Alkaline pretreatment of wheat straw

"Analytical methods for non-wood raw materials and their products and processes" COST FP0901 meeting, 19-21 August 2010, Hamburg

Richard Gosselink, Hans van der Kolk, Paulien Harmsen, Robert Bakker

Outline presentation

- Wheat straw biorefinery
- Alkaline pretreatment
- Analytical tools
- Highlights results
- Available samples for Round Robin COST PF0901

Wheat straw biorefinery concept

Clark et al. 2006

Pretreatment

Goal

- Fractionation of lignocellulosic to cellulose, hemicellulose and lignin
- Make cellulose and hemicellulose fractions more accessible for enzymatic hydrolysis
- Make lignin available for higher-valued products

Numerous processes

- Mechanical, chemical, enzymatic
- Acids, alkaline, organic solvents
- Combinations thereof

<u>Alkaline pretreatment (high pH)</u>

- Alkali induces swelling of biomass, leading to increase of internal surface area
- Disruption of lignin structure (lignin removal)
- Reduction of cellulose crystallinity
- Results in improved accessibility of cellulose and hemicellulose towards enzymatic hydrolysis

Alkaline pretreatment

- Common alkaline pretreatment route
 - Base as catalyst (NaOH, Ca(OH)₂, ammonia); T<120 ℃
 - Carried out under (close to) atmospheric conditions
 - Long reaction times (hours)
 - Need for chemical recycling

Improve alkaline pretreatment

- Apply milder process conditions
 - Less formation of degradation products (e.g. inhibitors)
 - Lower operational costs
- Improve accessibility of sugars to enzymes
- Obtain lignin of high purity

From wheat straw to fermentable sugars

Experimental setup

Base case: 4h alkaline pretreatment in stirred reactor

■ Preliminary experiments (2 L, 70 ℃)

- Base case
- Effect NaOH-concentration
- Main experiments (200 L, 90 ℃)
 - Base case
 - Extrusion
 - Refining

Analytical tools (selection)

- Biochemical composition untreated & pretreated straw (solids)
 - Extraction (ASE)
 - Carbohydrates (HPAEC-PAD)
 - Lignin (AIL by weight, ASL by UV)
 - Ash (TGA, ignition)
 - Proteins (N by Kjehldahl or Dumas, AA by UPLC)
 - Morphology (SEM)
 - Cellulose cristallinity (WAXS)
- Liquids
 - Carbohydrates (monomers, oligomers)
 - Lignin
 - Fermentation inhibitors (phenolics, organic acids by LC)
- Isolated lignin
 - FT-IR
 - Impurities (carbohydrates, proteins, ash)
 - MWD (alkaline SEC)¹
 - Functional groups (³¹P NMR)¹

UDD & BIOBASED RESEARCH WAGENINGEN UR ¹Gosselink, R.J.A. *et al.* Holzforschung 2010 9

Solid fraction

Liquid fraction

Enzymatic hydrolysis

Solid fraction

Enhanced enzymatic degradability due to pretreatment

- Structural changes of wheat straw (e.g. delignification)
- Minimal formation of degradation products due to mild conditions

Summary

Base case (2L)

Pretreatment

- Main action is delignification (max 50%)
- Minimum degree of hemicellulose and cellulose hydrolysis
- Solid fraction enriched with sugars due to pretreatment (from 60% to 75%)
- Optimal NaOH concentration 9 wt%
- Lignin
 - Low purity
- Enzymatic hydrolysis
 - Conversion of glucan and xylan improved from < 20% to > 80%
- Input for further experiments
 - Increase T from 70 to 90 ℃
 - NaOH concentration 6-9 wt% NaOH

Experimental setup

Base case: 4h alkaline pretreatment in stirred reactor

✓ Preliminary experiments (2 L, 70 ℃)
✓ Base case

■ Main experiments (200 L, 90 °C)

- Base case
- Extrusion
- Refining

Base case

Chopped wheat straw (1-2 cm)
9 wt% NaOH based on dry straw
4h at 90 ℃

Extrusion

1st Delignification Whole wheat straw 6 wt% NaOH, 2h, 90℃

2nd Delignification 6 wt% NaOH, 2h, 90 ℃

Transport of biomass to RSE (reversed screw element)

- Accumulation and compression of material
- High compression and shear forces
- Material is dry and absorbs added chemicals very well (e.g. NaOH)
- Shortening of fibres and fibrillation

<u>Refining</u>

1st Delignification Chopped wheat straw 6 wt% NaOH, 2h, 90 ℃

2nd Delignification 6 wt% NaOH, 2h, 90℃

Shear and compression forces

- Increase of surface area
- Shortening of fibres and fibrillation
- Homogeneous, clean fibres

Scanning Electron Microscopy

Solid fraction

- Direct analysis of sugar monomers
- After acid hydrolysis, 3h, 100℃
 - Substantial increase of sugars
- Liquid fraction
 - Sugars mainly present as oligomers (total 6%)

Liquid fraction

Amounts 100x Iower

20

Liquid fraction

Liquid fraction

- Acetic acid primary fermentation inhibitor
- Lactic acid present
- Phenolic compounds present at very low levels

Liquid fraction

IR-spectra of lignins isolated from liquid fraction

Lignin: Chemical composition

Lignin: MWD by alkaline SEC

Parameter	Reference lignin ¹	Base case	Extrusion	Refining (atmP)	Refining (eievP)
Mn (Da)	700	690	1000	900	890
Mw (Da)	8100	5300	18000	17000	28000
PD	10	8	18	19	32

- Depending on pretreatment method different lignins obtained
- Biomass more accessible due to mechanical pretreatment: less degradation of lignins?

¹Soda wheat straw lignin supplied by Granit SA

Lignin: Functional groups by ³¹P NMR

Amounts of different hydroxyl group species (mmol/g) in lignin

Sample ID	Aliphatic OH	Aromatic OH	S+C	G	H	Carboxylic acid	Total OH
Base case	3,72	1,14	0,30	0,62	0,22	0,89	5,75
Refining (atmP)	4,00	0,49	0,03	0,37	0,09	0,57	5,05
Refining (elevP)	3,97	0,85	0,24	0,48	0,14	0,68	5,50

S + C = Syringyl + Condensed phenolic units, G = Guaiacyl phenolic units and H = p-Hydroxyphenyl phenolic units

³¹P NMR analysis performed by VTT

IS = Endo-N-Hydroxy-5-norbornene- 25

2,3-dicarboximide

	Base case	Extrusion	Refining
Yield solid fraction	70-75%	60-65%	60-65%
Delignification	40-50%	70-80%	70-80%
Sugars in liquid fraction	<10%	20-30%	20-30%

- Extrusion and refining comparable results
- Higher degree of delignification accompanied by loss of sugars by hydrolysis

Enzymatic hydrolysis

Solid fraction

Conclusions

Alkaline pretreatment excellent for

- Delignification (40-50%)
- Improvement of enzymatic degradability (from 20 to 70-80%)
- Added value extrusion or refining
 - More delignification (70-80%)
 - Further improvement of enzymatic degradability (from 20 to 100%)
- Different lignins produced
 - Moderate purity (80%)
 - Molar mass relatively high
- Economic feasibility of combined mechanical/alkaline pretreatment depends on value of lignin produced
- Analytical tools suitable for process development

Available samples for Round Robin

Wheat straw (kg)

Base case: Alkaline pretreated wheat straw (kg)
 Neutralised + washed + stored @ -20°C

- Black liquor stored @ -20℃ (kg)
- Isolated soda wheat straw lignin (100-200g, expected early September)

Acknowledgements

- Biosynergy <u>www.biosynergy.eu</u>
- Biobutanol <u>www.biobutanol.nl</u>

Thank you for your attention Any Questions?

© Wageningen UR

More info: richard.gosselink@wur.nl

