Degradation Reactions of Lignin in Pyrolysis (Computational Applications)

> Thomas Elder USDA-Forest Service Southern Research Station

Challenges in Lignin Analytics: Thermal Properties and Quantitation COST Action FP0901 August 30-31, 2012 Espoo, Finland

Computational Literature

- Improvements in hardware and software have made high level, quantum-based calculations feasible for dilignols
- Most require supercomputer/parallel processor capabilities
- Renewed interest in bioenergy, bioproducts and the biorefinery has resulted in increased activity in this area

J. Phys. Chem. A 2007, 111, 12118-12126

Kinetic Analysis of the Pyrolysis of Phenethyl Phenyl Ether: Computational Prediction of α/β -Selectivities

Ariana Beste,*,[†] A. C. Buchanan III,[‡] Phillip F. Britt,[‡] Bryan C. Hathorn,[†] and Robert J. Harrison

Article

pubs.acs.org/JPCB

Computer Science and Mathematics Division, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831-6367, and Chemical Sciences Division, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831-6197

THE JOURNAL OF PHYSICAL CHEMISTRY B

Radical Coupling Reactions in Lignin Synthesis: A Density Functional Theory Study

Amandeep K. Sangha,[†] Jerry M. Parks,^{†,§,||} Robert F. Standaert,^{‡,||,⊥} Angela Ziebell,^{§,#} Mark Davis,^{§,#} and Jeremy C. Smith*, #, \$, \$

[†]UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States ⁴Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States

⁸Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

¹Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

[#]National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States

THE JOURNAL OF PHYSICAL CHEMISTRY etters

LETTER pubs.acs.org/JPCL

Computational Study of Bond Dissociation Enthalpies for a Large Range of Native and Modified Lignins

Seonah Kim,^{†,‡} Stephen C. Chmely,[†] Mark R. Nimlos,[†] Yannick J. Bomble,[∥] Thomas D. Foust,^{†,‡} Robert S. Paton,[⊥] and Gregg T. Beckham^{*,†,‡,§}

[†]National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States *National Advanced Biofuels Consortium, National Renewable Energy Laboratory, Golden, Colorado 80401, United States [§]Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado 80401, United States Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States ¹Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.

PHYSICAL CHEMISTRY Letters

LETTER

pubs.acs.org/JPCL

Theoretical Study of the Remarkably Diverse Linkages in Lignin

R. Parthasarathi,[†] Raymond A. Romero,^{†,‡} Antonio Redondo,[§] and S. Gnanakaran^{*,†}

[†]Theoretical Biology & Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States *New Mexico State University, Las Cruces, New Mexico 88003, United States

[§]Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States

12118

- Biomass utilization for energy
- Biorefinery
 - Biochemical platform
 - Thermochemical platform
 - Torrefaction
 - Pyrolysis
 - Gasification
- Free radical reactions in general
 - Thermal, photochemical, mechanical, ultrasound, industrial processes

Experimental Work on mechanisms

- Klein and Virk. 1983. Model pathways in lignin thermolysis. 1. Phenethyl phenyl ether. Ind. Eng. Chem. Fundam. 22:33-45
- Brežny et al. 1983, 1984. Low temperature thermolysis of lignins. I and II. Holzforschung 37:199-204, 38:19-24.
- Evans et al. 1986. Direct mass spectrometric studies on the pyrolysis of carbonaceous fuels.
 III. Primary pyrolysis of lignin. J. Anal. Appl. Pyrolysis 9:207-236.

Experimental work on mechanisms

- Britt and co-workers
 - 2000. Flash vacuum pyrolysis of methoxysubstituted lignin model compounds. J. Org. Chem. 65:1376-1389
 - 2007. Oxygen substituent effects in the pyrolysis of phenethyl phenyl ethers. Energy and Fuels 21:3102-3108

Experimental work on mechanisms

- Kawamoto and co-workers.
 - 2007. Role of side-chain hydroxyl groups in pyrolytic reactions of phenolic β-ether type of lignin dimer. J. Wood Chem. Technol. 27:113– 120.
 - 2007a. Pyrolysis reactions of various lignin dimers. J. Wood Sci. 53:168–174.
 - 2007b. Effects of side-chain hydroxyl groups on pyrolytic β-ether cleavage of phenolic lignin model dimer. J. Wood Sci. 53:268–271.
 - 2008a. Different pyrolytic cleavage mechanisms of β-ether bond depending on the sidechain structure of lignin dimers. J. Anal. Appl. Pyrolysis 81:207–236.
 - 2008b Pyrolytic cleavage mechanisms of lignin-ether linkages: a study on *p-substituted* dimers and trimers. Holzforschung 62:50–56.
 - 2009 Radical chain reactions in pyrolytic cleavage of the ether linkages of lignin model dimers and a trimer. Holzforschung 63:424–430.

Introduction Computational Work

- Beste, A., Buchanan, A.C. III (2009) Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effect in phenyethyl phenyl ethers. J. Org. Chem. 74:2837–2841.
- Beste, A., Buchanan, A.C. III, Britt, P.F., Hathorn, B.C., Harrison, R.J. (2007) Kinetic analysis of the pyrolysis of phenethyl phenyl ether: computational prediction of α/β selectivities. J. Phys.Chem. A 111:12118–12126.
- Beste, A., Buchanan, A.C. III, Harrison, R.J. (2008) Computational prediction of a/b selectivities in the pyrolysis of oxygen-substituted phenethyl phenyl ethers. J. Phys. Chem. A 112:4982–498.
- Wang, H., Zhao, Y., Wang, C., Fu, Y., Guo, Q. (2009) Theoretical study on the pyrolysis process of lignin dimer model compounds. Acta Chimi. Sin. 67:893–900.

Introduction Computational Work

- Beste, A., Buchanan, A.C. III (2009) Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effect in phenyethyl phenyl ethers. J. Org. Chem. 74:2837– 2841.
 - M06-2X/mixed basis set
 - 6-31G(d), all atoms
 - 6-311++G(d,p), atoms with upaired electron

Methods

 Based on the results of Beste and Buchanan (2009) on phenethyl phenyl ethers, the bond dissociation enthalpy of dilignols was evaluated

Methods

- Structures from x-ray diffraction were used as the starting geometries
 - Stomberg, R., Lundquist, K. (1994).
 Stereochemistry of lignin structures of the β-O-4 type. Crystal structures of model compounds.
 Nord. Pulp Pap. Res. J. 9:37–43.
 - Langer, V., Li, S., Lundquist, K. (2002) erythro-2-(2,6-Dimethoxyphenoxy)-1-(4-hydroxy-3,5dimethoxyphenyl)-1,3-propanediol. Acta Cryst. E58:042–044.

Methods-Computational Methods

- Composite methods for accurate thermochemistry
- G3MP2
 - Curtiss et al. 1999. J. Chem. Phys. 110:4703-4709.
 - Optimizations at HF/6-31G(d) and MP2/6-31G(d)
 - Single point MP2/G3large, MP4/6-31G(d), QCISD(T)/6-31G(d)
- CBS-4m
 - Montgomery et al. 2000. J. Chem. Phys. 112:6532–6542.
 - Optimization and frequency HF/3-21G(d)
 - Single point MP4/6-31G, MP2/6-31+G(d,p), HF/CBSB1
- Gaussian09
- SGI Altix Cluster-Alabama Supercomputer Authority

Results

- Prior to initiating work on dilignols, preliminary calculations were done on compounds from the literature
 - Anisole experimental
 - 65.3 kcal mol⁻¹
- CPU time
 - PPE-oOCH3
 - G3MP2, 2300h
 - CBS-4m, 36.5h

Compound/linkage	M06-2X	G3MP2	CBS-4M
Anisole	67.5	66.7	67.0
ΡΡΕ-οΟϹΗ3/β-Ο	64.4	66.6	68.3
ΡΡΕ-οΟϹΗ3/α-β	77.0	79.8	79.6

Effect of method

CBS-QB3 •B3LYP/6-311G(2d,d,p) •optimization •B3LYP/CBSB7 •frequency •CCSD(T)/6-31+G(d') •Single point •MP4SDQ/CBSB4 •Single point •MP2/CBSB3 •extrapolation

Compound	M062X	G3MP2	CBS-4m	CBS-QB3
	(literature)			
anisole	67.5	66.7	67	65.6
1 β-Ο/α-β	69.5/77.1	68.8/77.1	69.8/82.8	67.8/82.8
2	69.6/76.6		69.0/82.4	
3	69.6/76.6		68.9/82.3	
4	64.1/76.7		66.4/77.1	
5	64.4/77	66.6/79.8	68.3/79.6	
6	60.9/78.0		66.7/83.1	

Results CBS-4m bond dissociation enthalpy

The differences between B-O and α - β are smaller than for the PPEs, perhaps indicating less selectivity.

compound	temperature	β-0	α-β
guaiacyl	298 K	72.3	81.1
guaiacyl M06-2x/6-311++g(d,p)	298K	70.0	81.0
syringyl	298 K	73.7	79.2
p-coumaryl	298 K	73.6	75.3
p-coumaryl	800 K	73.6	74.6
p-coumaryl (B3LYP/6-31G(d)	800 K (Wang et al. 2009)	54.5	57.6

- Kawamoto et al. 2008.
 J. Anal. Appl. Pyrolysis 81:88
 - Proposed that γ-OH structures will form QM, while γ-deoxy will proceed via homolysis

- BDE of β-O from QM is indeed lower than direct homolysis
- But when the enthalpy of reaction of QM formation is taken into account the difference is small
- Total enthalpy of reaction for the QM mechanism of the γ -deoxy is lower than direct homolysis

β-O = 72.3 kcal/mole
α-β = 81.1 kcal/mole

• α - β = 82.0 kcal/mole

Kawamoto et al. 2008 report higher reactivity of phenolics, Interpreted as the ability to form QM

Modified Lignins

Modified Lignins (Grabber et al. Biomacromolecules 9:2510)

Methods

- Does substitution change the energetics of the reactions?
- Can this be used to guide esterification and lignin modification to enhance removal?
- M06-2X/6-311++g(d,p) optimizations with frequency calculations
- Gaussian09

Results (kcal mol⁻¹)

What Have We Learned?

- Compound methods (at least some of them) are feasible for models of reasonable size
- Compound methods are fairly consistent with respect to results
- The difference in BDE between β-O and α-β cleavage mechanisms is lower for dilignols than for PPE models

- This may mean the reactions are less selective

What Have We Learned?

- Dilignol with γ-OH can form a QM and the overall enthalpy of reaction is lower than direct homolysis
- Homolysis of dilignol with γ -deoxy group has about the same BDE as QM dilignol with γ -OH
- Etherification at phenolic position doesn't make much difference in calculated BDE

Where to next?

- Different lignin esters exhibit different energies of reaction
 - The homolytic cleavage reactions are systematic
 - Syringyl groups on the acid side are consistently higher
 - For the QM mechanism the initial dissociation reaction is exothermic, while the cleavage of the QM is endothermic (these reactions are also negatively correlated)

Questions