

Objective

- Settle common methods of isolated lignin samples to determine
 - the thermal characteristics esp. Tg as determined with DSC
 - the lignin content

2011-01-31

Why?

- Isolated lignins are a potential value-added product for the industry
- Different methods and evaluation procedures are applied
- Thermal properties is of increasing importance
- Standard method for quantification is developed for wood/pulp etc
- All structural analysis is related to dry content of lignin

... it's tricky to compare lignin properties and follow mass balances

2011-01-31

How to reach the objective

- Evaluate proposed methods using a RR procedure and compare with in-house methods in use today at respective laboratory
 - Participants: 9 for T_a and T_d and 15 for quantification
 - Common samples
 - Initial analysis following the same protocol and
 - In-house analysis
 - Discussions at meetings, and whatever we find suitable...
 - Interactive procedure

Active participation is important!

2011-01-31

Samples

- Selected samples representing lignins
 - of different origin and processing
 - of interest in today's research & development
- Hardwood (birch/aspen) Kraft lignin KLHM
- Softwood (pine/spruce) Kraft lignin KLSM
 - Innventia
- Spruce Organosolv lignin Org.solv
 - VTT/Tamminen
- Soda (wheat straw) lignin Soda
 - WUR/Gosselink
- Enzymatic treated Steam Explosion lignin (poplar) ESEL
 - vTi /Bodo & Fokko Schutt

2011-01-31

Fundamental characteristics

Hardwood and Softwood Kraft lignins

isolated according to the LignoBoost procedure

KLHM lignin		KLSM lignin	
0	.7	1	.0
88.1 93.0		3.0	
10.1		5.6	
1.7		1.4	
n.d.		0.23	
Carbohydrate composition			
rel %	%-w	rel %	%-w
16.3	0.3	16.1	0.2
16.9	0.3	48.6	0.7
	0 88 10 1 n. Car rel % 16.3	0.7 88.1 10.1 1.7 n.d. Carbohydrate rel % %-w 16.3 0.3	0.7 1 88.1 9 10.1 5 1.7 1 n.d. 0 Carbohydrate composit rel % %-w rel % 16.3 0.3 16.1

25.0

0

0.4

13.0

21.0

1.3

0.2

0.3

0

2011-01-31

Glucose

Mannose

Xylose

Used methods

for characterisation of kraft lignins

- Ash: ignition at 525 °C, ISO 1762:2001
- Hydrolysis with sulphuric acid, Tappi T249-cm 00
- Acid insolubles ("Klason")
- ASL: UV 205nm; coeff. 128 l/g (SWKL), 113 l/g (HWKL), Tappi T222-om 00
- Carbohydrates: HPAEC-PAD
- Extractives: p-ether solubles, Soxtec,
 - conditions according to SCAN-CM 49:03

2011-01-31

Fundamental characteristics

Spruce Organosolv lignin

- ash content: 6.9 %
- extractives content: 3 % ether-soluble
- carbohydrate content & composition: 1.2%
 - Rha~Ara~Fructose<0.1%
 - Xyl 0.03%
 - Gal 0.1%
 - Glc 0.4%
 - Man 0.46%

2011-01-31

NUVENTIA

Used methods

for characterisation of Spruce Organosolv lignin

- Ash: at 780 °C (heating up to 1000°C)
- Extractives: 2h extraction at RT, filtration, evaporation-vacuum drying
- Carbohydrates: H₂SO₄ hydrolysis HPAEC/PAD
- Details in Willför et al. 2009

2011-01-31 q

Fundamental characteristics

Soda (wheat straw) lignin

- characterized without removal of extractives
- ash content: 9.7%
- Klason lignin, ash-free: 63.51%; ASL: 1.45%
- carbohydrate content & composition: 13%
 - Arabinan 1.87%
 - Xylan 8.52%
 - Galactan 0.43%
 - Glucan 0.97%
- Other: tot. uronic acid total 1.38%, protein 7.2% (N=1.2%)

2011-01-31

10

Used methods

for characterisation of Soda (wheat straw) lignin

- Ash: 800 °C for 4-8 hours (ILI protocol)
- Lignin and carbohydrate content after 2-step sulfuric acid hydrolysis and gravimetric and HPAEC
- Details in Gosselink et al. Holzforschung, 64, 2010

About the thermal analysis **Tg determination**

The methods to be used should be

- with DSC, as described below ("Innventia")
- your in-house DSC method and/or
- your in-house DTA method
- The results from 2 and 3 should be reported along with a description of your method

2011-01-31

12

Results so far, thermal RR

- To few reported results at date
- New request will be sent to WG1 and WG2 leaders for further distrib.,
 - Samples will be provided if possible (limited amount left)
- New dead-line: May 15
- General comment
- Please note that both analysis (Tg and TD determination) should be performed in inert atmosphere, e.g. under nitrogen
- Please report the av. and SD for n=5 for each sample and analysis

2011-01-3

