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Abstract

A multimodel controller design procedure combined with gain
scheduling methods is evaluated for a highly nonlinear chemical
process. The controller synthesis method is based on a mixed
H2/H∞ problem to achieve good quadratic performance and
robustness for a multimodel plant description. The performance
obtained with the optimal multimodel controller, gain scheduled
controllers and conventional PID control are compared and tested
on a simulated pH neutralization process.

1. Introduction

In many control problems it is physically well motivated to base the design on
the minimization of a quadratic cost function. Optimal LQ (H2) control theory
can be applied to design controllers which minimize quadratic cost functions.
Another essential feature in all feedback control is the ability to deal with
uncertainties. Standard LQ optimal control theory does not explicitly address
robustness issues, and it is well known that optimal LQ controllers may be
sensitive to process uncertainties. While the H2 norm is related to the
performance in terms of quadratic costs, a quantitative characterization of the
robustness against norm-bounded process uncertainties is provided by the H∞
norm.

The need to design controllers which achieve good quadratic performance
while at the same time satisfying specified robustness criteria has motivated the
study of design procedures which combine an H2 cost for optimal performance
with an H∞-norm bound to achieve robustness. In particular, various mixed
H2/H∞ control problems have been introduced (Bernstein and Haddad 1989,
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Khargonekar and Rotea 1991, Ridgely et al. 1992a, 1992b, Pensar and
Toivonen 1994). A particular feature of the mixed H2/H∞ problems is that they
lack closed form solutions, and must therefore be solved by various numerical
optimization techniques.

The H∞ norm is related to robustness against unstructured norm-bounded
uncertainties. In many cases the uncertainties are known to be structured
and/or parametric, and a characterization based on the H∞ norm then leads to a
conservative design. Robustness with respect to structured norm-bounded
uncertainties can be represented in terms of the structured singular value
(Doyle 1982, Doyle et al. 1982, Maciejowski 1989, Skogestad and
Postlethwaite 1996). In this approach the uncertainty is described in terms of a
structured uncertainty block. Worst-case (H∞) performance and structured
uncertainties can be treated in a unified framework using the µ-synthesis
technique (Doyle et al. 1982, Maciejowski 1989, Skogestad and Postlethwaite
1996). It is, however, very hard to design an H2-optimal controller which
achieves robustness against structured uncertainties described by a structured
uncertainty block. Also, the available information about process uncertainties
is often in a form which is not easy to represent using a structured uncertainty
block. For these reasons, it is worth while to study other characterizations of
structured uncertainties as well.

An alternative characterization of structured uncertainties is to represent the
plant by a discrete set of linear time-invariant models (MacMartin et al. 1991,
Mäkilä 1991). The discrete models could describe parametric process
uncertainties, or they could represent linearized models of a nonlinear plant at a
number of operating points. Such multimodel characterizations have been
applied successfully in flight control (Gangsaas et al. 1986, Miyazawa 1990) in
order to achieve robustness against model uncertainties and plant variations,
and their usefulness has also been demonstrated for chemical process control
problems (Sandelin et al. 1991, Toivonen and Tamminen 1990).

Multimodel techniques based on a discrete set of linear models describe the
process dynamics in terms of a finite number of linear models, and they are
best suited for describing parametric uncertainties. Although the model set can
be made arbitrarily large by increasing the number of models, it is not well
suited for describing uncertainties which are characterized as norm-bounded
operators. A more satisfactory approach, which can be applied to represent
uncertain plants with both parametric and norm-bounded uncertainties, is to
equip the models in the discrete set with norm-bounded, frequency-weighted
unstructured uncertainties (Pensar and Toivonen 1994, Pensar 1996). This
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uncertainty description is quite general, and a large class of structured
uncertainties can be represented in this way to any degree of accuracy by
selecting a sufficiently large number of models in the discrete set. It is also
fairly straightforward to characterize a specified process uncertainty using a
multimodel representation.

In this paper, a multimodel mixed H2/H∞ problem is studied and evaluated for a
strongly nonlinear pH neutralization process (Gustafsson et al. 1995). The
controller synthesis method is a continuous-time counterpart of a discrete-time
problem studied by Pensar and Toivonen (1994) and Pensar (1996). The design
procedure is based on a multimodel representation of the process, consisting of
a set of linear models and their associated frequency-weighted, norm-bounded
uncertainties. An H2-optimal controller is calculated for the set of models
subject to robust stability. The model representation is determined so as to
characterize the process dynamics in the whole operating region, including
appropriate modeling uncertainties.

Due to the strong nonlinearities of the process, it is also well motivated to
study control laws in which optimal linear controllers are applied in
combination with various controller scheduling methods. Two types of
scheduling methods are studied in this paper. The first approach is based on the
fact that a major part of the process nonlinearity stems from variations of the
stationary gain. Therefore, it appears well motivated to apply variable-gain
control to the process. A variable-gain, multimodel mixed H2/H∞-optimal
controller can be constructed by designing an optimal linear controller for a
multimodel plant representation in which all models have their stationary gains
scaled to the same value. The controller is then implemented on the actual
plant by applying standard gain scheduling based on known variations of the
stationary gain. An appealing feature of this approach is that the controller
performance is improved by straightforward gain scheduling, which can easily
be taken into account in the controller design and implementation. The second
approach studied in this paper is full controller scheduling based on optimal
controllers calculated for various operating points. Although this technique
gives better performance, it leads to a more complex implementation.

The paper is organized as follows. In Section 2 the multimodel control problem
is stated. The multimodel mixed H2/H∞ problem and its solution are presented
in Section 3. In Section 4, the control problem is formulated for a pH
neutralization process, and the results achieved with the various controller
implementation procedures are presented in Section 5.
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2. Problem formulation

In this section a multimodel characterization of uncertain plants and an
associated robust H2-optimal control problem is introduced.

 z0 w0
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F

Figure 1. System description.

Consider an uncertain plant G (Figure 1),
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where z0 and y are the controlled and measured outputs, respectively, w0 is a
disturbance, and u is the control signal. The plant is assumed to belong to an
uncertainty set 6 which is defined by a multimodel description according to
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Here Gk denote finite-dimensional, linear models, and W1k and W2k are rational
frequency weights for the uncertainties associated with the models. The
uncertainty blocks ∆k are assumed norm-bounded with the uncertainty radii F k ,
and they may be nonlinear. The uncertainty description in (2) and (3) provides
a characterization of structured plant uncertainties, which combines parametric
uncertainties as described by the discrete model set { }Gk and norm-bounded

uncertainties.
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The control performance is assumed to be specified in terms of a quadratic LQ-
type cost of the controlled output z0 of the uncertain plant (1). The objective is,
thus, to minimize the quadratic cost

J G F T G Fz w( , ) : ( , )=
0 0 2

2
(4)

where T G Fz w0 0
( , ) denotes the closed-loop transfer function in Figure 1 from

w0 to z0 and ⋅ 2  is the H2 norm. In order to design an optimal controller with

robustness properties, a robust H2-optimal multimodel control problem for the
plant (1) is defined as follows.

Problem P1. (Multimodel robust H2-optimal control problem.) Find a linear,
time-invariant controller F which minimizes the quadratic cost

J F c J G Fk k
k

N

( , ) : ( , )6 =
=

∑
1

(5)

subject to the condition that F stabilizes all G∈6 .

In (5), ck are non-negative weights which reflect the importance of the models
Gk in the quadratic cost. Notice that by minimizing a linear combination of the
H2 costs for the discrete set { }Gk , robust H2 performance can be achieved

with respect to this set, whereas only robust stability is imposed with respect to
the norm-bounded uncertainties associated with the models Gk.

In order to solve Problem P1, it is convenient to pose it as an equivalent
multimodel mixed H2/H∞ problem. Consider the process interconnection
depicted in Figure 2,
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Figure 2. H2/H∞ system description.
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Let Pk denote the generalized plant in (6) associated with Gk and the weight
filters W1k and W2k, and let T P Fzw( , )  denote the closed-loop transfer function
in Figure 2. The closed-loop system is stable for all norm-bounded uncertainty
blocks, & ≤ F , if and only if the nominal closed-loop system is stable and has

H∞-norm from w1 to z1 less than F −1 (Maciejowski 1989, Vidyasagar 1985).
Hence, Problem P1 is equivalent to the following multimodel mixed H2/H∞
problem.

Problem P2. (Multimodel mixed H2/H∞ control problem.) Find a linear, time-
invariant controller F which stabilizes the plants in the set

{ }4 : , , ,= =P k Nk 1� , and which minimizes the quadratic cost

J F c J P Fk k
k

N

( , ) : ( , )4 =
=

∑
1

(7)

subject to the H∞ norm bounds

Fk z w kT P F k N
1 1

1 1( , ) , , ,
∞

< = � . (8)

3. Solution of multimodel mixed H2/H∞ problem

The multimodel mixed H2/H∞ control problem has no closed-form solution and
it must therefore be solved by numerical optimization methods. It is, however,
not straightforward to design efficient optimization procedures for the Problem
P2 defined in Section 2. A particular difficulty is presented by the H∞ norm
bounds (8), which are infinite-dimensional and nondifferentiable. Here a
numerical approach to the controller optimization problem will be presented, in
which the H∞ norm bounds are handled indirectly via a penalty function
approach.
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Let the plant P have the state-space representation
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It is assumed that the controller F is a dynamic compensator of fixed order,

�
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The following assumptions are imposed on the plant and compensator,

(A1) D D DP C P02 20 0=
(A2) D D DP C P12 21 0= .

Assumption (A1) is necessary in order to have a finite H2 cost, and (A2) is a
simplifying assumption which results in a significant simplification of the
computational formulas. The assumptions can always be satisfied by fixing the
direct term DC of the compensator to zero, if required.

Introduce the closed-loop system T P F( , )  defined by (9) and (10),
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If the closed-loop system (11) is asymptotically stable, the quadratic cost
J P F2( , )  defined in compliance with (4) is given by

( ) ( ){ }J P F B B FD Q B B FD2 0 2 20 0 2 20( , ) = + +tr
T

(14)

where Q is the symmetric positive semidefinite solution of the matrix
Lyapunov equation

( ) ( ) ( ) ( )A B FC Q Q A B FC C D FC C D FC+ + + + + + =2 2 2 2 0 02 2 0 02 2 0
T T

. (15)

In order to account for the infinite-dimensional, nondifferentiable H∞ norm
bounds (8), an auxiliary cost which serves as a penalty function will be formed.
By a standard result in H∞ control theory (Green and Limebeer 1995) the

system in (11), assumed to be stable, has H∞ norm from w1 to z1 less than F −1

if and only if the Riccati equation

( ) ( ) ( )( )A B FC X X A B FC X B B FD B B FD X+ + + + + +2 2 2 2
2

1 2 21 1 2 21
T T

F

( ) ( )+ + + =C D FC C D FC1 12 2 1 12 2 0
T

(16)

has a bounded symmetric positive semidefinite solution X such that the matrix

( )( )A A B FC B B FD B B FD XX := + + + +2 2
2

1 2 21 1 2 21F
T

(17)

is a stability matrix. This result can be exploited as follows. Introduce the
auxiliary cost

( )J P F ZU∞ =( , ) : tr (18)
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where Z is the solution of the matrix Lyapunov equation

A Z ZA RX X
T + + = 0, (19)

and where U and R are symmetric positive definite matrices. The auxiliary cost
(18) has the property that J P F∞ ( , )  is bounded if the system T P F( , )  in (11)

satisfies the H∞ norm bound T P Fz w1 1

1( , )
∞

−< F . Moreover, as

T P Fz w1 1

1( , )
∞

−↑ F , the matrix AX in (17) has one or more eigenvalues which

approach the stability boundary (the imaginary axis), and J P G∞ ↑ ∞( , ) .

Hence, the auxiliary cost (18) acts as a penalty function for the H∞ norm
bound, and the mixed H2/H∞ problem P2 can be solved to any degree of
accuracy via unconstrained problems defined as follows.

Problem P3. (Multimodel mixed H2/H∞ problem with penalty function.) Find
a linear, time-invariant controller F which stabilizes the plants Pk, k=1,…,N
and which minimizes the cost

[ ]J F c J P F J P Faux k k k
k

N

( , ) : ( , ) ( , )4 = + ∞
=

∑ 2
1

C . (20)

Here, α is a positive parameter which determines the amount of penalty. From
the properties of J P F∞ ( , )  it follows that the H∞ norm bound (8) is not active
at the minimum of (20), and the minimization problem can therefore be treated
as an unconstrained optimization problem. Problem P2 can be solved to any
degree of accuracy by solving the unconstrained Problem P3 by letting C ↓ 0
(cf. Pensar and Toivonen 1993).

For efficient optimization, an explicit expression for the gradient of the
auxiliary cost (20) is required. According to standard parametric LQ control
theory, the gradient of (14) with respect to the controller parameters is given
by (Anderson and Moore 1971)

( )[�

�

J P F

F
B Q B B FD D B QHC2

2 0 2 20 20 2 22
( , )

= + +T T T T

( ) ]+ +D C D FC HC02 0 02 2 2
T T (21)

where H is the symmetric positive semidefinite solution of the matrix
Lyapunov equation
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( ) ( )A B FC H H A B FC+ + +2 2 2 2
T

( )( )+ + + =B B FD B B FD0 2 20 0 2 20 0
T

. (22)

The gradient of (18) can be derived in a way similar to the discrete-time case
(Pensar and Toivonen 1993, Pensar 1996), and it is given by (see Appendix A)

( )�

�

J P F

F
B ZW C XN M Y Y C B X Y Y XN∞ = + + + + +( , )

( ) ( )2 22 2 2 2
T T T T T T (23)

where

( )M B X D C D FC:= + +2 12 1 12 2
T T (24)

( )N B B FD D:= +F
2

1 2 21 21
T (25)

and W and Y are obtained from the Lyapunov equations

A W WA UX X+ + =T 0 (26)

( )( )A Y YA WZ B B FD B B FDX X+ + + + =T T
2 02

1 2 21 1 2 21F . (27)

4. A case study: pH control

In this section, the controller synthesis method described in Section 3 is
applied and evaluated by a simulation study of the pH neutralization process
shown in Figure 3 (Gustafsson et al. 1995).

The process consists of a continuous stirred tank reactor (CSTR) with a
constant volume and a constant feed flow resulting in a constant retention time
τ, equal to 5 minutes. The effect of the control stream on the retention time is
neglected because it is small in comparison to the feed. The feed stream is a
water solution of phosphoric acid of varying concentration. The control stream
is a concentrated water solution of calcium hydroxide. The control objective is
to keep the pH value of the effluent at a given setpoint value when the process
is subjected to variations in feed concentration.
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Figure 3. pH control in a CSTR.

The phosphoric acid of the feed and the calcium hydroxide of the control

stream dissociate into the acid-base system {H ,  H PO , H PO , HPO3 4 2 4 4
+ − −2 ,

}PO ,  OH4
3− − . Acid-base reactions between the ions of this system are fast

and in the model they are considered to be at equilibrium at all times. Calcium
and phosphate form sparingly-soluble salts, CaHPO4 and Ca3(PO4)2, which
may precipitate and/or dissolve. The contents and the effluent of the CSTR can
thus in addition to the liquid phase also contain a solid phase.

The chemical reactor is modeled with a reaction invariant model (Gustafsson
and Waller 1983) augmented with a model of the mass transfer rate between
the solid and liquid phases (Gustafsson et al. 1995). The reaction invariant
state vector of the liquid phase consists of the concentration of charge (related
to the electroneutrality condition) (X1), the total phosphate concentration (X2)
and the total calcium concentration (X3). The state of the solid phase consists
of the amount of CaHPO4 per reactor volume (X4) and the amount of Ca3(PO4)2

per reactor volume (X5). The process model is

( )
( )

� ( ) ( ) ( ) ( ) ( ( ))

( ) ( )

X t X t X t d X t r X t

Y t X t d

f u= + − − +

= −

1
1

2

V

L

(28)
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where Xf and Xu denote the states of the feed and the control stream,
respectively, Y denotes the pH value of the effluent and L  is the nonlinear
function which defines the pH in terms of the states. The state of the feed is

[ ]X Wf = 0 0 0 0 T , where W is the concentration of phosphoric acid.

The variation of W is in the sequel considered to be the disturbance to the

system. The state of the control stream is [ ]X Uu = 0 0 0 0 T , where U

is defined to be the molar flow of calcium hydroxide divided by feed flow, and
it is in the sequel used as control variable.

The pH-measurement system is for simplicity modeled by a time delay, d2.
Another time delay, d1, describes a delay in the control actuator. Both delays
have a value of 0.5 minutes.

The mass transfer rate between the liquid and solid states is given by the
function r(X), which describes the precipitation and dissolution of solids, and
takes the form

r

r r

r r

r

r

a b

a b
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b

=
− −
− −


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
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












0

2

3 (29)

where ra and rb are the precipitation/dissolution rates of the species CaHPO4

and Ca3(PO4)2, respectively. The precipitation/dissolution-rate vector
introduces dynamic nonlinearities into the model, contrary to models of fast
acid-base reactions which normally involve only static nonlinearities. These
rates have been modeled according to a model for crystal growth by Walton
(1967), with coefficients partly based on experimental results (Sandström and
Gustafsson 1994, Gustafsson et al. 1995). For supersaturated solutions the
precipitation rates are given by

( )~ . ~r ca a= ⋅⋅9 68 2l
mol min (30)

( )~ ~r cb b= ⋅
⋅

156 5l
mol min

4

4 (31)
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where ( )( )~ . /c c c Sa a= ⋅ ⋅ −+ −103 5 1 2
2

l
mol Ca HPO4

2  and ( )(~ .c cb Ca
= ⋅ +1020 8 4 3

2
l

mol

⋅ − 
−c SbPO4

3
2 1 5/ . Here, the concentrations c

Ca2+ , c
HPO4

2− , etc. are calculated

directly from the reaction invariant state, and Sa and Sb are the solubility
products of the respective salts. The rates ra and rb are then given by

r r c

r r c X
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r r c c X
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b b b b
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
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, .
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0 0 0
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5 (33)

The pH value Y in equation (28) is a nonlinear function ϕ ( )⋅  of the reaction
invariant states X1, X2 and X3, and it is defined as the solution of a set of
nonlinear equations (Gustafsson et al. 1995). Figure 4 shows an example of the
steady-state relation between the control variable U and the pH of the effluent
with a constant feed state at W = 0.01mol/l.

0.000 0.005 0.010 0.015

2

4
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8

10

12

pH

U
mol/l

Figure 4. Steady-state relation between control variable U and pH at 0.01 mol/l total
concentration of phosphoric acid.
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4.1 Multimodel description

The nonlinear system equation (28) can be linearized at a set of stationary

points ( , , , )X Y W Uk
s

k
s

k
s

k
s  to give fifth-order linear time delay models. In this

particular process the state X1 is constant and equal to zero, and the states X4

and X5 do not affect the states associated with the liquid phase. Therefore, the
linearized models can be reduced to second-order time-delay models of the
form
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where the partial derivatives are evaluated at ( , , , )X Y W Uk
s

k
s

k
s

k
s . Due to the

complexity of the nonlinear model, the required differentials have been
calculated by finite differences. In Table 1 the values of the elements in the
matrices Ak and C2k are shown for models at a number of operating points at
various pH values and W = 0.01 mol/l.

Table 1. The elements of the matrices Ak and C2k at different operating points. The
stationary gain is shown in Figure 7.

pH Ak(1,1) Ak(1,2) Ak(2,1) Ak(2,2) C2k(1) C2k(2)
3 -0.200 0 -0.200 0 -212 458
4 -0.200 0 -0.200 0 -2068 4083
5 0.180 -0.815 0.380 -1.015 -2702 5457
6 1.024 -2.634 1.224 -2.834 -674 1197
7 1.306 -3.890 1.580 -4.202 -860 945

The finite-dimensional linear nominal plant models Gk in (3) were constructed
by approximating the time-delay operator e− +( )d d s1 2  with a second-order Padé
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approximation Pd (s). The uncertainty radii F k  and weights W1k and W2k in (3)
were chosen in such a way that the uncertainty sets 6k  account for the errors
due to the Padé approximation as well as a reasonable amount of unstructured
uncertainty for each linear model Gk. The following simple weights were used,

W s
s

E W s k Nk k k1 2
26

25
1 1( ) , ( ) , , , ,=

+
= =∞ � (36)

where Ek denotes the error due to the time-delay approximation,

[ ]E s C sI A B P sk k k k d
d d s( ) : ( ) ( ) ( )= − −− − +

2
1

2
1 2e . (37)

With these weights, the nominal radii of the uncertainty blocks in (3) are
F k = 1. Simulations showed, however, that this choice may lead to a slightly
conservative design, and that closed-loop stability of the nonlinear plant (28)
can still be achieved if the design is based on the uncertainty radii F k = 0 5. . A
further reduction of the uncertainty radius resulted in instability.

4.2 Specification of cost function and disturbances

A crucial part of any controller design based on optimal control methods
consists of the specification of the cost and the disturbances in a way which
reflects the required controller performance. In practice an important
requirement which should be imposed on the controller in most process
applications is the ability to cancel the effect of load disturbances on the
controlled variable, i.e., the closed loop should have zero gain from the
disturbance to the output at zero frequency. The incorporation of an integrator
in optimal control is commonly achieved by introducing a frequency-dependent
weight on the controlled output with infinite weight at zero frequency. The
philosophy of this approach is to replace the quadratic cost function consisting
of the square of the L2-norm of the output by one which also gives weight on
the square of the L2-norm of the integral of the output.

An alternative approach, which will be adopted here, is to minimize the
original quadratic cost under the assumption that the disturbance is a step.
Thus, we consider an uncertain plant G  described by the state-space equations
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Here it is assumed that w is a step disturbance introduced at time t = 0, i.e.,

w t
w t

t
s( )
,

,
=

≥
<





if

if

0

0 0
(39)

where w Rs
m∈ . The control objective is defined by the quadratic cost
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where ei denotes the ith unit vector in Rm, and a quadratic function of �u  rather
than u is used in order to make the cost finite. The problem defined by (38) and
(40) can be represented in the standard form introduced in Section 2 as
follows. The disturbance w can be modeled as

� ( ) ( ) : ( )w t w w ts= =F 0 0 (41)

where F ( )⋅  denotes Dirac's δ -function. Combining (38) and (41) gives the
state-space model G,
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The cost (40) can be expressed in the form (4) in terms of the H2-norm of the
closed-loop system consisting of the plant G in (42) and the controller �u Fy= .
A robust optimal controller for step disturbances can, thus, be determined by
applying the procedures in Sections 2 and 3 to the plant defined in (42).

5. Controller implementations and results

In this section the multimodel robust optimal controller synthesis procedure
described in Sections 2 and 3 is applied to the design of controllers for the pH
neutralization process. As the process is strongly nonlinear, procedures for
improving the controller performance by controller scheduling methods to
account for the nonlinearities are also studied. The following robust optimal
controllers are studied: (1) a fixed linear multimodel H2/H∞-optimal controller,
(2) a variable-gain multimodel H2/H∞-optimal controller, and (3) a scheduled
controller based on H2/H∞-optimal controllers designed for various operating
points. In all cases, the controller order was taken equal to five which is equal
to the order of the generalized plant model, including the weight filters (36)
and the second-order Padé approximation. The controllers are designed using
two different values of the uncertainty radii, F k = 1 and F k = 0 5. . When the
smaller value is used, the nominal controller performance in terms of the H2-
cost is improved at the expense of closed-loop robustness. For comparison,
results are also presented when the process is controlled using a PID controller
tuned by conventional means.

The control performance was evaluated for step changes in the concentration
W of H3PO4 in the input flow according to

W t

t

t

t
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(44)

The controllers were evaluated at five operating points, corresponding to the

pH values Yk
s = 3, 4, 5, 6 and 7, and the inputs Uk

s  = 4.00, 4.91, 5.15, 7.06
and 9.30 mmol/l.
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5.1 Fixed robust optimal controller

The multimodel mixed H2/H∞ control problem described in Sections 2 and 3
was applied to design a robust optimal controller for the pH neutralization
process. The controller synthesis was based on twelve linearized models in the
pH range 3 - 7. The LQ-cost applied in the controller optimization was defined
by (40) with Cy = I and Du = 0, and with equal weights (ck = 1) on the
individual costs in the averaged cost (7). No weights on the inputs were
required in the quadratic cost (40), since the model uncertainties and the
associated conditions for robust stability were sufficient to impose a limitation
on the magnitude of the input signals.

The parameters of the controller transfer function

( )u s
g s g s g s g s g s g

s s f s f s f s f s f
y s( ) ( )=

+ + + + +
+ + + + +

1
5

2
4

3
3

4
2

5 6
5

1
4

2
3

3
2

4 5

(45)

of the robust optimal controllers designed for two different uncertainty radii are
shown in Table 2.

Table 2. Parameters of fixed optimal robust controllers.

Uncertainty
radius δδ

g1 g2 g3 g4 g5 g6

1 -1.816e-3 -7.075e-3 -4.881e-3 -8.350e-4 -5.405e-4 -8.335e-7
0.5 -8.468e-3 -4.038e-2 -9.491e-2 -7.755e-2 -2.281e-2 -1.230e-5

f1 f2 f3 f4 f5

1 3.991e-1 1.233e1 8.549e-2 1.418 2.074e-3
0.5 3.576 2.377e1 7.814e1 3.628e1 2.287e-2

Figures 5 and 6 show the output (pH) and the corresponding input (U) when
the optimal controllers were simulated for the pH neutralization process at
various operating points.
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Figure 5. Simulation experiments using fixed robust optimal controller based on uncertainty
radius F = 1.
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Figure 6. Simulation experiments using fixed robust optimal controller based on uncertainty
radius δ = 0 5. .

The nominal quadratic costs (40) and the H∞-norms for the controllers studied
in this paper are summarized in Table 3 at various operating points. The H2-
norms given in the table are the square roots of the quadratic costs defined by
(40).



21

Table 3. The H2-norms and the H∞-norms for the controlled systems using the fixed robust
optimal controller, the variable-gain controller (v-gain), the scheduled controller and
conventional control (PID) at various operating points.

H2-norm pH = 3 pH = 4 pH = 5 pH = 6 pH = 7
Fixed (δ = 1) 1725 4596 3559 2463 4387
Fixed (δ = 0 5. ) 1343 3355 2687 1853 3378
V-gain (δ = 1) 537 5239 2803 586 1658
V-gain (δ = 0 5. ) 480 4682 2627 538 1482
Scheduled (δ = 1) 237 2395 2300 459 810
PID 2049 4464 3832 3029 5146

H∞ -norm pH = 3 pH = 4 pH = 5 pH = 6 pH = 7
Fixed (δ = 1) 0.141 0.679 0.887 0.337 0.263
Fixed (δ = 0 5. ) 1.220 1.487 1.794 1.705 1.489
V-gain (δ = 1) 0.375 0.375 0.792 0.869 0.471
V-gain (δ = 0 5. ) 0.508 0.508 1.359 1.299 0.633
Scheduled (δ = 1) 0.947 0.991 0.965 0.940 0.984
PID 0.242 1.705 2.105 0.586 0.466

5.2 Variable-gain optimal robust multimodel controller

Although the global performance of the multimodel optimal controller is better
than that which can be achieved by controllers which are optimized for the
various operating points, its performance at the individual stationary points is
considerably poorer than the performance which could be achieved by applying
locally optimal linear controllers which are optimized at the various stationary
points. This can be seen by comparing the nominal costs achieved with the
fixed robust optimal controller and the scheduled controller (Section 5.3), cf.
Table 3. This is due to the strongly nonlinear dynamics of the process, which
limit the performance which can be achieved by any fixed linear control law. A
natural approach to improve the global performance of linear controllers is to
apply controller scheduling methods. In particular, much of the nonlinearity of
the pH neutralization process is due to large variations of the stationary gain,
cf. Figure 7 and Table 1. Therefore, it is likely that large improvements could
be obtained by introducing a controller with scheduling of the stationary gain.

Here a simple variable-gain controller design is introduced, which combines
the optimal multimodel controller design procedure with scheduling of the
controller gain. In this approach, the effect of gain variations is first eliminated
in the controller synthesis by a scaling of the linearized models so that all
models have unit stationary gain from the control signal u to the measured
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output y, i.e., the nominal models Gk and the uncertainty weights W1k of the
sets (3) are scaled according to

G
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where Kk denotes the stationary gain from u to y of the nominal model Gk. The
multimodel mixed H2/H∞-optimal controller synthesis problem is then solved
for the set of scaled linear models to give an optimal fixed linear controller.
When the controller is implemented, the scaling is taken into account by a
corresponding rescaling of the controller gain. However, due to the on-line
scheduling of the controller gain, the resulting controller is nonlinear, and some
caution must therefore be exercised in order to ensure that the closed loop has
the desired properties.

In order to develop the nonlinear scheduled control law in a proper way, the
dynamics of the resulting closed-loop nonlinear system should be studied.
Therefore, suppose that the nonlinear plant is described by
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and that a number of linearized, uncertain, plant models Gk about stationary
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where x, u, z0, w0 and y denote differences from the respective stationary
values. Suppose that the optimal multimodel controller F computed for the set
of scaled linear plant models and associated uncertainties in (46) is given by

�
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u C x D y
c c c c

c c c

= +
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(49)
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To account for scaling, the controller should be scaled by the inverse gain Kk
−1

when applied to the actual plant at the stationary state ( )X Y Z W Uk
s

k
s

k
s

k
s

k
s, , , ,0 0 .

As long as the disturbances are small the properly scaled linear controller (49)
can be expected to achieve good performance for the nonlinear plant as well.
However, for plants which are subject to large disturbances, causing
substantial deviations from the stationary point, poor performance may result
due to variations of the process gain. A controller which can be applied over
the whole operating range can be designed using the linear control law (49) in
combination with a gain-scheduling procedure. A variable-gain version of (49)
which uses the measured output Y as scheduling variable takes the form

� ( )( )
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x A x B L Y Y Y

U U C x D L Y Y Y k N
c c c c

c c c

= + −
= + + − =

0
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(50)

where Y0 denotes a setpoint value for Y, U0 is the corresponding stationary
input value, and the function L(Y) defines the controller gain as a function of Y.

It is important that the scheduling in (50) is designed in such a way that the
closed-loop system has acceptable behavior. In this context it is worth while to
notice that an interpolation between the linear control laws (49), such that

L Y Kk
s

k( ) = −1 holds, does not ensure good closed-loop behavior, and may even
give rise to instability (Kaminer et al. 1995, Lawrence and Rugh 1995). This is
due to the fact that the nonlinear part of the scheduled control law (50) will
also affect the closed-loop dynamics. A minimum requirement on a scheduled
controller is that when the closed-loop system consisting of the plant (47) and
the nonlinear controller (50) is linearized about the stationary states

( )X Y Z W Uk
s

k
s

k
s

k
s

k
s, , , ,0 0 0  at which the linearized models (48) are valid, it is

described by the closed-loop linear system defined by (48), (49). This is the
linearization condition discussed in the literature, cf. Kaminer et al. (1995) ,
Lawrence and Rugh (1995). It is straightforward to establish that a sufficient
condition for the linearization condition to be satisfied by the controller (50) is
given by
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Notice that under the natural assumption that the setpoint Y0 belongs to the set

of stationary points { }Yk
s , e.g. Y Yk

s
0 0

:= , (51) implies that
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L Y Kk( )0
1

0
= − . (52)

At the other steady-state values Yk
s, k k≠ 0 the variable-gain controller (50) is,

however, not equal to a scaling of (49) by Kk
−1.

A variable-gain controller which satisfies the linearization criterion (51) at the

design points Y Y Ys s
N
s

1 2< < <�  was constructed for the pH neutralization
process by taking L(Y) as a piecewise quadratic function in the intervals
Y Y Yk k≤ ≤ +1, k = 1,…,N - 1, with the requirements that it is continuous and
satisfies (51) at the design points. These conditions determine the controller
scaling function L(Y) uniquely for a given setpoint. Figure 7 shows the resulting

function L Y( )−1 constructed for the setpoint Y0 = 5. Notice in particular the
difference between controller scaling and the stationary gain of the plant.

A variable-gain controller based on the optimal robust multimodel controller
design procedure described in Sections 2 and 3 can be constructed by applying
the gain-scheduling technique to the linear controller obtained by designing a
mixed H2/H∞-optimal controller for the scaled linearized plant models (48).
Table 4 gives the parameters of the transfer function representation (45) of
linear multimodel H2/H∞-optimal controllers designed for the pH neutralization
process for two different uncertainty radii. Table 3 shows the nominal
performance of the controllers at various operating points. The responses
obtained when the variable-gain controllers are applied to the pH neutralization
process are shown in Figures 8 and 9. As the numerical data in Table 3
indicate, the global control performance obtained with the variable-gain
controllers is significantly better than the performance which could be achieved
with fixed linear control laws (cf. Figures 5 and 6). Notice, however, that it is
important that the scheduling is performed in such a way that the linearization
conditions (51) hold. In contrast to the responses shown in Figures 8 and 9, a
variable-gain controller based on the inverse of the process gain K(Y) (Figure
7) results in instability of the closed loop for large disturbances.
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Table 4. Parameters of optimal robust multimodel controllers, based on scaled linear
models.

Uncertainty
radius δ

g1 g2 g3 g4 g5 g6

1 -3.695e1 -5.577e2 -2.730e3 -6.877e3 -7.122e3 -1.603e3
0.5 -3.157e1 -6.981e2 -5.850e3 -1.735e4 -3.961e4 -1.430e4

f1 f2 f3 f4 f5

1 1.889e1 1.609e2 9.510e2 3.033e3 1.666e3
0.5 2.298e1 2.335e2 1.388e3 5.833e3 1.273e4

 pH

K(Y), L(Y)-1

2 4 6 8 10
 0

   8000

Figure 7. The stationary gain of the process (solid line) and the gain used for variable-gain
controller output at setpoint pH = 5 (dashed line).
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Figure 8. Simulation experiments using variable-gain robust multimodel optimal controller
based on uncertainty radius δ = 1.
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Figure 9. Simulation experiments using variable-gain robust multimodel optimal controller
based on uncertainty radius δ = 05. .

5.3 Scheduled robust optimal control

In addition to the variable-gain controller described in Section 5.2, it is also of
interest to study the performance which is obtained by applying controller
scheduling to the locally optimal mixed H2/H∞ controllers valid at the various
stationary points. For the pH neutralization process, it turned out that it is very
hard to achieve acceptable control performance by scheduling of the controller
parameters using the measured output Y as scheduling parameter. This may be
due to the high number of parameters which are adjusted on-line and the fact
that the measured pH-value alone may not provide sufficient information for
the scheduling of all controller parameters. Instead, a controller scheduling
procedure based on the interpolation of the controller transfer functions rather
than the parameters of the control law was more successful.

The controller scheduling method applied here can be described as follows. Let
Fk, k = 1,…,N denote the linear optimal control laws designed for the
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linearized plant models at the stationary points Yk
s, and let uk be the output of

the controller Fk when the process is controlled at the setpoint Y0,

u F Y Yk k: ( )= − 0 . (53)

The scheduled controller is now taken as the linear combination

u t Y u t Y u t Y Y t Yk k k k k
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The linearization conditions for the scheduled controller (54) take the form
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The quantity in (56) can be regarded as the effective weight on the controller
Fk in the nonlinear scheduled controller. It is also natural to require that

0 1≤ ≤C k Y( ) . In order to achieve continuity at the design points Yk
s and

smooth switching between controllers it is also required that the functions
C k Y( )  satisfy
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A function which satisfies the conditions (55)-(57) is given by
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The function (58) has the nice properties that C Ck kY Y( ) ( )+ =+1 1 and

C Ck eff k effY Y, ,( ) ( )+ =+1 1 for all Y Y Yk
s

k
s≤ ≤ +1. These properties imply that
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both the nominal and the effective weights on the controllers in (54) sum to
unity for all Y.

A potential problem with the scheduling procedure described here is the
possibility of windup due to the fact that the output of the individual controllers
are not equal to the actual input to the process. For this reason any common
unstable modes of the controllers should be moved outside the switching
mechanism.

Table 5 gives the parameters of the transfer function representation (45) of
locally optimal mixed H2/H∞ controllers for the pH neutralization process
calculated for various operating points. The uncertainty radius used in the
controller design was F = 1. The nominal performance of the controllers are
given in Table 3.

Figure 10 shows the responses obtained when the scheduling approach
described above is applied to the controllers of Table 5 to control the pH
neutralization process. For this process, windup does not present a problem,
since all controllers are stable apart from the integrator, which can be taken as
a common factor outside the switching mechanism.

As the nominal costs in Table 3 indicate, the performance achieved with the
scheduled optimal controller is superior to that of both the optimal fixed
controllers and the variable-gain controllers. In return, the implementation of
scheduled control is more difficult. For the process studied, the scheduled
controllers had to be designed for more robustness than the fixed and variable-
gain controllers in order to obtain closed-loop stability. In particular, attempts
to achieve stability by scheduling locally optimal controllers designed for the
uncertainty radius F = 0 5.  were not successful.
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Table 5. Parameters of locally optimal robust controllers at various operating points.

pH g1 g2 g3 g4 g5 g6

3 -1.098e2 -7.669e4 -2.589e6 -1.392e7 -3.131e7 -1.516e7
4 -1.617e-1 -8.646e-1 -2.421 -2.428 -8.446e-1 -7.075e-3
5 -6.043e-1 -1.307e1 -8.281e1 -2.213e2 -2.273e2 -7.324e-1
6 -3.577e1 -9.273e3 -2.617e5 -1.669e6 -4.362e6 -3.887e6
7 -1.049e1 -3.930e2 -2.712e3 -7.823e3 -8.620e3 -2.710e3

f1 f2 f3 f4 f5

3 1.010e3 3.191e5 4.918e7 3.106e8 2.208e9
4 3.276e1 2.245e2 1.210e3 1.086e3 1.119e1
5 1.169e2 3.586e3 2.245e4 1.493e5 8.778e4
6 5.296e2 1.481e5 1.290e7 8.662e7 6.207e8
7 1.390e2 1.497e4 1.082e5 8.003e5 6.418e5
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Figure 10. Simulation experiments using scheduled optimal robust controller.
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5.4 PID control

In this section, a conventional fixed PID controller using the modified Ziegler-
Nichols method (Åström and Hägglund 1995) is designed for the pH process.
The method is based on the idea of moving one point on the Nyquist curve,

rp
pe

i( )R L+
, to a desired position rs

sei( )R L+ . The parameters specified by the

user are the identification angle L p , and the parameters rs and Ls  which

define the desired point S. The specifications are given in terms of a phase
margin Lm or an amplitude margin Am. An amplitude margin design
corresponds to Ls = 0  and r As m= 1 / , and a phase margin design corresponds
to rs = 1 and L Ls m= . The controller gain K, reset time Ti and the derivative
time Td are then given by (Åström and Hägglund 1995)
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where ω is the critical frequency and where it is assumed that Ti and Td have a
given ratio, T Td i=C , where α is often chosen as α = 0.25.

The PID controller for the process studied in this paper is tuned about the
setpoint value pH = 5, where the process gain is very high. The parameters are
chosen as: α = 0.25, rs = 0.5, L Rs = / 4  and L p = 0 , which gives the

controller parameters K = 6 37 10 4. ⋅ − , Ti = 2.57 min and Td = 0.634 min.
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Figure 11. Simulation experiments using PID controller.

The nominal costs obtained with the PID controller at various operating points
are given in Table 3. As expected, the performance is inferior at all operating
points to the performance achieved with the optimally designed controllers.
The simulated responses of the pH neutralization process in Figure 11 show
that although the performance at the design point pH 5 is acceptable, the
controller response at the pH values 3, 6 and 7 is slow due to the small value of
the process gain at these operating points. If the models valid at these points
were used for tuning the PID controller, the closed loop would be unstable at
pH 4 and 5, where the process gain is large.

6. Conclusion

In this paper, a procedure for the design of optimal and robust controllers has
been described and studied for a nonlinear chemical process. The design
procedure is based on a multimodel process representation, in which the
process is characterized in terms of a set of uncertain linear models. The
characterization provides a quite general description of both parametric and
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norm-bounded uncertainties. The control problem is defined so as to achieve
optimal LQ performance subject to robust stability for the set of uncertain
models. This is equivalent to a multimodel mixed H2/H∞ problem.

The multimodel mixed H2/H∞ problem has been applied to design a linear
controller which achieves optimal LQ performance and robust stability at a
range of operating points of a nonlinear pH neutralization process. This is
achieved by characterizing the nonlinear process in terms of a set of linearized
models and their associated uncertainties.

For a strongly nonlinear process, it is clear that the global control performance
which can be achieved by nonlinear control can be superior to the performance
achievable by any linear controller. In this paper, the global performance of the
multimodel mixed H2/H∞ optimal controllers has been improved by controller
scheduling methods. In particular, it has been shown that the design procedure
can easily be modified in such a way that known variations of the locally valid
stationary gain of the process are taken into account. The design leads to an
easily implemented linear controller with variable gain. The case study has
shown that in order to achieve good control performance by controller
scheduling methods, it is essential that the controllers are properly
implemented to satisfy the so-called linearization conditions.

The controller scheduling methods have the advantage of being fairly simple to
implement, and the fact that linear controller design can be applied, which is in
general simpler than nonlinear design techniques. The present study has shown
that an approach using scheduling of linear controllers can perform quite well.
An interesting topic for future studies would therefore be to compare the
scheduled optimal controllers with optimal nonlinear controllers designed by
nonlinear optimal and robust control theory.

The control problem studied in this paper has the property that the optimal
controller lacks a closed-form solution. Therefore, the optimal controller must
be computed by numerical optimization techniques. As the control problem is
easy to formulate and is clearly well motivated in a number of applications, it
seems worth while to study numerically efficient procedures for its solution. In
this paper, the gradient expression of the associated costs have been derived,
which can be applied in combination with general-purpose optimization
routines. However, it is expected that numerically more efficient special-
purpose methods can be developed by exploiting the problem structure. This is
left as a topic for future research.
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Appendix A. Gradient of J∞(P, F)

Consider the cost

( )J P F ZU∞ =( , ) : tr (A1)

where Z is obtained from the Lyapunov equation

A Z ZA QX X
T + + = 0 (A2)

where

( )( )A A B FC B B FD B B FD XX = + + + +2 2
2

1 2 21 1 2 21F
T

(A3)

and X is given by the Riccati equation

( ) ( ) ( )( )A B FC X X A B FC X B B FD B B FD X+ + + + + +2 2 2 2
2

1 2 21 1 2 21
T T

F

( ) ( )+ + + =C D FC C D FC1 12 2 1 12 2 0
T

. (A4)
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For the differentiation, consider the first-order expansion of J∞(P, F) with
respect to F:
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From (A1) we obtain

{ }tr tr
T

�

�

J

F
F Z U

X
X

∞



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


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
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=& &( ) (A6)

where (∆Z)X denotes the first-order expansion of Z; Z(F + ∆F) = Z(F) + (∆Z)X +
o F( )& . From (A3) we have

A Z Z A M Z ZMX X X X
T T( ) ( )& &+ + + =0 0 0 (A7)

where

M B FN X N F B X B FC0 2 2 2 2= + +& & &
T T T (A8)

where

( )N B B FD D= +F
2

1 2 21 21
T . (A9)

Introducing the Lyapunov equation

A W WA UX X+ + =T 0 (A10)

into (A6), gives (using the symmetry Z, W and X)

( ){ } ( ){ }tr tr tr
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21 1 2F FD D F B X C D B X WZB F& . (A11)

Similarly, we have
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{ }tr tr
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where ( )&Z F  is defined in analogy with (∆Z)X, and is given by

( ) ( )A Z Z A X M Z ZM XX F F X
T T T
& & & &+ + + =1 1 0 (A13)

where

( )( )M B B FD B B FD1
2

1 2 21 1 2 21= + +F
T

. (A14)

Introducing the Lyapunov equation (A10) into (A12) gives
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The Riccati equation (A4) gives

A X XA M FC C F MX X
T T T T
& & & &+ + +2 2

+ + =XB FN X XN F B X2 2 0& &
T T T (A16)

where

( )M B X D C D FC= + +2 12 1 12 2
T T . (A17)

Introducing the Lyapunov equation

( )( )A Y YA WZ B B FD B B FDX X+ + + + =T T2 02
1 2 21 1 2 21δ (A18)

into (A15) gives
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Finally, combining (A11) and (A19) gives
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[{∆J P F C XN WZB C Y Y M∞ = + + +( , ) ( ) ( )tr T T2 42 2 2

] }+ +N X Y Y XB FT T( ) 2 ∆ (A20)

from which, by (A5), we have
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