

# On the implications of calibration techniques and detector systems on GPC-based analyses of lignin

COST Action FP 0901 "Biorefinery analytics – Outcomes from COST Action FP0901"

September 17, 2013

Heiko Lange

University of Rome 'Tor Vergata' - Crestini group



GPC set-ups

Calibration & analysis issues

Sample preparation

Practical measurements and theoretical considerations

Consequences





#### Lignin – the under-utilized biomass component

• Lignin holds the potential to be the renewable resource for fine chemicals, block co-polymers, etc.



[1] M. Aresta, A. Dibenedetto, F. Dumeignil (editors); Biorefinery: From biomass to chemicals and fuels. de Gruyter (Berlin/Boston) 2012.



٠

٠

٠

### Introduction

Lignin – structurally divers.....



[2] S.E.Lebo Jr., J.D. Gargulak, T.J. McNally (editors); Lignin. Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition. John Wiley & Sons, Inc. (New York) 2001.



Lignin – Characteristics of isolated lignin samples differ depending on the isolation process





kraft lignin

lignosulfonate

[3] J. Gierer; Chemical aspects of kraft pulping. Wood Sci. Tech. 1980, 14, 241.

[4] F.S. Chakar, A.J. Ragauskas; Review of current and future softwood kraft lignin process chemistry. *Industrial Crops Prod* 2004, 20, 131.



#### Lignin – Characteristics of isolated lignin samples differ depending on the isolation process

| Lignin type                             | C9 Molecular formula                                                                                                    | Monomer    | Number-average           | Poly-                             |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|-----------------------------------|
|                                         |                                                                                                                         | molecular  | molecular                | dispersity                        |
|                                         |                                                                                                                         | weight [u] | weight (M <sub>n</sub> ) | (M <sub>w</sub> /M <sub>n</sub> ) |
| Milled wood lignin <sup>a</sup>         | C <sub>9</sub> H <sub>7.80</sub> O <sub>2.41</sub> (OCH <sub>3</sub> ) <sub>0.95</sub>                                  | 198        | 2800-14200               | 3.7-12.9                          |
| Cellulolytic enzyme lignin <sup>b</sup> | C <sub>9</sub> H <sub>8.02</sub> O <sub>2.82</sub> (OCH <sub>3</sub> ) <sub>0.90</sub>                                  | 187        | ~1900                    | 5.7-6.7                           |
| Enzymatic mild acidolysis               | C <sub>9</sub> H <sub>8.02</sub> O <sub>2.82</sub> (OCH <sub>3</sub> ) <sub>0.90</sub>                                  | 187        | ~2000                    | ~3                                |
| lignin (EMAL) <sup>b</sup>              |                                                                                                                         |            |                          |                                   |
| Kraft lignin <sup>c</sup>               | $C_9H_{8.5}O_{2.1}S_{0.1}(OCH_3)_{0.8}(CO_2H)_{0.2}$                                                                    | 180        | 1000-3000                | 2-4                               |
| Lignosulfonated lignin                  | C <sub>9</sub> H <sub>8.5</sub> O <sub>2.5</sub> (OCH <sub>3</sub> ) <sub>0.85</sub> (SO <sub>3</sub> H) <sub>0.4</sub> | 215-254    | 5000-20000               | 4-9                               |
| (softwood) <sup>d</sup>                 |                                                                                                                         |            |                          |                                   |
| Lignosulfonated lignin                  | C <sub>9</sub> H <sub>7.5</sub> O <sub>2.5</sub> (OCH <sub>3</sub> ) <sub>0.39</sub> (SO <sub>3</sub> H) <sub>0.6</sub> | 188        | 5000-20000               | 4-9                               |
| (hardwood) <sup>d</sup>                 |                                                                                                                         |            |                          |                                   |
| Organosolv lignin <sup>e</sup>          | C <sub>9</sub> H <sub>8.53</sub> O <sub>2.45</sub> (OCH <sub>3</sub> ) <sub>1.04</sub>                                  | 188        | >1000                    | 2.4-6.4                           |
| Pyrolysis lignin <sup>f</sup>           | $C_9H_{6.3-7.3}O_{0.6-1.4}(OCH_3)_{0.3-0.8}(OH)_{1-1.2}$                                                                | n.d.       | 300-600                  | 2.0-2.2                           |
| Steam explosion lignin <sup>g</sup>     | C <sub>9</sub> H <sub>8.53</sub> O <sub>2.45</sub> (OCH <sub>3</sub> ) <sub>1.04</sub>                                  | 188        | 1100-2300                | 1.5-2.8                           |

[5] H. Lange, S. Decina, C. Crestini; Oxidtive upgrade of lignin – recent routes reviewed. Eur. Polym. J. 2013, 49, 1151-1173.



Lignin – how to quickly analyse?

• **Problem**: Lignin is becoming a famous starting material, but tricky to analyse...

=> Different laboratories obtain different results with the same analyses methods.

• **Problem**: No properly standardised analysis protocols (DIN-type)

- **Real problem**: How to get to comparable results, reflecting the true MW situation of a lignin sample?
  - => Implications for **synthetic applications**
  - => Implications for material science-type application
  - => Implications on *in silico* studies on lignin



#### Lignin – Characteristics of isolated lignin samples differ depending on the isolation process

| Lignin type                             | C9 Molecular formula                                                                                                    | Monomer          | Number-average           | Poly-       |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|-------------|
|                                         |                                                                                                                         | molecular        | molecular                | dispersity  |
|                                         |                                                                                                                         | weight [u]       | weight (M <sub>n</sub> ) | $(M_w/M_n)$ |
| Milled wood lignin <sup>a</sup>         | C <sub>9</sub> H <sub>7.80</sub> O <sub>2.41</sub> (OCH <sub>3</sub> ) <sub>0.95</sub>                                  | <mark>198</mark> | <mark>2800-14200</mark>  | 3.7-12.9    |
| Cellulolytic enzyme lignin <sup>b</sup> | C <sub>9</sub> H <sub>8.02</sub> O <sub>2.82</sub> (OCH <sub>3</sub> ) <sub>0.90</sub>                                  | 187              | ~1900                    | 5.7-6.7     |
| Enzymatic mild acidolysis               | C <sub>9</sub> H <sub>8.02</sub> O <sub>2.82</sub> (OCH <sub>3</sub> ) <sub>0.90</sub>                                  | 187              | ~2000                    | ~3          |
| lignin (EMAL) <sup>b</sup>              |                                                                                                                         |                  |                          |             |
| Kraft lignin <sup>c</sup>               | $C_9H_{8.5}O_{2.1}S_{0.1}(OCH_3)_{0.8}(CO_2H)_{0.2}$                                                                    | 180              | 1000-3000                | 2-4         |
| Lignosulfonated lignin                  | C <sub>9</sub> H <sub>8.5</sub> O <sub>2.5</sub> (OCH <sub>3</sub> ) <sub>0.85</sub> (SO <sub>3</sub> H) <sub>0.4</sub> | 215-254          | 5000-20000               | 4-9         |
| (softwood) <sup>d</sup>                 |                                                                                                                         |                  |                          |             |
| Lignosulfonated lignin                  | C <sub>9</sub> H <sub>7.5</sub> O <sub>2.5</sub> (OCH <sub>3</sub> ) <sub>0.39</sub> (SO <sub>3</sub> H) <sub>0.6</sub> | 188              | 5000-20000               | 4-9         |
| (hardwood) <sup>d</sup>                 |                                                                                                                         |                  |                          |             |
| Organosolv lignin <sup>e</sup>          | C <sub>9</sub> H <sub>8.53</sub> O <sub>2.45</sub> (OCH <sub>3</sub> ) <sub>1.04</sub>                                  | <mark>188</mark> | > <b>1000</b>            | 2.4-6.4     |
| Pyrolysis lignin <sup>f</sup>           | C <sub>9</sub> H <sub>6.3-7.3</sub> O <sub>0.6-1.4</sub> (OCH <sub>3</sub> ) <sub>0.3-0.8</sub> (OH) <sub>1-1.2</sub>   | n.d.             | 300-600                  | 2.0-2.2     |
| Steam explosion lignin <sup>g</sup>     | C <sub>9</sub> H <sub>8.53</sub> O <sub>2.45</sub> (OCH <sub>3</sub> ) <sub>1.04</sub>                                  | 188              | 1100-2300                | 1.5-2.8     |

[5] H. Lange, S. Decina, C. Crestini; Oxidtive upgrade of lignin – recent routes reviewed. Eur. Polym. J. 2013, 49, 1151-1173.



GPC set-ups



#### GPC – general (standard?) set-up



• **Problem**: What is necessary, and what might be inadequate?



#### GPC – the minimum set-up





#### GPC – our proposed standard set-up





#### GPC – potentially inadequate set-up





Calibration & calibration issues



• Main problem: significant structural differences between standard standards and potential

samples (e.g.: polystyrene vs. polyphenol)

• **Best solution**: universal calibration ('gold standard' of calibration methods)



improvement does not necessarily correlate with additional efforts....

[7] Joint efforts: H. Lange, L. Zoia, C. Crestini, M. Orlandi; University of Rome 'Tor Vergata' & University of Milan

Drawbacks: time consuming

<sup>[6]</sup> See for example: M. E. Himmel, K. Tatsumoto, K. K. Oh, K. Grohmann, D. K. Johnson, H. L. Chum. In: W. G. Glaser, S. Sarkanen, editors; Lignin – Materials and properties and materials. ACS Symposium Series 397. Washington, DC: American Chemical Society, **1988**, p82.



- **Practical solution**: commercially available polystyrene standards
- New practical challenge: representative MW range?





- **Practical solution**: commercially available polystyrene standards
- New practical challenge: representative MW range?





- **Practical solution**: commercially available polystyrene standards
- New practical challenge: representative MW range?



• Combined regime (113300 – 162 Da) = representative regime for most lignins



# Calibration & calibration issues

#### GPC – calibration issues

• Additional issue: Which detector to use? New calibration for different detectors?





• As such, no difference between detectors apart from intensity...



Sample preparation



٠

#### GPC – analysis programs

- *Issue*: Sample preparation => overcome solubility issues
  - => overcome 'detector-blindness'
  - => avoid concentration-dependent supramolecular aggregation
- HQ MWL / OSL sample: low solubility
  - well detectable in UV detectors (preferentially at 280 nm)
  - hardly detectable using RID detectors
- Carbohydrates: good solubility
  - no UV trace
  - weakly detectable using RID detectors
  - 'normal' sample: **mix** of above mentioned facts



#### GPC – analysis programs

- *Issue*: Sample preparation => overcome solubility issues
  - => overcome 'detector-blindness'
- 'normal' sample: acetobromination ensures decent solubility at up to 5 mg per ml THF
  - benzoylation ensures detection of LCC-complexes<sup>[8]</sup>
  - Artifact peaks caused by THF peroxides in varying amounts

[- possibility: use of solvent mixtures (e.g., THF with 5 % dioxane) to further improve selectivity]





#### GPC – analysis programs

• *Issue*: Specialized analyses software vs. generic table-calculations

| K27 -         | ĵ,          |              |             |                  |              |             |                    |          |            |           |            |               |                           |                                 |             |                 |              |
|---------------|-------------|--------------|-------------|------------------|--------------|-------------|--------------------|----------|------------|-----------|------------|---------------|---------------------------|---------------------------------|-------------|-----------------|--------------|
| А             | В           | С            | D           | E                | F            | G           | Н                  | (0)      | J          | К         | L          | M             | N                         | 0                               | р           | Q               | R            |
| mple:         |             |              |             |                  |              |             |                    |          |            |           |            |               |                           |                                 |             |                 |              |
|               |             |              |             |                  |              |             |                    |          |            |           |            |               |                           |                                 |             |                 |              |
| d colored co  | lumns: inp  | ut data      |             |                  |              |             |                    |          |            |           |            |               |                           |                                 |             |                 |              |
| ue colored co | olums: resu | ilts         |             |                  |              |             |                    |          |            |           |            |               |                           |                                 |             |                 |              |
| b: input rang | e for inten | sities range | es from 16. | 00000 min to 45. | 00267 min!   |             |                    |          |            |           |            |               |                           |                                 |             |                 |              |
|               |             |              |             |                  |              |             |                    |          |            |           |            | 2.000         |                           | Accession and the second second |             |                 |              |
| IALYSIS USIN  | IG COMBIN   | IED MW RE    | GIMES!      | ANALYSIS USIN    | G COMBINED I | NW REGIM    | ES!                | ANALYSIS | S USING CO | DMBINED M | W REGIMES! | ANALYSIS USI  | NG COMBINED N             | WW REGIMES!                     | ANALYSIS US | ING COMBINED MW | REGIMES!     |
| libration     |             |              |             |                  |              | Measure     | ment               |          |            | 222000000 | 2 (2)      | 2. 2          | Contractory of the second |                                 |             |                 |              |
| N regime      | Mw          | Log Mw       | rt (min)    | THF indicator    |              | rt (min)    | abs                |          | abs min    | abs max   | abs corr.  | abs corr. max | abs THF corr.             | abs THF corr. max               | abs corr. N | abs THE corr. N | ∑abs corr. N |
| combined      | 175252.7    | 5.243665     | 16          | 0                |              |             |                    |          | C          | )         | 0          | 0 0           | 0.00                      | 0.00                            | #DIV/0!     | #DIV/0!         | #DIV/        |
| compined      | 1/4511      | 5.241823     | 16.01067    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/0!         |              |
| combined      | 1/3//3.1    | 5.239983     | 16.02133    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/0!     | #DIV/01         |              |
| combined      | 1/3037.7    | 5.238141     | 16.032      | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 1/2305.4    | 5.236299     | 16.04267    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 1/15/6.8    | 5.234459     | 16.05333    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 1/0850./    | 5.23261/     | 16.064      | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      | -                               | #DIV/01     | #DIV/01         |              |
| combined      | 1/0127.6    | 5.230775     | 16.07467    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 169408.3    | 5.228935     | 16.08533    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #010/01     | #010/01         |              |
| combined      | 108091.3    | 5.227093     | 10.090      | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 16/9//.4    | 5.225251     | 10.10007    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 10/20/.1    | 5.223411     | 10.11/33    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 100559.2    | 5.221509     | 10.128      | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 165152.1    | 5.219727     | 16.13807    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/0!         |              |
| combined      | 165153.1    | 5.21/88/     | 16.14933    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/0!         |              |
| combined      | 160750 1    | 5.210045     | 16 17067    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 162065 7    | 5.214205     | 16 10122    | 0                |              |             |                    |          |            |           | 1          | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 163275 6    | 5 210521     | 16 102      | 0                |              |             |                    |          |            | -         | -          | 0             | 0.00                      |                                 | #DIV/01     | #DIV/0!         |              |
| combined      | 161690 4    | 5 209670     | 16 20267    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/0!         |              |
| combined      | 161004 7    | 5 206920     | 16 21222    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 160222.2    | 5 204997     | 16 224      | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 159644 9    | 5 202155     | 16 23/67    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/0!         |              |
| combined      | 158969 9    | 5 201215     | 16 24592    | 0                |              |             |                    |          |            |           |            | n             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 159207      | 5 100472     | 16 255      | 0                |              |             |                    |          |            |           |            | n             | 0.00                      |                                 | #DIV/01     | #DIV/0!         |              |
| combined      | 157627.1    | 5 107691     | 16 26667    | 0                |              |             |                    |          |            |           |            | n             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 156960 6    | 5 105701     | 16 27722    | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| combined      | 156306.0    | 5.193791     | 16 200      | 0                |              |             |                    |          |            |           |            | 0             | 0.00                      |                                 | #DIV/01     | #DIV/01         |              |
| compined      | 130290.3    | 3.133949     | 10.288      | U                |              | and low the | 100 CONTRACTOR 100 |          |            |           |            |               | 0.00                      |                                 | #010/01     | mDIV/0:         |              |

- Table calculations: No decision on peak area necessary in case UV-detectors are used
  - => reduction of manual input error



GPC – analysis of real life sample

• PDA-traces obtained for acetobrominated sample for different calibration shown







GPC – analysis of real life sample

• RID-traces obtained for acetobrominated sample for different calibration shown





#### GPC – analysis of real life sample

• Delineated data (PDA)

| Calibration  | Mn corr. | Mn THF corr. | Mw corr. | Mw THF corr. | Mw/Mn corr. | Mw/Mn THF corr. |
|--------------|----------|--------------|----------|--------------|-------------|-----------------|
| all          | 8394     | 8399         | 54337    | 54337        | 6.47        | 6.47            |
| separated    | 3802     | 3804         | 68979    | 68979        | 18.14       | 18.13           |
| only high    | 414      | 414          | 545857   | 545857       | 1318.61     | 1317.85         |
| only low     | 3651     | 3653         | 11735    | 11735        | 3.21        | 3.21            |
| sel.combined | 4113     | 4115         | 14558    | 14558        | 3.54        | 3.54            |



#### GPC – analysis of real life sample

• Delineated data (PDA)

| Calibration  | Mn corr. | Mn THF corr. | Mw corr. | Mw THF corr. | Mw/Mn corr. | Mw/Mn THF corr. |
|--------------|----------|--------------|----------|--------------|-------------|-----------------|
| all          | 8394     | 8399         | 54337    | 54337        | 6.47        | 6.47            |
| separated    | 3802     | 3804         | 68979    | 68979        | 18.14       | 18.13           |
| only high    | 414      | 414          | 545857   | 545857       | 1318.61     | 1317.85         |
| only low     | 3651     | 3653         | 11735    | 11735        | 3.21        | 3.21            |
| sel.combined | 4113     | 4115         | 14558    | 14558        | 3.54        | 3.54            |

=> Depending on what is needed, the calibration is chosen?

- => Misguided choices in calibration step suggests uselessness of a lignin sample?
- => What do these data represent anyway when lignin was derivatised?
- => GPC only useful for comparative studies using relative changes?



#### Lignin – structural motifs





#### Lignin – structural motifs





#### GPC – analysis of real life sample

• Universal data survey and processing

| le Home Insert Page La                 | yout Formulas Data Review View                        | ChemOffice13                    | Acrobat                                                          |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      | 0    | 3 -  |
|----------------------------------------|-------------------------------------------------------|---------------------------------|------------------------------------------------------------------|--------|---------|------|---------|-------------------------------------------------------------------------------------------------|----------|---------|------|----|-------------------------------------------------------------------------------------------------|------|------|------|------|
| A1 • Con                               | npound:                                               |                                 |                                                                  | _      | _       |      |         |                                                                                                 |          |         |      | _  |                                                                                                 | _    |      |      |      |
| A                                      | В                                                     | с                               | D                                                                | E      | FGI     | н і  | J K     | L                                                                                               | 1        | M N O   | PQ   | R  | S T                                                                                             | U    | v    | w    | XY   |
| Compound:                              | full name                                             |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      | 1  |                                                                                                 |      |      | _    | _    |
|                                        |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
| Grey colored columns: invariable und   | ler, and/or not affected by, and/or not present in th | he functionalisation            | n conditions                                                     |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
| Blue colored colums: results           |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
| Drange colored: to be updated accor    | dingly                                                |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
| Purple colored: Only to be used as in  | ternal control for consistencies, etc.                |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
| Calculation of key-figures - non-spect | roscopic & non-chromatographic input data             |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
| Motif                                  |                                                       | Calcu                           | Ilation basic input values                                       | 1.1    | 1       |      |         |                                                                                                 |          |         | 11   |    |                                                                                                 |      | 1.1  |      |      |
| motif type                             | motif & MW                                            | mone                            | omers unfunctionalised                                           |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        |                                                       | H-typ                           | e                                                                |        |         |      |         | G-type                                                                                          |          |         |      |    | S-type                                                                                          |      |      |      |      |
|                                        |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
| basic monomer                          | C9-formula of initial monomer                         | CoHal                           | OCH3)0(OH)2O0                                                    | C I    | 9 H 1   | LO O | 2       | C <sub>9</sub> H <sub>7</sub> (OCH <sub>3</sub> ) <sub>1</sub> (OH) <sub>2</sub> On             |          | C 10 H  | 12 0 | 3  | C <sub>9</sub> H <sub>6</sub> (OCH <sub>5</sub> ) <sub>2</sub> (OH) <sub>2</sub> O <sub>0</sub> | c    | 11   | н :  | 14 0 |
|                                        | MW of initial monomer C9 unit                         |                                 | 150.18                                                           |        |         |      |         |                                                                                                 | 180.20   |         |      |    | 210                                                                                             | 23   |      |      |      |
|                                        |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
| monomer as bonding motif               | C9-formula of 8-0-4-forming unit                      | C-H-I                           | OCH-)-(OH)-O-                                                    | C I    | р н 1   | 0.0  | 3       | C-H-(OCH-),(OH)-O-                                                                              |          | C 10 H  | 12 0 | 4  | C-H-(OCH-)-(OH)-O-                                                                              | c    | 11   | н -  | 14 0 |
| monomer us bonding moti                | MMV of B O 4 forming CO unit                          | Cgrig                           | 166 19                                                           | 0.     |         | 10 0 | 5       | cgn/(ocn3)1(on)201                                                                              | 106.20   | 0 10 11 | 12 0 | ~~ | 226                                                                                             | 12   |      |      | 14 0 |
|                                        | www.orp-o-4-iorning.cs.dint                           |                                 | 100.18                                                           |        |         |      |         |                                                                                                 | 190.20   |         |      |    | 220.                                                                                            | 23   |      |      |      |
|                                        | the formula of R 1 formula unit                       |                                 | 001110110                                                        |        |         |      |         | A.U. 1000 Jan 1000 A.                                                                           |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        | Continuing of providenting date                       | Consi                           | UCH3/0(UH)1U1                                                    | U S    | 9 11 3  | 9 0  | 2       | CgH7(OCH3)1(OH)1O1                                                                              | 470.00   | С 10 П  | 11 0 | 3  | C9H6(UCH3/2(UH)1U1                                                                              | - C  | . 11 | п 1  | 15 0 |
|                                        | NW of p-5-forming C9 unit                             |                                 | 149.17                                                           |        |         |      |         |                                                                                                 | 1/9.20   |         |      |    | 209.                                                                                            | 22   |      |      |      |
|                                        |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        | C9-formula of β-β-forming unit                        | C <sub>9</sub> H <sub>8</sub> I | OCH <sub>3</sub> ) <sub>0</sub> (OH) <sub>0</sub> O <sub>2</sub> | C      | эн      | 8 0  | 2       | C <sub>9</sub> H <sub>7</sub> (OCH <sub>3</sub> ) <sub>1</sub> (OH) <sub>0</sub> O <sub>2</sub> |          | C 10 H  | 10 0 | 3  | C <sub>9</sub> H <sub>6</sub> (OCH <sub>3</sub> ) <sub>2</sub> (OH) <sub>0</sub> O <sub>2</sub> | C    | 11   | H 1  | 12 0 |
|                                        | MW of β-β-forming C9 unit                             |                                 | 148.16                                                           |        |         |      |         |                                                                                                 | 178.19   |         |      |    | 208.                                                                                            | 21   |      |      |      |
|                                        |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        | C9-formula of β-1-forming unit                        | C <sub>9</sub> H <sub>8</sub> I | OCH <sub>3</sub> ) <sub>0</sub> (OH) <sub>2</sub> O <sub>1</sub> | C !    | 9 H 1   | LO O | 3       | C <sub>9</sub> H <sub>7</sub> (OCH <sub>3</sub> ) <sub>1</sub> (OH) <sub>2</sub> O <sub>1</sub> |          | C 10 H  | 12 0 | 4  | C <sub>9</sub> H <sub>6</sub> (OCH <sub>3</sub> ) <sub>2</sub> (OH) <sub>2</sub> O <sub>1</sub> | C    | 11   | H 1  | 14 0 |
|                                        | MW of β-1-forming C9 unit                             |                                 | 166.18                                                           |        |         |      |         |                                                                                                 | 196.20   |         |      |    | 226.                                                                                            | 23   |      |      |      |
|                                        |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        | C9-formula of DBDO-forming unit                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        | MW of DBDO-forming C9 unit                            |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        | C9-formula of b-b-forming unit                        |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        | MW of b-b-forming C9 unit                             |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
| monomer as phenolic end motif          | C9-formula of β-O-4-forming unit                      | C <sub>9</sub> H <sub>8</sub>   | OCH <sub>3</sub> ) <sub>0</sub> (OH) <sub>3</sub> O <sub>0</sub> | C      | 9 H 1   | 11 0 | 3       | C <sub>9</sub> H <sub>7</sub> (OCH <sub>3</sub> ) <sub>1</sub> (OH) <sub>3</sub> O <sub>0</sub> |          | C 10 H  | 13 0 | 4  | C <sub>9</sub> H <sub>6</sub> (OCH <sub>3</sub> ) <sub>2</sub> (OH) <sub>3</sub> O <sub>0</sub> | C    | 11   | H 1  | 15 O |
|                                        | MW of β-O-4-forming C9 unit                           |                                 | 167.18                                                           |        |         |      |         |                                                                                                 | 197.21   |         |      |    | 227.                                                                                            | 24   |      |      |      |
|                                        |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    |                                                                                                 |      |      |      |      |
|                                        | C9-formula of 8-5-forming unit                        | Cetter                          | OCH-)-(OH)-O2                                                    | C      | а. н. 1 | 0.0  | 2       | C+H-(OCH-)+(OH)-O-                                                                              |          | С 10 Н  | 12 0 | 3  | C+H+(OCH+)+(OH)+O+                                                                              | c    | 11   | н. 1 | 14 N |
| B H 31P NMR / HSOCO / DFR              | C 🖌 GPC results PDA 🥇 GPC results RID 🖌 CHN ,         | key-tigure det                  | ermination 🥢 input data ca                                       | Iculat | ions 🖌  | sum  | marized | results 🧹 Calibration PD                                                                        | A 🗶 Cali |         | _    | _  |                                                                                                 |      |      |      |      |
| dv                                     |                                                       |                                 |                                                                  |        |         |      |         |                                                                                                 |          |         |      |    | 90                                                                                              | 1% ( | -)   |      | 1-   |



GPC – analysis of real life sample

• 'Functionalisation-corrected' data (PDA)

=> functionalisation accounted for in a simple factor that reflects sample characteristics

=> MW (WS-OSL monomer, acetobrominated): 261 Da MW (WS-OSL monomer, natural): 198 Da

"Conversion factor" GPC: 1.32

=> Mn (natural) = 2900, Mw (natural) = 10100



Consequences



٠

٠

٠

### Consequences

Consequences with respect to lignin structures



[4] S.E.Lebo Jr., J.D. Gargulak, T.J. McNally (editors); Lignin. Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition. John Wiley & Sons, Inc. (New York) 2001.
[5] C. Crestini , F. Melone, M. Sette, R. Saladino; Milled wood lignin: A linear oligomer. *Biomacromolecules* 2011, *12*, 3928.



### Consequences

Consequences with respect to lignin structures



• Linear, oligomeric chains, rather small....



Consequences for future and ongoing work

- GPC set-ups need to be more uniform to ensure comparability of results
- Calibrations must be done more thoughtful with respect to calibration ranges
- Sample preparation needs to be standardised
- And: for more than relative comparisons, data obtained need to interpreted in light of all other data available for the sample

=> With lignin becoming a more famous starting material,

powerful standardised analysis protocols should be reinforced for data reporting



### Acknowledgements

Thanks to ...

- Claudia Crestini
- Marco Sette
- Federica Rulli
- Luca Zoia





- Federica Melone
- Silvia Decina
- Raffaella Perazzini
- other former students