

Characterization of tree and wood fractions for biorefinery applications

SARA JOHANSSON | COST FP0901 | TURKU SEPTEMBER 18, 2013

To characterize differences in raw material composition and processability of well-defined tree and wood fractions

Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences

Institutionen för skogliga biomaterial och teknologi

Department of Forest Biomaterials and Technology

Department of Chemical Engineering

2 trees from SLU field trials

• Tree 1

- From clearcut stand
- Dense population in youth
- Slow growth

• Tree 5

- From thinned stand
- Extremely sparse population in youth
- Fast growth

Each tree divided into 9 fractions

- Needles
- Branches
- Sapwood
 - 1.3 m) 50%, 75%
- Heartwood
 - 1.3 m) 50%
- -(Knotwood
- Bark

Objectives of the work in Lund

Raw material analysis

- Moisture and ash content
- Total extractives content
- Structural carbohydrates and lignin

Pretreatment

- Solid fraction
 - Carbohydrates and lignin
- Liquid fraction
 - Mono and oligosacharides
 - Furans and acetic acid
- Yields and recoveries

Enzymatic hydrolysis

- Carbohydrates and lignin
- Overall glucose yield

Raw material

Moisture content

Heartwood is considerably drier than other fractions

The composition of pine

Percent dry weight composition

Glucan	Mannan	Xylan	Lignin
46	12	9	30

Handbook on Bioethanol, ed. Wyman C.E.

Arabinoglucuronoxylan

Galactoglucomannan

Pulp and Paper Chemistry and Technology, ed. Ek, Gellerstedt, Henriksson

Raw material analysis

- 2-step acid hydrolysis
 - strong acid
 - 30°C, 60 min
 - dilute acid
 - 120°C, 60 min
- Klason and acid soluble lignin
- HPLC used for sugar analysis

Carbohydrates

Bigger difference between the trees than within the trees (glu and xyl)

10-25% difference within the trees

Lignin content

The faster grown tree (5) has a sligthly higher lignin content than the slower grown tree

Extraction

- Soxhlet extraction
 - Water
 - Ethanol
- Extraction before raw material analysis
 - To assess extractives content
 - Extractives may disturb results

Extractives

Hydrophilic

- Salts
- Sugars
- Lignans
- Fenols
 - fungicides

Hydrophobic

- •Fats and fatty acids
- Waxes
- Terpenes
 - "pine smell"

Summary Raw material

 The faster grown tree richer in carbohydrates than the slower grown tree

Heartwood richer in extractives than sapwood

Top has more extractives than bottom (of the trunk)

Pretreatment

Steam pretreatment

- 2.5% SO₂ (based on moisture content)
- 210°C
- 5 minutes

Yields of mono and oligosacharides after pretreatment

Sapwood 1.3 m Tree 5 (fast growth)

- Highest glucose yield
- Lowest mannose and xylose yields

Heartwood 1.3 m Tree 1 (slow growth)

- Lowest glucose yield
- Highest mannose and xylose yields

Recovery of carbohydrates after pretreatment

Hydrolysis of lignocellulose

Fig. 1. Reactions occuring during hydrolysis of lignocellulosic materials. The furan derivatives and phenolic compounds will react further to form some polymeric material.

Yields of furans and acetic acid after pretreatment

The faster grown tree yielded more furans and acetic acid from sapwood and heartwood fractions

Knotwood had similar yields for both trees

Heartwood had lower yields than other fractions

Summary Pretreatment

- All hemicellulose solubilized at the conditions used
 - Glucan was recovered in fiber as well as in liquid fraction of the pretreated slurry
 - Mannan and xylan only recovered in the liquid fraction
- The pretreatment acted harsher on the faster grown tree
 - Lower carbohydrate recoveries than the slow grown tree
 - Higher yields of furans from sapwood and heartwood
 - knotwood had similar yields from the two trees
 - Lower WIS content than the slower grown tree
- Heartwood withstood the pretreatment better than other fractions
 - Higher recoveries of carbohydates
 - Lower yields of furans

Enzymatic hydrolysis

	Conv. E.H (%) ¹	Overall yield (%) ²
UW 0.1	40	60
UW 0.2	76	87
W 0.1	56	71
W 0.2	86	92

¹ Final conversion, based on glucan content in pretreated material

- Sapwood (1.3 m) from slowgrown tree
- Washed and unwashed material
- 2 different enzyme dosages
 - 10 FPU/g WIS
 - 20 FPU/g WIS

² Overall glucose yield after pretreatment and enzymatic hydrolysis, based on glucan content in the raw material

Outlook

- Pretreatments at different conditions
 - optimization
- Enzymatic hydrolysis of more pretreated material

Thank you for your attention!

This work was financed by a grant from the Bo Rydin foundation

