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Abstract

A multimodel controller design procedure combined with gain
scheduling methods is evaluated for a highly nonlinear chemical
process. The controller synthesis method is based on a mixed
H,/H., problem to achieve good quadratic performance and
robustness for a multimodel plant description. The performance
obtained with the optimal multimodel controller, gain scheduled
controllers and conventional PID control are compared and tested
on a simulated pH neutralization process.

1. Introduction

In many control problems it is physically well motivated to base the design on
the minimization of a quadratic cost function. Optimal L})(control theory

can be applied to design controllers which minimize quadratic cost functions.
Another essential feature in all feedback control is the ability to deal with
uncertainties. Standard LQ optimal control theory does not explicitly address
robustness issues, and it is well known that optimal LQ controllers may be
sensitive to process uncertainties. While tHge norm is related to the
performance in terms of quadratic costs, a quantitative characterization of the
robustness against norm-bounded process uncertainties is providedHhy the
norm.

The need to design controllers which achieve good quadratic performance
while at the same time satisfying specified robustness criteria has motivated the
study of design procedures which combineHarcost for optimal performance

with an H.-norm bound to achieve robustness. In particular, various mixed
H,/H., control problems have been introduced (Bernstein and Haddad 1989,



Khargonekar and Rotea 1991, Ridgedy al 1992a, 1992b, Pensar and
Toivonen 1994). A particular feature of the mixegH., problems is that they
lack closed form solutions, and must therefore be solved by various numerical
optimization techniques.

The H., norm is related to robustness against unstructured norm-bounded
uncertainties. In many cases the uncertainties are known to be structured
and/or parametric, and a characterization based dd.tm®rm then leads to a
conservative design. Robustness with respect to structured norm-bounded
uncertainties can be represented in terms of the structured singular value
(Doyle 1982, Doyleet al. 1982, Maciejowski 1989, Skogestad and
Postlethwaite 1996). In this approach the uncertainty is described in terms of a
structured uncertainty block. Worst-cadd. performance and structured
uncertainties can be treated in a unified framework usingutsgnthesis
technique (Doylest al. 1982, Maciejowski 1989, Skogestad and Postlethwaite
1996). It is, however, very hard to design ldgoptimal controller which
achieves robustness against structured uncertainties described by a structured
uncertainty block. Also, the available information about process uncertainties
is often in a form which is not easy to represent using a structured uncertainty
block. For these reasons, it is worth while to study other characterizations of
structured uncertainties as well.

An alternative characterization of structured uncertainties is to represent the
plant by a discrete set of linear time-invariant models (MacMattal 1991,

Makila 1991). The discrete models could describe parametric process
uncertainties, or they could represent linearized models of a nonlinear plant at a
number of operating points. Such multimodel characterizations have been
applied successfully in flight control (Gangsaasl 1986, Miyazawa 1990) in

order to achieve robustness against model uncertainties and plant variations,
and their usefulness has also been demonstrated for chemical process control
problems (Sandeliat al 1991, Toivonen and Tamminen 1990).

Multimodel techniques based on a discrete set of linear models describe the
process dynamics in terms of a finite number of linear models, and they are
best suited for describing parametric uncertainties. Although the model set can
be made arbitrarily large by increasing the number of models, it is not well

suited for describing uncertainties which are characterized as norm-bounded
operators. A more satisfactory approach, which can be applied to represent
uncertain plants with both parametric and norm-bounded uncertainties, is to
equip the models in the discrete set with norm-bounded, frequency-weighted
unstructured uncertainties (Pensar and Toivonen 1994, Pensar 1996). This



uncertainty description is quite general, and a large class of structured

uncertainties can be represented in this way to any degree of accuracy by
selecting a sufficiently large number of models in the discrete set. It is also

fairly straightforward to characterize a specified process uncertainty using a

multimodel representation.

In this paper, a multimodel mixedL/H., problem is studied and evaluated for a
strongly nonlinear pH neutralization process (Gustafsstoal 1995). The
controller synthesis method is a continuous-time counterpart of a discrete-time
problem studied by Pensar and Toivonen (1994) and Pensar (1996). The design
procedure is based on a multimodel representation of the process, consisting of
a set of linear models and their associated frequency-weighted, norm-bounded
uncertainties. AnH,-optimal controller is calculated for the set of models
subject to robust stability. The model representation is determined so as to
characterize the process dynamics in the whole operating region, including
appropriate modeling uncertainties.

Due to the strong nonlinearities of the process, it is also well motivated to
study control laws in which optimal linear controllers are applied in
combination with various controller scheduling methods. Two types of
scheduling methods are studied in this paper. The first approach is based on the
fact that a major part of the process nonlinearity stems from variations of the
stationary gain. Therefore, it appears well motivated to apply variable-gain
control to the process. A variable-gain, multimodel mixégH.-optimal
controller can be constructed by designing an optimal linear controller for a
multimodel plant representation in which all models have their stationary gains
scaled to the same value. The controller is then implemented on the actual
plant by applying standard gain scheduling based on known variations of the
stationary gain. An appealing feature of this approach is that the controller
performance is improved by straightforward gain scheduling, which can easily
be taken into account in the controller design and implementation. The second
approach studied in this paper is full controller scheduling based on optimal
controllers calculated for various operating points. Although this technique
gives better performance, it leads to a more complex implementation.

The paper is organized as follows. In Section 2 the multimodel control problem
is stated. The multimodel mixdd,/H., problem and its solution are presented

in Section 3. In Section 4, the control problem is formulated for a pH
neutralization process, and the results achieved with the various controller
iImplementation procedures are presented in Section 5.



2. Problem formulation

In this section a multimodel characterization of uncertain plants and an
associated robust,-optimal control problem is introduced.

Wo G ‘ lh) >
u y
Figure 1. System description.
Consider an uncertain pla@t(Figure 1),
bk oflions

wherez, andy are the controlled and measured outputs, respectivghg a
disturbance, and is the control signal. The plant is assumed to belong to an
uncertainty seg; which is defined by a multimodel description according to

G:= U gy (2)

where
H 00 O H
=G, + 0 AL, > L, 40,0 k=1...N. 3
Gk 5k B/\&kﬁdk[ Wor| | 4kl = Lo 4y & (3

Here G, denote finite-dimensional, linear models, afigl andW, are rational
frequency weights for the uncertainties associated with the models. The
uncertainty blockdy, are assumed norm-bounded with the uncertainty édlii
and they may be nonlinear. The uncertainty description in (2) and (3) provides
a characterization of structured plant uncertainties, which combines parametric
uncertainties as described by the discrete mode{@@}and norm-bounded

uncertainties.



The control performance is assumed to be specified in terms of a quadratic LQ-
type cost of the controlled outpzg of the uncertain plant (1). The objective is,
thus, to minimize the quadratic cost

3G F):=| T (G P (4)

where T, ,, (G, F) denotes the closed-loop transfer function in Figure 1 from

Wo t0 2o and | [, is theH, norm. In order to design an optimal controller with

robustness properties, a robtstoptimal multimodel control problem for the
plant (1) is defined as follows.

Problem P1.(Multimodel robust Hoptimal control problem.) Find a linear,
time-invariant controller F which minimizes the quadratic cost

N
J(G, F)1=kZCkJ(Gk, P (5)
=

subject to the condition that F stabilizes all{& .

In (5), ck are non-negative weights which reflect the importance of the models
Gk in the quadratic cost. Notice that by minimizing a linear combination of the
H, costs for the discrete séGk}, robustH, performance can be achieved

with respect to this set, whereas only robust stability is imposed with respect to
the norm-bounded uncertainties associated with the mGgels

In order to solve Problem P1, it is convenient to pose it as an equivalent
multimodel mixed Hy/H,, problem. Consider the process interconnection
depicted in Figure 2,
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Figure 2. H,/H., system description.



where

Jo [o WZ]D

(6)
G D
%MH g

Let Px denote the generalized plant in (6) associated Gyjtland the weight
filters Wy, andWy,, and letT,, (P, F) denote the closed-loop transfer function

in Figure 2. The closed-loop system is stable for all norm-bounded uncertainty
blocks, 4| < &, if and only if the nominal closed-loop system is stable and has

H..-norm fromw; to z; less thans ™ (Maciejowski 1989, Vidyasagar 1985).
Hence, Problem P1 is equivalent to the following multimodel midglH.,
problem.

Problem P2.(Multimodel mixed HH., control problem.) Find a linear, time-
invariant controller F which stabilizes the plants in the set
P:={Pk, k=1,..., N}, and which minimizes the quadratic cost

N
J(P,F)FkZCkJ(F&, P (7)
=

subject to the Hlnorm bounds

O[Ty (Pe P)|_ <L k=1..,N. 8)

3. Solution of multimodel mixedH,/H,, problem

The multimodel mixedH,/H., control problem has no closed-form solution and

it must therefore be solved by numerical optimization methods. It is, however,
not straightforward to design efficient optimization procedures for the Problem
P2 defined in Section 2. A particular difficulty is presented byHhenorm
bounds (8), which are infinite-dimensional and nondifferentiable. Here a
numerical approach to the controller optimization problem will be presented, in
which the H, norm bounds are handled indirectly via a penalty function
approach.



Let the planP have the state-space representation

Xp = ApXp+ B+ By W+ B u
Zy = GopXp + DpgpU

Z = CoyX%p + Dpppul

Y= CpaXp + DpoWo+ DppyWy.

©)

It is assumed that the controllelis a dynamic compensator of fixed order,

X = +
c=AcXt By (10)
u=Coxc+ Dey
The following assumptions are imposed on the plant and compensator,

(A1) DpgaDcDpy=0
(A2) DpypDcDpyy = 0.

Assumption (Al) is necessary in order to have a fidigecost, and (A2) is a

simplifying assumption which results in a significant simplification of the
computational formulas. The assumptions can always be satisfied by fixing the

direct termD¢ of the compensator to zero, if required.

Introduce the closed-loop systeR(P, F) defined by (9) and (10),

X=(A+BFG)x+( B+ B FDg w+( B+ BFD) w
Zy = (G + Dga FCy) x+ Dy FDoywy (11)

2, = (G + D, FCy x+ Dy, FDyowy
where x:= (Xp, X2) T,

_Ac BcO
F'_B:c DcH (12)

and



(13)

If the closed-loop system (11) is asymptotically stable, the quadratic cost
J, (P, F) defined in compliance with (4) is given by

3,(P. P =t (B + B, FD)" QB+ B, D) (14)

where Q is the symmetric positive semidefinite solution of the matrix
Lyapunov equation

(A+B,FC,)" @+ QA+ B FG)+( G+ R, FGQ)'( G+ Dy, FQ)=0.(15)

In order to account for the infinite-dimensional, nondifferentiaile norm
bounds (8), an auxiliary cost which serves as a penalty function will be formed.
By a standard result ikl control theory (Green and Limebeer 1995) the

system in (11), assumed to be stable,Hhasiorm fromw; to z less thand -
if and only if the Riccati equation

(A+B,FG)" X+ X A+ B FG)+82 X B+ B FR)( B+ B FR) X
+(C + D,FC,) (C+ Dy,FC) =0 (16)

has a bounded symmetric positive semidefinite soliisach that the matrix

Ag:= A+ B FG+5%(B+ B FD,) B+ BFD)" X (17)

Is a stability matrix. This result can be exploited as follows. Introduce the
auxiliary cost

3., (P, F) := tr(ZU) (18)



whereZ is the solution of the matrix Lyapunov equation
ArZ+ ZA + R=0, (19)

and wherdJ andR are symmetric positive definite matrices. The auxiliary cost
(18) has the property thak, (P, F) is bounded if the systei(P, F) in (11)

satisfies the H., norm bound HTZM(P, F)H <&t Moreover, as

HTZM(P, F)Hoo t 071, the matrixAx in (17) has one or more eigenvalues which

approach the stability boundary (the imaginary axis), agqP,G) 1t o.

Hence, the auxiliary cost (18) acts as a penalty function foHtheorm
bound, and the mixetl,/H.,, problem P2 can be solved to any degree of
accuracy via unconstrained problems defined as follows.

Problem P3. (Multimodel mixed KHH., problem with penalty function.) Find
a linear, time-invariant controller F which stabilizes the plants E=1,...,N
and which minimizes the cost

N
Jaux(P, F):= kz[ckJZ(Pk, P+al,(R. . (20)
=1

Here,a is a positive parameter which determines the amount of penalty. From
the properties ofl , (P, F) it follows that theH,, norm bound (8) is not active

at the minimum of (20), and the minimization problem can therefore be treated
as an unconstrained optimization problem. Problem P2 can be solved to any

degree of accuracy by solving the unconstrained Problem P3 by letting
(cf. Pensar and Toivonen 1993).

For efficient optimization, an explicit expression for the gradient of the
auxiliary cost (20) is required. According to standard parametric LQ control
theory, the gradient of (14) with respect to the controller parameters is given
by (Anderson and Moore 1971)

dJ,(P,F) _

2= = 2 B] QB + B, FDy) Do+ B, QHC,

+Dgy(Co + DaFC2) HCY] (22)

where H is the symmetric positive semidefinite solution of the matrix
Lyapunov equation



(A+B,FC)H+ H(A+ B FG)"
+(By + B,FDy)(By+ B,FD,g' =0. (22)

The gradient of (18) can be derived in a way similar to the discrete-time case
(Pensar and Toivonen 1993, Pensar 1996), and it is given by (see Appendix A)

J I (P,
%:ZB;ZV\(CI+2XI\)+ MY YY) &+ B KY¥ V) XN23)
where
M :=B; X+ D/,(C,+ D;,FC)) (24)
N:=87(B, + B,FDyy) Djy (25)

andW andY are obtained from the Lyapunov equations

AW+ WA + U=0 (26)
AcY+ YA +252WE B+ B FR)( B+ B FDB)' =0. (27)

4. A case study: pH control

In this section, the controller synthesis method described in Section 3 is
applied and evaluated by a simulation study of the pH neutralization process
shown in Figure 3 (Gustafssehal.1995).

The process consists of a continuous stirred tank reactor (CSTR) with a
constant volume and a constant feed flow resulting in a constant retention time
1, equal to 5 minutes. The effect of the control stream on the retention time is
neglected because it is small in comparison to the feed. The feed stream is a
water solution of phosphoric acid of varying concentration. The control stream
IS a concentrated water solution of calcium hydroxide. The control objective is
to keep the pH value of the effluent at a given setpoint value when the process
IS subjected to variations in feed concentration.

10
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Control stream
Ca(OH) pH

Feed
HsPO;

Figure 3. pH control in a CSTR.

The phosphoric acid of the feed and the calcium hydroxide of the control
stream dissociate into the acid-base sys{eHﬁ, HsPO, , H, PQ , HPE

PO; OI—F}. Acid-base reactions between the ions of this system are fast

and in the model they are considered to be at equilibrium at all times. Calcium
and phosphate form sparingly-soluble salts, CaHB@ Cg(PQy),, which

may precipitate and/or dissolve. The contents and the effluent of the CSTR can
thus in addition to the liquid phase also contain a solid phase.

The chemical reactor is modeled with a reaction invariant model (Gustafsson
and Waller 1983) augmented with a model of the mass transfer rate between
the solid and liquid phases (Gustafssinal. 1995). The reaction invariant
state vector of the liquid phase consists of the concentration of charge (related
to the electroneutrality condition)X{), the total phosphate concentratio)(

and the total calcium concentratioks). The state of the solid phase consists

of the amount of CaHPper reactor volumexg) and the amount of G@Oy),

per reactor volumexg). The process model is

X =2 (X (9 X(t= d) = X(3)+ (0
Y() = p(X(t- &)

(28)

11



where X; and X, denote the states of the feed and the control stream,
respectively,Y denotes the pH value of the effluent agpdis the nonlinear

function which defines the pH in terms of the states. The state of the feed is
X¢=[0 W 0 0 qT, whereW is the concentration of phosphoric acid.
The variation ofW is in the sequel considered to be the disturbance to the
system. The state of the control streanXjs=[0 0 U 0 ', whereuU

is defined to be the molar flow of calcium hydroxide divided by feed flow, and
it is in the sequel used as control variable.

The pH-measurement system is for simplicity modeled by a time ddlay,
Another time delayd,, describes a delay in the control actuator. Both delays
have a value of 0.5 minutes.

The mass transfer rate between the liquid and solid states is given by the
functionr(X), which describes the precipitation and dissolution of solids, and
takes the form

o 0 O
B—ra —2rbg
r=0ry,—3r,0 (29)
Hi. l
o 'a 0O
34 n B

wherer, andry, are the precipitation/dissolution rates of the species CaHPO
and Ca(PQy),, respectively. The precipitation/dissolution-rate vector
introduces dynamic nonlinearities into the model, contrary to models of fast
acid-base reactions which normally involve only static nonlinearities. These
rates have been modeled according to a model for crystal growth by Walton
(1967), with coefficients partly based on experimental results (Sandstrém and
Gustafsson 1994, Gustafsseh al. 1995). For supersaturated solutions the
precipitation rates are given by

Fa = 9.6 rta) (€a (30)
~ _ |4 5
M = 156(W) & (31)

12



= —[1035 4/ 2 20.8 3
where ¢, —(10 (mol)Ed: 24 Ethcﬁ— -9 ) and cb—(lo (mol) (€ 2+

.2

Pos— etc. are calculated

15 :
%. Here, the concentrations,_ . , Coipz-

directly from the reaction invariant state, adand S, are the solubility
products of the respective salts. The ragemdry, are then given by

[T, =r, if ¢;>0

1. =, if €,<0and X, >0 (32)
Ha =0, otherwise

[T, =fp, If C,>0o0r (C,<0and Xz >0

33
I, =0, otherwise (33)

The pH valueY in equation (28) is a nonlinear functigr{ ) of the reaction

invariant statesX;, X, and X3, and it is defined as the solution of a set of
nonlinear equations (Gustafssetnal. 1995). Figure 4 shows an example of the
steady-state relation between the control varibbénd the pH of the effluent
with a constant feed state\&t= 0.01mol/l.

12 .
10 .

| L | L | L | L
0.000 0.005 0.010 0.015mol/l
U

Figure 4. Steady-state relation between control varidbleand pH at 0.01 mol/l total
concentration of phosphoric acid.

13



4.1 Multimodel description

The nonlinear system equation (28) can be linearized at a set of stationary
points (Xg,Ye, Wo, ) to give fifth-order linear time delay models. In this

particular process the staXg is constant and equal to zero, and the stdjes
andXs do not affect the states associated with the liquid phase. Therefore, the
linearized models can be reduced to second-order time-delay models of the
form

X() = AX(D+ By W)+ Byt q)

3
(0 = Crex(t- &) (54)

wherex:= X- X, y:=Y-¥, w:=W-W andu:=U-Uy, and

o 30 00
AT a1, dng B"“%E} P26 =1
g 9%, T IXH (35)

where the partial derivatives are evaluated(éf, Yo, W, Lf). Due to the

complexity of the nonlinear model, the required differentials have been
calculated by finite differences. In Table 1 the values of the elements in the
matricesAx andCy are shown for models at a number of operating points at
various pH values and/= 0.01 mol/l.

Table 1. The elements of the matrice& and C, at different operating points. The
stationary gain is shown in Figure 7.

ALD AL T ACDHT AR,2)] Ca(d) | Cal(2)
-0.200 0 -0.20( 0 -21p 448
-0.200 0 -0.20( 0 -2068 4083

)
)
0.180, -0.81% 0.380 -1.015 -2702 o457
1.024| -2.634 1.224 -2.834 -674 11P7
1.306] -3.890 1.580 -4.202 -860 9H5

~N|o|o| s |wl[T

The finite-dimensional linear nominal plant mod€&isin (3) were constructed
by approximating the time-delay operatza)‘lm'f’0'2)S with a second-order Padé

14



approximationPy (S). The uncertainty radid, and weight3Vy, andWa in (3)
were chosen in such a way that the uncertainty ggtaccount for the errors

due to the Padé approximation as well as a reasonable amount of unstructured
uncertainty for each linear modsi. The following simple weights were used,

26
s+ 25

Wi (9 = ”Ek”oo’ W (9=1, k=1...,N (36)

whereEi denotes the error due to the time-delay approximation,
Ec(9:= Ca(si= A)™ By R($-e @], (37)

With these weights, the nominal radii of the uncertainty blocks in (3) are
o =1. Simulations showed, however, that this choice may lead to a slightly

conservative design, and that closed-loopidtalof the nonlinear plant (28)
can still be achieved if the design is based on the uncertaintydfadiD.5. A

further reduction of the uncertainty radius resulted in instability.

4.2 Specification of cost function and disturbances

A crucial part of any controller design based on optimal control methods
consists of the specification of the cost and the disturbances in a way which
reflects the required controller performance. In practice an important
requirement which should be imposed on the controller in most process
applications is the ability to cancel the effect of load disturbances on the
controlled variable, i.e., the closed loop should have zero gain from the
disturbance to the output at zero frequency. The incorporation of an integrator
in optimal control is commonly achieved by introducing a frequency-dependent
weight on the controlled output with infinite weight at zero frequency. The
philosophy of this approach is to replace the quadratic cost function consisting
of the square of the,-norm of the output by one which also gives weight on
the square of thie,-norm of the integral of the output.

An alternative approach, which will bed@pted here, is to minimize the

original quadratic cost under the assumption that the disturbance is a step.
Thus, we consider an uncertain pl@htdescribed by the state-space equations

15



Fkg = AgXg + BgsW+ B U

_ _ (38)
= Ce2 X% + D W.
Here it is assumed thatis a step disturbance introduced at tinse0, i.e.,
, ft=0
w(t) =[] ° (39)

D, ift<0

wherew, OR™. The control objective is defined by the quadratic cost

LG P=50y e Gy U aldt w (40)

1=1[]0

Il
O8O

whereg denotes théh unit vector inR™, and a quadratic function of rather

thanu is used in order to make the cost finite. The problem defined by (38) and
(40) can be represented in the standard form introduced in Section 2 as
follows. The disturbance can be modeled as

W(t) = w0 (0) =: wo (1) (41)

where ¢ () denotes Dirac'sy-function. Combining (38) and (41) gives the
state-space mod€,

X=AsX+ Bsop + Bsp U
Zy = Goo X+ Dgo2l (42)
y=CoaX

wherex:=[x£,yT]T, A :=[(Q/ Y ( Q‘l)T]T and

AG__DKG o]m B .= OBgs O B = Bg, O
- [ DBgo -~ v Be2 = [ A L
%GZ 00 EjGﬂEl 00 O

0 C,0

0 (43)
CGO::E) ol Cgo:=[0 1], DGOZ;:EDUE

16



The cost (40) can be expressed in the form (4) in terms d¢itmorm of the
closed-loop system consisting of the plénin (42) and the controlled = Fy.

A robust optimal controller for step disturbances can, thus, be determined by
applying the procedures in Sections 2 and 3 to the plant defined in (42).

5. Controller implementations and results

In this section the multimodel robust optimal controller synthesis procedure
described in Sections 2 and 3 is applied to the design of controllers for the pH
neutralization process. As the process is strongly nonlinear, procedures for
improving the controller performance by controller scheduling methods to
account for the nonlinearities are also studied. The following robust optimal
controllers are studied: (1) a fixed linear multimodeiH..-optimal controller,

(2) a variable-gain multimodédi,/H.-optimal controller, and (3) a scheduled
controller based oi,/H.-optimal controllers designed for various operating
points. In all cases, the controller order was taken equal to five which is equal
to the order of the generalized plant model, including the weight filters (36)
and the second-order Padé approximation. The controllers are designed using
two different values of the uncertainty radhi, =1 and é, = 0.5. When the
smaller value is used, the nominal controller performance in terms éf,the

cost is improved at the expense of closed-loop robustness. For comparison,
results are also presented when the process is controlled using a PID controller
tuned by conventional means.

The control performance was evaluated for step changes in the concentration
W of HzPQ, in the input flow according to

[0.010mol /1, t< 5min
W(1) = (0.011mol /I, Smin<t < 55min (44)
H.020mol /1, t= 55min.

The controllers were evaluated at five operating points, corresponding to the

pH valuesY? = 3, 4, 5, 6 and 7, and the inputg = 4.00, 4.91, 5.15, 7.06
and 9.30 mmol/l.

17



5.1 Fixed robust optimal controller

The multimodel mixedH,/H., control problem described in Sections 2 and 3
was applied to design a robust optimal controller for the pH neutralization
process. The controller synthesis was based on twelve linearized models in the
pH range 3 - 7. The LQ-cost applied in the controller optimization was defined
by (40) withCy =1 and D, = 0, and with equal weights(= 1) on the
individual costs in the averaged cost (7). No weights on the inputs were
required in the quadratic cost (40), since the model uncertainties and the
associated conditions for robust stability were sufficient to impose a limitation
on the magnitude of the input signals.

The parameters of the controller transfer function

0+ S+ gS+ gs+ g8
s(sB+1isf‘+§§+§§+ Jsjgl(s) (49)

u(s) =

of the robust optimal controllers designed for two different uncertainty radii are
shown in Table 2.

Table 2. Parameters of fixed optimal robust controllers.

Uncertainty| o 02 O3 Oa s Je
radius o
1 -1.816e-3 -7.075e13 -4.881¢-3 -8.35(e-4 -5.406e-4 -8.3B5e-7
0.5 -8.468e-8 -4.038ef2 -9.491¢-2 -7.755e-2 -2.281e-2 -1.2B0e-5
f, f, fa f, fs
1 3.991e-] 1.23361 8.549¢-2  1.418 2.074e-3
0.5 3.576 2.377d1 7.814pl 3.628el 2.28fe-2

Figures 5 and 6 show the output (pH) and the corresponding ldpuwthen
the optimal controllers were simulated for the pH neutralization process at
various operating points.

18
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Figure 5. Simulation experiments using fixed robust optimal controller based on uncertainty
radiusd =1.
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Figure 6. Simulation experiments using fixed robust optimal controller based on uncertainty
radiusd = 0.5.

The nominal quadratic costs (40) and khenorms for the controllers studied

in this paper are summarized in Table 3 at various operating pointdd,The
norms given in the table are the square roots of the quadratic costs defined by
(40).

20



Table 3. The H,-norms and thél.-norms for the controlled systems using the fixed robust
optimal controller, the variable-gain controller (v-gain), the scheduled controller and
conventional control (PID) at various operating points.

H,-norm pH=3|pH=4|pH=5|pH=6|pH=7
Fixed (0=1) 1725 4596  355P 2463 4387
Fixed (0 =05) 1343 3355 268[/ 1853  33Y8
V-gain (6=1) 537 5239 2803 586 16%8
V-gain (6 =0.5) 480 4682 262V 538 1482
Scheduled§ =1) 237 2395 2300 459 810
PID 2049 4464 3832 3029 51416

He -norm pPH=3|pH=4|pH=5|pH=6|pH=7
Fixed (0=1) 0.141 0.679 0.887 0.337 0.2p3
Fixed (6 =05) 1.220 148y 1.7949 1.705 1.489
V-gain (6=1) 0.379 0.37% 0.792 0.869 0.4)/1
V-gain (6 =0.5) 0.508 0508 1.359 1.299 0.6B83
Scheduled§=1)| 0947 0.991 0965 0.940 0.9B4
PID 0.242 1.705 2,105 0.586 0.466

5.2 Variable-gain optimal robust multimodel controller

Although the global performance of the multimodel optimal controller is better
than that which can be achieved by controllers which are optimized for the
various operating points, its performance at the individual stationary points is
considerably poorer than the performance which could be achieved by applying
locally optimal linear controllers which are optimized at the various stationary
points. This can be seen by comparing the nominal costs achieved with the
fixed robust optimal controller and the scheduled controller (Section 5.3), cf.
Table 3. This is due to the strongly nonlinear dynamics of the process, which
limit the performance which can be achieved by any fixed linear control law. A
natural approach to improve the global performance of linear controllers is to
apply controller scheduling methods. In particular, much of the nonlinearity of
the pH neutralization process is due to large variations of the stationary gain,
cf. Figure 7 and Table 1. Therefore, it is likely that large improvements could
be obtained by introducing a controller with scheduling of the stationary gain.

Here a simple variable-gain controller design is introduced, which combines
the optimal multimodel controller design procedure with scheduling of the
controller gain. In this approach, the effect of gain variations is first eliminated
in the controller synthesis by a scaling of the linearized models so that all
models have unit stationary gain from the control signa the measured
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outputy, i.e., the nominal model§y and the uncertainty weight&y, of the
sets (3) are scaled according to

n._d 0 n _
Gk::B) Kk_lask, Wh = KW, k=1..., N (46)

whereKy denotes the stationary gain franto y of the nominal modeby. The
multimodel mixedH,/H.-optimal controller synthesis problem is then solved

for the set of scaled linear models to give an optimal fixed linear controller.
When the controller is implemented, the scaling is taken into account by a
corresponding rescaling of the controller gain. However, due to the on-line
scheduling of the controller gain, the resulting controller is nonlinear, and some
caution must therefore be exercised in order to ensure that the closed loop has
the desired properties.

In order to develop the nonlinear scheduled control law in a proper way, the
dynamics of the resulting closed-loop nonlinear system should be studied.
Therefore, suppose that the nonlinear plant is described by

X = f(X, W, U)
Zy = 9(X V) (47)
Y=hXW)

and that a number of linearized, uncertain, plant mo@glabout stationary
states(Xf,YkS, Zok» W » Lf) have been determined. Let the scaled mo@gls

have the state-space representations

X= Agk Xt BggW + By U
Zy = Cgko X+ DgiozU (48)
Y= Ki'Coio X+ Ki' DgigoWo  k=1,..., N

where x, U, zo, Wo andy denote differences from the respective stationary
values. Suppose that the optimal multimodel contrélleomputed for the set
of scaled linear plant models and associated uncertainties in (46) is given by

X = AX+ By

u=Cyx + Dy 49
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To account for scaling, the controller should be scaled by the inverse(glain
when applied to the actual plant at the stationary sém,erf, Zok» W » Lf)

As long as the disturbances are small the properly scaled linear controller (49)
can be expected to achieve good performance for the nonlinear plant as well.
However, for plants which are subject to large disturbances, causing

substantial deviations from the stationary point, poor performance may result
due to variations of the process gain. A controller which can be applied over
the whole operating range can be designed using the linear control law (49) in
combination with a gain-scheduling procedure. A variable-gain version of (49)

which uses the measured outtas scheduling variable takes the form

Xe = AcXe BCI(Y)( Y= X) (50)
U=Up+C.x.+ D.LY)(Y-¥), k1. N

where Yy denotes a setpoint value f§r U, is the corresponding stationary
input value, and the functid(Y) defines the controller gain as a functior¥of

It is important that the scheduling in (50) is designed in such a way that the
closed-loop system has acceptable behavior. In this context it is worth while to
notice that an interpolation between the linear control laws (49), such that

L(YS) = Kk‘1 holds, does not ensure good closed-loop behavior, and may even

give rise to instability (Kamineet al 1995, Lawrence andugh1995). This is

due to the fact that the nonlinear part of the scheduled control law (50) will
also affect the closed-loop dynamics. A minimum requirement on a scheduled
controller is that when the closed-loop system consisting of the plant (47) and
the nonlinear controller (50) is linearized about the stationary states

(XS Y€, Z5. Wi, W) at which the linearized models (48) are valid, it is
described by the closed-loop linear system defined by (48), (49). This is the
linearization condition discussed in the literature, cf. Kameteal (1995) ,
Lawrence and Rughl995). It is straightforward to establish that a sufficient

condition for the linearization condition to be satisfied by the controller (50) is
given by

Y L(Y)O _ -l e
HWEL:f(Y %+ UY)= K'Y k=1.., N (51)

Notice that under the natural assumption that the setjgplmtlongs to the set
of stationary points{Yks} ,€.0.Yy 1= Yk‘z, (51) implies that
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L(Yp) = K- (52)

At the other steady-state valu¥s, k # k, the variable-gain controller (50) is,
however, not equal to a scaling of (49) vayl.

A variable-gain controller which satisfies the linearization criterion (51) at the
design pointsY° < Y, <---< ¥} was constructed for the pH neutralization

process by takind_(Y) as a piecewise quadratic function in the intervals
Ye <Y< Y1, k=1,...N - 1, with the requirements that it is continuous and

satisfies (51) at the design points. These conditions determine the controller
scaling functiorlL(Y) uniquely for a given setpoint. Figure 7 shows the resulting

function L(Y)™ constructed for the setpoiivh = 5. Notice in particular the
difference between controller scaling and the stationary gain of the plant.

A variable-gain controller based on the optimal robust multimodel controller
design procedure described in Sections 2 and 3 can be constructed by applying
the gain-scheduling technique to the linear controller obtained by designing a
mixed Hy/H.-optimal controller for the scaled linearized plant models (48).
Table 4 gives the parameters of the transfer function representation (45) of
linear multimodeH,/H.-optimal controllers designed for the pH neutralization
process for two different uncertainty radii. Table 3 shows the nominal
performance of the controllers at various operating points. The responses
obtained when the variable-gain controllers are applied to the pH neutralization
process are shown in Figures 8 and 9. As the numerical data in Table 3
indicate, the global control performance obtained with the variable-gain
controllers is significantly better than the performance which could be achieved
with fixed linear control laws (cf. Figures 5 and 6). Notice, however, that it is
important that the scheduling is performed in such a way that the linearization
conditions (51) hold. In contrast to the responses shown in Figures 8 and 9, a
variable-gain controller based on the inverse of the procesKggir(Figure

7) results in instability of the closed loop for large disturbances.
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Table 4. Parameters of optimal robust multimodel controllers, based on scaled linear
models.

Uncertainty O1 07 O3 Oa Os Os
radius 0
1 -3.695e] -5.577e2 -2.730e3 -6.87fe3 -7.122e3 -1.403e3
0.5 -3.157ell -6.981¢2 -5.850e3 -1.73be4 -3.961e4 -1.430e4
fi f5 f3 f4 fg
1 1.889e]l 1.609e2 9.510e2 3.033e3 1.666e3
0.5 2.298el 2.335¢2 1.388e3 5.83B3e3 1.2y3e4d
800Qq—————————

K(Y), L(Y)'l_

pH

Figure 7. The stationary gain of the process (solid line) and the gain used for variable-gain
controller output at setpoint pH = 5 (dashed line).
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Figure 8. Simulation experiments using variable-gain robust multimodel optimal controller
based on uncertainty radids=1.
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Figure 9. Simulation experiments using variable-gain robust multimodel optimal controller
based on uncertainty radids= 0.5.

5.3 Scheduled robust optimal control

In addition to the variable-gain controller described in Section 5.2, it is also of
interest to study the performance which is obtained by applying controller
scheduling to the locally optimal mixedL/H., controllers valid at the various
stationary points. For the pH neutralization process, it turned out that it is very
hard to achieve acceptable control performance by scheduling of the controller
parameters using the measured outpas scheduling parameter. This may be
due to the high number of parameters which are adjusted on-line and the fact
that the measured pH-value alone may not provide sufficient information for
the scheduling of all controller parameters. Instead, a controller scheduling
procedure based on the interpolation of the controller transfer functions rather
than the parameters of the control law was more successful.

The controller scheduling method applied here can be described as follows. Let
Fr, kK = 1,...N denote the linear optimal control laws designed for the
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linearized plant models at the stationary poivifs and letux be the output of
the controllef~x when the process is controlled at the setpgint

U = R(Y=%). (53)

The scheduled controller is now taken as the linear combination

u(t) = (MU +rpea (N Gea( 3 if ¥ O ¥y (54)

The linearization conditions for the scheduled controller (54) take the form

. M ifk=K _ '_
ak,eff(Yk)_H) kKR k=1...,N,K=k-1,k k+1 (55)

where

(V) 1= 2O~y (. 56)

The quantity in (56) can be regarded as the effective weight on the controller
Fx in the nonlinear scheduled controller. It is also natural to require that

O0<ea,(Y)<1 In order to achieve continuity at the design poiMfs and

smooth switching between controllers it is also required that the functions
o (Y) satisfy

o (Ya) = (M) =0 and o (X)) =1. (57)
A function which satisfies the conditions (55)-(57) is given by

_ S
ak(Y):lcos%zu%l, Yo <Y< Yoo
2 N Yks+1_YkSEI 2 (58)
5
1 4 Y_Yks—l[| 1 s
o (Y)=——coslr———[+—, Yo=Y :
k(Y) 2O Vs e, b k-1 4

The function (58) has the nice properties thgt(Y)+o,,(Y)=1 and
O et (Y) + 01 (V) =1 for all Y < Y< Y. These properties imply that

28



both the nominal and the effective weights on the controllers in (54) sum to
unity for all'Y.

A potential problem with the scheduling procedure described here is the
possibility of windup due to the fact that the output of the individual controllers
are not equal to the actual input to the process. For this reason any common
unstable modes of the controllers should be moved outside the switching
mechanism.

Table 5 gives the parameters of the transfer function representation (45) of
locally optimal mixedH,/H,, controllers for the pH neutralization process
calculated for various operating points. The uncertainty radius used in the
controller design wa® =1. The nominal performance of the controllers are
given in Table 3.

Figure 10 shows the responses obtained when the scheduling approach
described above is applied to the controllers of Table 5 to control the pH
neutralization process. For this process, windup does not present a problem,
since all controllers are stable apart from the integrator, which can be taken as
a common factor outside the switching mechanism.

As the nominal costs in Table 3 indicate, the performance achieved with the
scheduled optimal controller is superior to that of both the optimal fixed
controllers and the variable-gain controllers. In return, the implementation of
scheduled control is more difficult. For the process studied, the scheduled
controllers had to be designed for more robustness than the fixed and variable-
gain controllers in order to obtain closed-loop #itgbIn particular, attempts

to achieve stability by scheduling locally optimal controllers designed for the
uncertainty radiug = 0.5 were not successful.
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Table 5. Parameters of locally optimal robust controllers at various operating points.

pH O1 o] O3 J4 Js Os
3 -1.098e2 -7.669e4 -2.589e6 -1.392e7 -3.131e7 -1.516e7
4 |-1.617e-1 -8.646e-l -2.421 -2.4P8 -8.44Ge-1 -7.07pe-3
5 |-6.043e-1 -1.307e¢1 -8.281pl1 -2.2138e2 -2.273e2 -7.324e-1
6 -3.577el -9.273e3 -2.617p5 -1.669e6 -4.362e6 -3.887e6
7 -1.049el1 -3.930e2 -2.712p3 -7.828e3 -8.620e3 -2.710e3
fq fo fa fa fg
3 1.010e3 3.191e5 4.918e7 3.106e8 2.208e9
4 3.276el 2.245e2 1.210e3 1.086e3 1.119el
5 1.169e2 3.586e3 2.245p4 1.498e5 8.7718e4
6 5.296e2 1.481e5 1.290e7 8.662e7 6.207e8
7 1.390e2 1.497e¢4 1.082e5 8.0083e5 6.418e5
1 —v A
06— ~
5 N\
pH ¥ N
m'A
3
mmol/l | ' ' ' T
10 [ I :
SI L 7
Lo '
Am)
0 20 40,[ 60 80 min

Figure 10. Simulation experiments using scheduled optimal robust controller.
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5.4 PID control

In this section, a conventional fixed PID controller using the modified Ziegler-
Nichols method (Astrom and Hagglund 1995) is designed for the pH process.
The method is based on the idea of moving one point on the Nyquist curve,
rpe'(“‘”p) , to a desired positiome'”*#?). The parameters specified by the
user are the identification angie,, and the parameteng and ¢ which
define the desired poir® The specifications are given in terms of a phase
margin ¢, or an amplitude margimA,. An amplitude margin design
corresponds te, = 0 andrg =1/A,,, and a phase margin design corresponds
to rs =1 andgg = ¢, The controller gaifK, reset timel; and the derivative

time Ty are then given by (Astrom and Hagglund 1995)

K = I's CO{(DS_(Dp)
r

P (59)

wTy —% = tar((pS - (pp)
|

wherewis the critical frequency and where it is assumedThahd T4 have a
given ratio, Ty = oT;, whereq is often chosen as = 0.25.

The PID controller for the process studied in this paper is tuned about the
setpoint value pH = 5, where the process gain is very high. The parameters are
chosen asa = 0.25,rs = 0.5, ps =7 /4 and ¢, =0, which gives the

controller parametet§ = 6.370010°*, T; = 2.57 min andly = 0.634 min.
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Figure 11.Simulation experiments using PID controller.

The nominal costs obtained with the PID controller at various operating points
are given in Table 3. As expected, the performance is inferior at all operating
points to the performance achieved with the optimally designed controllers.
The simulated responses of the pH neutralization process in Figure 11 show
that although the performance at the design point pH &cceptable, the
controller response at the pH values 3, 6 and 7 is slow due to the small value of
the process gain at these operating points. If the models valid at these points
were used for tuning the PID controller, the closed loop would be unstable at
pH 4 and 5, where the process gain is large.

6. Conclusion

In this paper, a procedure for the design of optimal and robust controllers has
been described and studied for a nonlinear chemical process. The design
procedure is based on a multimodel process representation, in which the
process is characterized in terms of a set of uncertain linear models. The
characterization provides a quite general description of both parametric and
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norm-bounded uncertainties. The control problem is defined so as to achieve
optimal LQ performance subject to robust stability for the set of uncertain
models. This is equivalent to a multimodel mixédH., problem.

The multimodel mixedH,/H., problem has been applied to design a linear
controller which achieves optimal LQ performance and robust stability at a
range of operating points of a nonlinear pH neutralization process. This is
achieved by characterizing the nonlinear process in terms of a set of linearized
models and their associated uncertainties.

For a strongly nonlinear process, it is clear that the global control performance
which can be achieved by nonlinear control can be superior to the performance
achievable by any linear controller. In this paper, the global performance of the
multimodel mixedH,/H., optimal controllers has been improved by controller
scheduling methods. In particular, it has been shown that the design procedure
can easily be modified in such a way that known variations of the locally valid
stationary gain of the process are taken into account. The design leads to an
easily implemented linear controller with variable gain. The case study has
shown that in order to achieve good control performance by controller
scheduling methods, it is essential that the controllers are properly
implemented to satisfy the so-called linearization conditions.

The controller scheduling methods have the advantage of being fairly simple to
implement, and the fact that linear controller design can be applied, which is in
general simpler than nonlinear design techniques. The present study has shown
that an approach using scheduling of linear controllers can perform quite well.
An interesting topic for future studies would therefore be to compare the
scheduled optimal controllers with optimal nonlinear controllers designed by
nonlinear optimal and robust control theory.

The control problem studied in this paper has the property that the optimal
controller lacks a closed-form solution. Therefore, the optimal controller must
be computed by numerical optimization techniques. As the control problem is
easy to formulate and is clearly well motivated in a number of applications, it
seems worth while to study numerically efficient procedures for its solution. In
this paper, the gradient expression of the associated costs have been derived,
which can be applied in combination with general-purpose optimization
routines. However, it is expected that numerically more efficient special-
purpose methods can be developed by exploiting the problem structure. This is
left as a topic for future research.
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Appendix A. Gradient of J.(P,F)
Consider the cost
Jo (P, F):=tr(ZU) (A1)
whereZ is obtained from the Lyapunov equation
ArZ+ ZA + Q=0 (A2)
where
Ay = A+B,FG +5%(B+ B FO,) B+ B FD)' X (A3)

andX s given by the Riccati equation

(A+B,FG)" X+ X A+ B FG)+62 X B+ B FR)( B+ B FR) X
+(C, + D;,FC,) " (C,+ Di,FC,) =0. (A4)
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For the differentiation, consider the first-order expansion)%P, F) with
respect td-:

Gwi.0 B Bwiod B g

~ . _ F1J,. 0
Al (P, F) = ”@TFH AFE_ tr@g—FELAFg tr%HFAXE' (AD)

From (Al) we obtain

Q]&J 8

@—EL AFO=tr{(4Z) x U} (A6)

where AZ)x denotes the first-order expansiorZoZ(F + AF) = Z(F) + (AZ)x +
o(|4F|). From (A3) we have

AX(AZ)x +(AZ) x Ax+ My Z+ ZN =0 (A7)

where
My = B,AFNT X+ NAF' B, X+ B4 FG (A8)

where
N = 6%(B, + B, FDy;) Dyy (A9)

Introducing the Lyapunov equation
AW+ WA, + U=0 (A10)

into (A6), gives (using the symmety W andX)

ok}

= tr{(452D21D21F BIX+2C,+ 452D, B Y WzBa k. (AL1)

FTH- tr{((42)x)U —tr{W(I\/IOZ+ zwb)}

Similarly, we have
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Q]&J

@—HF AX%— tr{(42)¢ U} (A12)

where(4Z). is defined in analogy witit\Z)x, and is given by
AX(A2) +(42) Ac+AX M Z+ ZMA X=0 (A13)
where
M, = 52(B, + B,FD,;)(B,+ B,FD,)". (A14)

Introducing the Lyapunov equation (A10) into (A12) gives

%'N—HF AX% tr{(42)¢ U} = r{2wzMm4 %
= tr{252WZ( B+ BFD)(B+ BFD) 4 ) (A15)

The Riccati equation (A4) gives

AgAX+AXA + MTAFG + GAF M
+XB,AFN" X+ XM F B X=0 (A16)

where
M = Bj X+ D,(C,+ D;,FC)). (A17)

Introducing the Lyapunov equation

AcY+ YA +25°WZ B+ B FR)( B+ B FR) =0 (A18)

into (A15) gives

tr%@iAX§=tr{[g(Y+ V)M + N X% ¥) xga }: (A19)

Finally, combining (A11)and (A19) gives
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AJ_ (P, F)=tr{[(2C2+4XN)WZI§+ G(H V) N
FNTX(Y+ Y xg]A F} (A20)

from which, by (A5), we have

Ok =] ZW(45% XB D, 0, +2 G + 45° X§ )

+MKY+Y)QG + B XY+ Y) XN
=282TZV\,(QT+2XI\)+ MY ¥) E+ B KY¥Y N XN(A21)
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