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Computational Literature

• Improvements in hardware and software have 
made high level, quantum-based calculations 
feasible for dilignols

• Most require supercomputer/parallel 
processor capabilities

• Renewed interest in bioenergy, bioproducts
and the biorefinery has resulted in increased 
activity in this area





Introduction

• Biomass utilization for energy
• Biorefinery

– Biochemical platform
– Thermochemical platform

• Torrefaction
• Pyrolysis
• Gasification

• Free radical reactions in general
– Thermal, photochemical, mechanical, ultrasound, 

industrial processes
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Experimental Work on mechanisms
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• Brežny et al.  1983, 1984.  Low temperature 
thermolysis of lignins.  I and II.  Holzforschung
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• Evans et al.  1986.  Direct mass spectrometric 
studies on the pyrolysis of carbonaceous fuels.  
III.  Primary pyrolysis of lignin.  J.  Anal. Appl. 
Pyrolysis 9:207-236.
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Introduction
Computational Work

• Beste, A., Buchanan, A.C. 
III (2009) Computational 
study of bond dissociation 
enthalpies for lignin
model compounds. 
Substituent effect in 
phenyethyl phenyl ethers. 
J. Org. Chem. 74:2837–
2841.
– M06-2X/mixed basis set

• 6-31G(d), all atoms
• 6-311++G(d,p) , atoms with 

upaired electron
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Methods
• Based on the results of Beste and Buchanan (2009) on 

phenethyl phenyl ethers, the bond dissociation enthalpy 
of dilignols was evaluated
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Methods

• Structures from x-ray diffraction were used as 
the starting geometries
– Stomberg, R., Lundquist, K. (1994). 

Stereochemistry of lignin structures of the -O-4 
type. Crystal structures of model compounds.  
Nord. Pulp Pap. Res. J. 9:37–43.

– Langer, V., Li, S., Lundquist, K. (2002) erythro-2-
(2,6-Dimethoxyphenoxy)-1-(4-hydroxy-3,5-
dimethoxyphenyl)-1,3-propanediol.  Acta Cryst. 
E58:o42–o44.



Methods-Computational Methods

• Composite methods for accurate thermochemistry
• G3MP2  

– Curtiss et al.  1999.  J. Chem. Phys. 110:4703-4709.
• Optimizations at HF/6-31G(d) and MP2/6-31G(d)
• Single point MP2/G3large, MP4/6-31G(d), QCISD(T)/6-31G(d)

• CBS-4m 
– Montgomery et al. 2000.  J. Chem. Phys. 112:6532–6542.

• Optimization and frequency HF/3-21G(d)
• Single point MP4/6-31G, MP2/6-31+G(d,p), HF/CBSB1

• Gaussian09
• SGI Altix Cluster-Alabama Supercomputer Authority



Results

• Prior to initiating work 
on dilignols, preliminary 
calculations were done 
on compounds from the 
literature
– Anisole experimental

• 65.3 kcal mol-1

• CPU time
– PPE-oOCH3

• G3MP2, 2300h
• CBS-4m, 36.5h

O
CH3

CH3

O

O

anisole

ortho-methoxy-phenethyl phenyl ether (PPE-oOCH3)

O

CH3

CH2

O

O
CH3+

CH3

O

O

CH2

CH2

+

+

Compound/linkage M06-2X G3MP2 CBS-4M

Anisole 67.5 66.7 67.0

PPE-oOCH3/ -O 64.4 66.6 68.3

PPE-oOCH3/ 77.0 79.8 79.6
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CBS-QB3
•B3LYP/6-311G(2d,d,p)

•optimization
•B3LYP/CBSB7

•frequency
•CCSD(T)/6-31+G(d’)

•Single point
•MP4SDQ/CBSB4

•Single point
•MP2/CBSB3

•extrapolation

Effect of 
method

Compound M062X  
(literature)

G3MP2 CBS-4m CBS-QB3

anisole 67.5 66.7 67 65.6
1 -O/ 69.5/77.1 68.8/77.1 69.8/82.8 67.8/82.8

2 69.6/76.6 69.0/82.4
3 69.6/76.6 68.9/82.3
4 64.1/76.7 66.4/77.1
5 64.4/77 66.6/79.8 68.3/79.6
6 60.9/78.0 66.7/83.1



Results
CBS-4m
bond dissociation 
enthalpy OH
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compound temperature -O

guaiacyl 298 K 72.3 81.1

guaiacyl
M06-2x/6-311++g(d,p) 

298K 70.0 81.0

syringyl 298 K 73.7 79.2

p-coumaryl 298 K 73.6 75.3

p-coumaryl 800 K 73.6 74.6

p-coumaryl
(B3LYP/6-31G(d)

800 K 
(Wang et al. 
2009)

54.5 57.6

The differences between
-O and  are smaller 

than for the PPEs, perhaps 
indicating less selectivity.



Effect of Substitution



Effect of Substitution

• Kawamoto et al. 2008.  
J. Anal. Appl. Pyrolysis
81:88
– Proposed that -OH 

structures will form QM, 
while -deoxy will 
proceed via homolysis
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Effect of Substitution

• BDE of -O from QM is indeed lower than direct homolysis
• But when the enthalpy of reaction of QM formation is taken into account the 

difference is small 
• Total enthalpy of reaction for the QM mechanism of the -deoxy is lower than 

direct homolysis
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Effect of Substitution 

• -O = 72.3 kcal/mole
• = 81.1 kcal/mole

• -O = 72.8 kcal/mole
• = 82.0 kcal/mole
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Kawamoto et al. 2008 report higher reactivity of phenolics, 
Interpreted as the ability to form QM 



Modified Lignins
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(Grabber et al. Biomacromolecules 9:2510)



Methods

• Does substitution change the energetics of the 
reactions?  

• Can this be used to guide esterification and 
lignin modification to enhance removal?

• M06-2X/6-311++g(d,p) optimizations with 
frequency calculations

• Gaussian09
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What Have We Learned?

• Compound methods (at least some of them) 
are feasible for models of reasonable size

• Compound methods are fairly consistent with 
respect to results

• The difference in BDE between -O and 
cleavage mechanisms is lower for dilignols
than for PPE models
– This may mean the reactions are less selective



What Have We Learned?

• Dilignol with -OH can form a QM and the 
overall enthalpy of reaction is lower than 
direct homolysis

• Homolysis of dilignol with -deoxy group has 
about the same BDE as QM dilignol with -OH

• Etherification at phenolic position doesn’t 
make much difference in calculated BDE



Where to next?

• Different lignin esters exhibit different 
energies of reaction
– The homolytic cleavage reactions are systematic
– Syringyl groups on the acid side are consistently 

higher
– For the QM mechanism the initial dissociation 

reaction is exothermic, while the cleavage of the 
QM is endothermic (these reactions are also 
negatively correlated) 



Questions


