 0.992 DIR-BPLS 1400-2400 6 0.119 0.113 0.982 OSC-BPLS 1400-2400 3 0.136 0.099 0.986 DRY-BPLS 780-2498 6 0.120 0.101 0.986 DRY-BPLS 1400-2400 8 0.167 0.108 0.983 DIR-BPLS 780-2498 5 0.090 0.100</td>	Model region/nm R ank # RMSEE RMSEP DIR-BPLS 780–2498 4 0.973 0.726 DIR-BPLS 1400–2400 4 0.980 0.827 OSC-BPLS 780–2498 4 0.956 0.712 OSC-BPLS 1400–2400 4 0.968 0.793 DIR-BPLS 1400–2400 4 0.968 0.793 DIR-BPLS 780–2498 6 0.108 0.077 DIR-BPLS 1400–2400 6 0.119 0.113 OSC-BPLS 1400–2400 3 0.136 0.099 DRY-BPLS 1400–2400 3 0.136 0.099 DRY-BPLS 1400–2400 8 0.167 0.108 DIR-BPLS 1400–2400 8 0.167 0.108 DIR-BPLS 1400–2400 8 0.167 0.108 DIR-BPLS 1400–2400 9 0.078 0.109 OSC-BPLS 780–2498 5 0.090 0.100	Model region/nm R ank # RMSEE RMSEP Q ² DIR-BPLS 780-2498 4 0.973 0.726 0.997 DIR-BPLS 1400-2400 4 0.980 0.827 0.997 OSC-BPLS 780-2498 4 0.956 0.712 0.998 OSC-BPLS 1400-2400 4 0.968 0.793 0.997 DIR-BPLS 780-2498 6 0.108 0.077 0.992 DIR-BPLS 780-2498 6 0.108 0.077 0.992 DIR-BPLS 780-2498 6 0.108 0.077 0.992 DIR-BPLS 1400-2400 6 0.119 0.113 0.982 OSC-BPLS 1400-2400 3 0.136 0.099 0.986 DRY-BPLS 780-2498 6 0.120 0.101 0.986 DRY-BPLS 1400-2400 8 0.167 0.108 0.983 DIR-BPLS 780-2498 5 0.090 0.100

Lestander, T.A. and Rhén, C. 2005. Multivariate NIR spectroscopy models for moisture, ash and calorific content in biofuels using bi-orthogonal partial least squares regression. *Analyst*, 130, 1182-1189.

Excellent

models

Prediction models based on NIR spectra – example II

Lestander T.A., Johnsson B. & Grothage M. 2009. NIR techniques create added values for the pellet and biofuel industry. *Bioresource Technology* 100, 1589-1594.

Prediction models based on NIR spectra – example III

Designed industrial experiment for blends of 3 sawdust types

Prediction models based on NIR spectra – example IV

Influence of biomass properties on electrical consumption in a process

Observed current per unit mass

Lestander T.A., Johnsson B. and Grothage M. 2009. NIR techniques create added values for the pellet and biofuel industry. Bioresource Technology 100, 1589-1594.

Prediction models based on NIR spectra – example V

			_
Parameter	RMSEP	Q ²	_
Modulus of elasticity	1476.80	0.830	
Bending strength	12.30	0.778	- Good prediction mode
Compression strength	4.34	0.739 _	

RMSEP: root mean squared error; Q^2 *: explained variation in test set.*

Characterization of wood properties - softwood

Lestander TA, Lindeberg J, Eriksson D and Bergsten U. 2008. NIR spectroscopy for prediction of clear-wood properties in Scots pine using bi-orthogonal partial least squares regression. *Canadian Journal of Forest Research* 38, 2052-2062.

Prediction models based on NIR spectra – example VI

Classification of juvenile and mature wood

Lestander TA, Lindeberg J, Eriksson D and Bergsten U. 2008. NIR spectroscopy for prediction of clear-wood properties in Scots pine using bi-orthogonal partial least squares regression. *Canadian Journal of Forest Research* 38, 2052-2062.

From NIR signal via screen to process operator

Multivariate modelling - PCA

- Principal component analysis (PCA)
 - only a X matrix
 - -e.g. only chemical data, spectral data
 - \rightarrow data overview \rightarrow interpreting of model

Multivariate modelling - PLS

- Partial least squares (PLS) regression
 - data from both y vector and X matrix
 - e.g. observed product quality and chemical data
 - e.g. observed chemical values and NIR data
 - → calibration model (quantitative or qualitative) → interpreting of model

The PCA algorithm – variation in X matrix

wood properties Example: PCA components (loadings and scores)

Bi-plot of the first two loading (+) and score (1^{st}) site: \blacktriangle base, \triangle top; 2^{nd} site: • base, o top) components of a PCA model explaining 70% of the variation. The percentage of explained variation is given within parenthesis. Bend: bending strength; Comp: compression strength; CWT: cell wall thickness: H_{I} and H_{T} : Brinell hardness in longitudinal and tangential direction; MFA: microfibril angle; Length: cell length; Width: cell width.

Lestander TA, Lindeberg J, Eriksson D and Bergsten U. 2008. NIR spectroscopy for prediction of clear-wood properties in Scots pine using bi-orthogonal partial least squares regression. *Canadian Journal of Forest Research* 38, 2052-2062.

The PLS algorithm – variation in X and y

Example: PLS modelling of NIR spectra – moisture content

Crystalline, amorphous and free water in biomass

Lestander T.A. Hedman B., Funkquist J., Lennartsson A., Svanberg M. 2008. On-line NIR-fukthaltsmätning för styrning av panna i värmekraftverk. Värmeforsk Service AB, Stockholm. I6-605, ISSN 1653-1248, 70 pp.

NIR – industrial installations

NIR – industrial installations

Torbjörn Lestander Biomass characte

Example: Positioning of NIR instrument

On-line tested in industrial environment (fuel pellet industry)

Example of future application: Natural Fibre Plastics

Biomass technology and NIR

Exemples of questions in real time:

- Origin of the biomass
 species, region, freshness, etc
- Contents in the biomass
 - moisture, calorific value, C-6 sugars, etc
- Modifications of biomass in processes
 degree of modification, energy consumption, etc
- Process control

Real time measurements ... reaching beyond

Thanks

- ... to colleges at SLU Biomass Technology and Chemistry
- ... Swedish Energy Agency
- ... Kempe Foundations
- ... Swedish Pellet Association

Some recent papers

On-line NIR technique for biorefinery process monitoring Torbiörn A. Lestander¹, Robert Samuelsson¹, Michael Finell¹, Mehrdad Arshadi¹ and Bo Alivin²

Bioresource Technology 100 (2009) 1589-1594

NIR techniques create added values for the pellet and biofuel industry

Torbjörn A. Lestander 4. , Bo Johnsson b, Morgan Grothage b

² Unit of Biomass Technology and Chemistry, Swedish University of Agricultural Sciences, P.O. Box 4097, SE-903 04 Um ^bCasco Adhesives AB, P.O. Box 13000, SE-850 13 Sundavall, Sweden

ARTICLE INFO

Article history: Received 7 February 2008 Received in revised form 31 July 2008 Accepted 3 August 2008 Available online 25 October 2008

Keywords:

Near infrared spectroscopy Bi-orthogonal partial least squares (BPLS) Multivariate calibration Multivariate statistical process control Process analytical technology (PAT)

ABSTRACT

feedstock. The aim was to use on-line near infrared (of moisture content, blends of sawdust and energy were: drying temperature and wood powder drynes and Scots nine

The main results were excellent NR calibration mo binary blends of sawdust from the two species, but electrical energy per unit pelletized biomass can be entering the pellet press. This power consumption r that NIR data contained information of the compressi

drying temperature resulted in low prediction accurate

Prediction of Pinus sylvestris clear-wood properties using NIR spectroscopy and A 2³-factorial experiment was carried out in an indust biorthogonal partial least squares regression

Torbjörn A. Lestander*

Unit of Rismone Techn

Torbjörn A. Lestander, Johan Lindeberg, Daniel Eriksson, and Urban Bergsten

The moisture montent model was validated using a ru Abstract: Thirteen wood parameters were predicted using near infrared (NIR) spectra in the range 780-2380 nm modelled shown that the adjusted prediction error was 0.41% n by biorthogonal partial least squares regression. The analysis of parameters and NIR measurements was done on clear-12% moisture content, Further, although used drying wood samples from the base and midstem of Scots pine (Pinus sylvestris L.) from trees at two sites. Calibrations based on The results show that on-line NR can be used as an the measured parameters at seven growth rings (cambial age ranging between 6 and 42 years) could be divided into three pelletizing process and that the use of NIR technique groups: (i) the best accuracy was found for longitudinal modulus of elasticity (r > 0.9) followed by bending, compression, meet customer specifications, and therefore create a and cell length (0.8 < r < 0.9); (ii) microfibril angle, longitudinal hardness, proportion of latewood, and creep with correlations in the range of 0.7–0.8; and (iii) tangential hardness, cell diameter, and cell wall thickness with 0.4 < r < 0.7. It was

also shown that juvenile (cambial age ≤ 20 years) and mature wood can be classified using NIR techniques.

tion are described by Springer and Hajny (1970) and

system as a result of changes in interacting electronic

clouds and of hydrogen bonding.

Torbjörn Lestander Biomass characterisation by NIR techniques, COST FP0901, Vienna, 4-5 February 2010

NORSOURC

Tranci og

Available online at www.sciencedirect.com ScienceDirect Bigresource Technology 99 (2008) 7176-7182

"igh quality biofuel pellet production from pre-compacted low density raw materials

Sylvia H. Larsson*, Mikael Thyrel, Paul Geladi, Torbjörn A. Lestander

Unit of Biomass Technology and Chemistry, Faculty of Natural Resources and Agricultural Sciences. Swedish University of Agricultural Sciences, P.O. Box 4097, SE-90403 Umed, Sweden Received 23 March 2007; received in revised form 20 December 2007; accepted 21 December 2007 Available online 7 February 2008

Holzforschung, Vol. 62, pp. 429-434, 2008 • Copyright © by Walter de Gruyter • Berlin • New York. DOI 10.1515/HF.2008.071

Water absorption thermodynamics in single wood pellets modelled by multivariate near-infrared spectroscopy

Ocean transport of wood pellets

Ahead ... biomass properties to modify

bulk density – from harvest to industry

Crude fractionation of biomass (e.g. stem wood, stumps, branches, bark, needles)

Size (e.g. chips, sawdust, powders, fibre bundles)

Size distribution (e.g. gravity tables, air screens, wet sorting etc)

Fine fractionation (e.g. gravity tables, air screens, wet sorting etc)

moisture content - drying

Contents of extractives

Other chemical contents (e.g. C-H-O ratios, ash elements, inhibitors, catalysts)

reactivity (e.g. microwaves, electron beams, corona)

rheology – reduce feeding problems in processes

Fribology - friction properties (e.g. at high pressure etc)

density (cell wall collapse and relaxation)

... more (what – up to discussion)

Integrated and distributed partial process steps

Objective: *increase value added early in the supply chain* and integrate different actors and avoid suboptimal linkage.

One objective in the Bio4Energy

On-line NIR technique for biorefinery process monitoring

Torbjörn A. Lestander¹, Robert Samuelsson¹, Michael Pinell¹, Mehrdad Arshadi¹ and Bo Alivin²

Increasing Manacas to Mandana's screeks in classical constants. In orders to a simulat memoria feedbacks for the graduation of high submitted parallels it is of importance to marine and control regula material streams in initiativit processes. Therefore an experimental dealing was constructed to Manatavita's Manatavita's specific specific arigin in Manda- is a process stream usings that marinely would specific arigin in Manda- is a process stream usings that marinely MRM distance are to be seen to mark with Manatavita in Context.

باستعاز ابدر شتمقار

ه دسه د Realized Inc. ___ 59-168 mart 5 m ry 6 scents. A heltik canora della d 40 Novemb tij per nik a calaur chan adha inana. Tio 192 antie sije of a V-stareijas a sib s scar it a. 50 نان الس tion tiles e. The dis en fann the sam 50 m o) to the outer part of the snew wing was als nit 4 on autitis و ليسبو بلائيد إيطار س s. To a و هوه چه او ا الساب وبالماراء -

eriges of the resonance is all further, three and series contact (subplay 29 experiments, Each experiment was on the 2004 minutes, they sharp bette was reached for each ask paint and in total (570) like records produce was collected. Address in a climation maching was since unigo 2005 volume (Amint's, Naveline).

Jacobert Receive

as use set in this tie as ي محدثة عد م رسد المقالة ما أم an airine literar as arb a r n texe senit met ي حلا اين al SLUE of the survivor o يتعينه معد - 1 co 5 6 1 T ah 141.56 th مار الم e lotte ex متلط متعل انت is, an Igno 2. As used the MR o * ___ = t 156 while the range of 24 to 24.66 mobiles. The re for to better mai in the ____ فالمنصب اسرجة

14th International Conference on Near Infrared Spectroscopy, 7-16 November 2009, Bangkok, Thailand.

