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Support vector regression is applied to identify nonlinear systems represented by Wiener models, con-
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1. Introduction

In empirical black-box modelling and identification of nonlinear
dynamical systems the choice of model structure plays an impor-
tant role. In model structure selection one needs to take into ac-
count the kind of system behaviours which should be described,
the effort needed to identify the model parameters from empirical
data, and how well the model is suited for its intended use, such as
prediction or control [22,23,26]. A useful class of nonlinear models
consists of block-oriented representations [23], where various sys-
tem characteristics, such as nonlinearities and dynamical response,
are represented by separate blocks connected in series. Standard
nonlinear models of this type are the Wiener and Hammerstein
models [2,11], where the nonlinearities are captured in a static
block and the dynamics are represented by a linear dynamical
component.

The Wiener class of models is based on Volterra series represen-
tations of nonlinear dynamic systems, which are obtained by a
generalization of Taylor series expansions to dynamic systems. A
drawback of the original Volterra model is that it typically requires
inclusion of a large number of terms for good accuracy. In order to
obtain a more parsimonious representation, Wiener [32] intro-
duced an expansion of the Volterra series consisting of a linear dy-
namic component followed by a nonlinear static block. Wiener
introduced an expansion of the linear dynamic part in terms of
orthonormal Laguerre functions, while the nonlinearity was cap-
tured using Hermite polynomials. However, the Wiener class of
models is not restricted to the Laguerre–Volterra representation,
but other representations of the linear dynamic and the static non-
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+358 2 2154808.
onen).
linear blocks can be used as well [20]. The linear dynamic block has
been represented by transfer function models [33] and expansions
in terms of Kautz functions [6,12] or other orthonormal filter
expansions [9]. In order to represent the static nonlinear block,
multilayer perceptrons [29,34] and radial basis functions [9] have
been proposed as alternatives to polynomial expansions.

Although Wiener models can approximate any nonlinear sys-
tem satisfying some mild continuity conditions with any degree
of accuracy [3], they are particularly well suited for modelling pro-
cesses whose dynamics can naturally be decomposed in a linear
dynamical component followed by a static nonlinearity. Typical
examples are processes with sensor nonlinearities and pH pro-
cesses [9,13,21]. Wiener models have also been applied to model
fluid flow systems [33], separation processes [29], fluid catalytic
cracker units [35] as well as various biological systems [11]. Other
types of systems are better described using models with alterna-
tive structures. An important class of models are Hammerstein
models, where the order of the blocks are reversed, i.e., they con-
sist of a static nonlinear block followed by a linear dynamic com-
ponent. For a discussion of the dynamical differences between
Wiener and Hammerstein models, see [2].

A number of methods have been proposed to identify Wiener
models from experimental data [9,10,13,23,25,29,33,35], which
are based on the standard least-squares method in which the
sum of squared prediction errors is minimized. If both the linear
dynamic component and the static nonlinearity are identified,
the model output is a nonlinear function of the parameters, result-
ing in a nonlinear least-squares problem which may have local op-
tima. This is avoided by using an appropriate basis filter expansion
of the dynamic block and by expanding the nonlinearity using
polynomials or basis function, but in return the number of terms
needed in the expansion may be high. When using functional
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Fig. 1. Wiener model.
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expansions to represent the model components, the number of
parameters may also be increased by the fact that a fairly high
number of basis functions may be required for good accuracy.
The high number of model parameters makes the identification
problem sensitive to possible overtraining. In order to avoid this,
regularization terms have been used [25].

Support vector machines have been introduced as a powerful ro-
bust approach to classification and regression problems [28]. Sup-
port vector regression (SVR) is based on Vapnik’s �-insensitive
loss function and structural risk minimization, which aims to bound
the mean approximation error when the model is determined from
a finite data set. In support vector regression, a nonlinear model is
represented by an expansion in terms of nonlinear mappings of the
model input. The nonlinear mappings define a feature space, which
may have infinite dimension. The solution can, however, be ex-
pressed in terms of an associated kernel which has the same dimen-
sion as the data set, and it is therefore not necessary to compute the
nonlinear mappings explicitly. Support vector regression has sev-
eral appealing properties for black-box identification. The solution
is defined in terms of a convex quadratic minimization problem,
for which convergence to the global solution can be guaranteed. A
further convenient feature of the approach is that the optimal mod-
el complexity is obtained as part of the solution, and does not have
to be separately determined. Moreover, structural risk minimiza-
tion introduces robust performance with respect to new data. In
system identification, support vector methods have been applied
to linear ARX models [1,24] and nonlinear dynamical models
[16,17], including partially linear models [7], state-dependent
parameter models [27] and Hammerstein models [8].

In this contribution support vector regression is applied to iden-
tify Wiener type models, where the linear dynamic block is de-
scribed by a basis filter expansion. The model structure is similar
to the one considered in [9,29,34], but the nonlinear static block
is here represented by a nonlinear kernel and support vector
regression is used for identification.

The paper is organized as follows. In Section 2 the identification
problem is stated, and a support vector procedure for Wiener mod-
el identification is presented in Section 3. A numerical example to
illustrate the properties of the proposed method is presented in
Section 4.

2. Problem formulation

In this paper we study identification of discrete-time nonlinear
systems. We consider a single-input single-output discrete-time
nonlinear dynamical system

xðnþ 1Þ ¼ f ðxðnÞ;uðnÞÞ
yðnÞ ¼ hðxðnÞÞ þ eðnÞ

ð1Þ

where u is the scalar input signal, x is the state vector, y is the scalar
measured output signal, e is additive white noise, and f ð�; �Þ and hð�Þ
are nonlinear mappings. In black-box identification, various function
approximators, such as multilayer perceptrons, radial basis func-
tions and fuzzy models, can be used to model the system output in
terms of past inputs and outputs [26]. Such black-box models do
not provide much insight into the system dynamics, however. In or-
der to capture the system properties more explicitly block-oriented
representations have been introduced, where various system char-
acteristics are captured by separate blocks. Two important model
classes of this form are the Hammerstein and the Wiener models
[2,9,11,23], where the nonlinearities are represented by a static
block and the dynamic component is described by a linear block.

In this paper we focus on the Wiener class of models depicted in
Fig. 1. The model consists of a dynamic linear block G followed by a
static nonlinearity N, and can be described as
xðnÞ ¼ Gðq�1ÞuðnÞ
ŷðnÞ ¼NðxðnÞÞ
yðn ¼ ŷðnÞ þ eðnÞ

ð2Þ

where ŷðnÞ denotes the model output, which can be taken as a pre-
diction of the system output, and Gðq�1Þ is a transfer function in the
backward shift operator q�1 (q�1uðnÞ ¼ uðn� 1Þ). It can be seen that
the Wiener model is a special case of (1) where the dynamic com-
ponent f ð�; �Þ is linear and Nð�Þ corresponds to the output nonlinear-
ity hð�Þ.

The identification problem studied in this paper can be stated as
follows. We assume that a sequence of observed experimental in-
put–output training data futðkÞ; ytðkÞg has been collected from sys-
tem (1). For clarity, subscript t is used to distinguish the inputs and
outputs of the training sequence from general input and output se-
quences. The problem then is to find a Wiener model representa-
tion which explains the given data as well as possible. In the
literature, a number of approaches addressing this problem have
been proposed [9,10,13,23,25,29,33,35]. In identification of
dynamical systems, it is important to distinguish between one-step
ahead prediction error methods and output error, or multistep
ahead prediction error methods [15], since the former approach re-
quires restrictive assumptions on the model.

In one-step ahead prediction error methods the system param-
eters are determined to minimize a norm (usually the sum of
squares) of the one-step ahead prediction errors

êðkjk� 1Þ ¼ ytðkÞ � ŷðkjk� 1Þ ð3Þ

where ŷðkjk� 1Þ denotes the predicted model output based on ob-
served data up to time instant k� 1, i.e., futðmÞ; ytðmÞ;m ¼
1;2; . . . ; k� 1g. Hence the model output ŷðk j k� 1Þ is a function
of measured outputs yt as well as inputs ut . However, for a static
nonlinearity Nð�Þ the model output is a function of input ut only.
For the one-step ahead prediction error method to be meaningful,
it should be possible to reconstruct the internal state x from the
measured outputs yt . This is possible in the special case where
the static nonlinearity Nð�Þ is assumed invertible [9,13,23,33]
(which requires that the state variable x is a scalar), so that the
internal state associated with the measured outputs can be recon-
structed as xðkÞ ¼N�1ðytðkÞÞ.

In output error identification the system parameters are deter-
mined to minimize the output errors

êðkÞ ¼ ytðkÞ � ŷðkÞ ð4Þ

where ŷðkÞ denotes the model output which can be calculated using
the input sequence futðkÞg only (cf. (2)), whereas the observed mea-
surements fytðkÞg are not used to compute the model output. Out-
put error identification of Wiener models has been considered in
[10,25,29,33,35].

Output error identification is in general computationally much
more complex than one-step ahead prediction error identification,
as even for linear transfer function models the output is a nonlin-
ear function of the model parameters. It is in general also much
harder to find a model which achieves small output errors, and
selection of correct model structure is particularly important in
output error identification of nonlinear systems. Notably, accurate
one-step ahead predictions do not guarantee that the output errors
are small as well [19]. In many applications where the model is
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used for control or prediction purposes it is, however, important
that the model gives accurate predictions of the system output sev-
eral steps ahead.

In output error identification of linear systems, it has been
found useful to introduce orthonormal filter expansions, using
for example Laguerre or Kautz functions [18]. Stable causal sys-
tems can be approximated to any degree of accuracy (in H2 norm)
by such basis filters. Moreover, by parameterizing a linear system
model in terms of the weights of a filter expansion, the multistep
ahead prediction of the output is a linear function of the parame-
ters, simplifying the output error identification problem
substantially.

The idea of representing the linear dynamic block using a basis
filter expansion can be applied to Wiener models as well. The
internal state variable is then vector valued, consisting of the out-
puts xi of the individual filters used in the filter expansion, see
Fig. 2. In this model, the linear dynamic part is described by the
transfer functions Gi,

xiðnÞ ¼ Giðq�1ÞuðnÞ; i ¼ 1;2; . . . ;M ð5Þ

The static nonlinearity is given by

ŷðnÞ ¼NðxðnÞÞ ð6Þ

where

xðnÞ ¼

x1ðnÞ
x2ðnÞ

..

.

xMðnÞ

2
66664

3
77775 ð7Þ

In the original Laguerre–Volterra models [32], the linear systems
Gi are taken as Laguerre filters and the nonlinearity is represented
by a polynomial. More generally, the nonlinear block can be repre-
sented by general function approximators, such as artificial neural
networks [34,29] or basis function expansions [9,25], while the
dynamic part can be represented by appropriately selected general-
ized orthonormal filters [18], which are characterized by their pole
locations. Laguerre filters [30], which have a single real-valued pole,
are well suited for modelling well damped systems, while systems
which show oscillatory behaviour are appropriately represented by
Kautz filters [31], which are characterized by a pair of complex-val-
ued poles. The pole locations are important design variables, which
determine the filter order needed to achieve a given accuracy. The
optimal choice of pole locations has been studied for Laguerre–Vol-
terra models by [4] and for Kautz–Volterra models by [6].

The model structure in Fig. 2 has been used for output error
identification for example by [25,29]. In [29] the nonlinearity
was represented by a multilayer perceptron artificial neural net-
work function approximator, resulting in a nonlinear least-squares
estimation problem, whereas [25] used a basis function expansion
whose parameters can be determined using linear least-squares
Fig. 2. Wiener model with basis function expansion of linear block.
estimation. In this paper, robust support vector regression is ap-
plied to identify the nonlinear block in Fig. 2.

3. Support vector identification method

In this section we will use a support machine method to iden-
tify the static block in the Wiener model (5)–(7). In this approach
the nonlinear block Nð�Þ is expanded in terms of nonlinear map-
pings gið�Þ as

NðxðnÞÞ ¼
X

i

wigiðxðnÞÞ ¼ wT gðxðnÞÞ ð8Þ

where

wT ¼ ½w1;w2; . . .� ð9Þ

and

gðxðnÞÞ ¼

g1ðxðnÞÞ
g2ðxðnÞÞ

..

.

2
664

3
775 ð10Þ

A continuous nonlinear block Nð�Þ can be approximated to arbi-
trary accuracy by properly selected basis functions fgið�Þg. An
important feature of support vector machine regression is that
the nonlinear mappings gið�Þ need not be explicitly known. Instead,
it turns out that they can be defined implicitly in terms of an asso-
ciated kernel function [28], cf. below.

We consider the problem of identifying the weights wi of the
expansion (8) based on experimental data futðk� 1Þ; ytðkÞ; k ¼
1;2; . . . ;Ng. Notice that as the filters Gi are specified, the internal
state vector xtðkÞ; k ¼ 1;2; . . . ;N associated with the input se-
quence can be computed according to (5). Hence the experimental
data can be represented in terms of the data pairs fxtðkÞ; ytðkÞ; k ¼
1;2; . . . ;Ng. By (8), the model output error for the experimental
data can be described as

êtðkÞ ¼ ytðkÞ �wT gðxtðkÞÞ; k ¼ 1;2; . . . ;N ð11Þ

Vapnik’s �-insensitive loss function [28] is defined as

L�ðêtðkÞÞ ¼
jêtðkÞj � �; if jêtðkÞjP �
0; otherwise

�
ð12Þ

Support vector regression consists of minimizing the structural
risk function [28]

R�ðw; fêtðkÞgÞ ¼
1
2

wT wþ C
XN

k¼1

L�ðêtðkÞÞ ð13Þ

Here the first term is a regularization term which bounds the
approximation error by constraining the magnitudes of the
weights in the expansion (8), while the second term is an empirical
risk which describes the model accuracy for the experimental data.
The tradeoff between the two terms is defined by the positive
number C.

In order to minimize the structural risk function (13) it is con-
venient to rewrite the problem as the minimization of

Rðw; n; n�Þ ¼ 1
2

wT wþ C
XN

k¼1

ðnk þ n�kÞ ð14Þ

subject to the constraints

ytðkÞ �wT gðxtðkÞÞ 6 �þ nk

� ytðkÞ þwT gðxtðkÞÞ 6 �þ n�k; k ¼ 1;2; . . . ;N
ð15Þ

where nk; n
�
k P 0 are slack variables. The solution is obtained as the

saddle-point of the associated Lagrange function
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Lðw; n; n�;a;a�Þ ¼ 1
2

wT wþ C
XN

k¼1

ðnk þ n�kÞ

þ
XN

k¼1

akðytðkÞ �wT gðxtðkÞÞ � �� nkÞ

þ
XN

k¼1

a�kð�ytðkÞ þwT gðxtðkÞÞ � �� n�kÞ ð16Þ

which should be minimized with respect to w, nk and n�k, and max-
imized with respect to the Lagrange multipliers ak P 0;a�k P 0.

The saddle-point condition @L=@w ¼ 0 implies that the optimal
weights can be expressed in terms of Lagrange multipliers as

w ¼
XN

k¼1

ðak � a�kÞgðxtðkÞÞ ð17Þ

Introducing the saddle-point condition (17) into (16) and
observing that the terms involving nk; n

�
k can be replaced by the

constraints ak;a�k 6 C, gives the dual cost

Wða;a�Þ ¼ �1
2

XN

k;l¼1

ðak � a�kÞðal � a�l ÞKðxtðkÞ;xtðlÞÞ

þ
XN

k¼1

ðak � a�kÞytðkÞ � �
XN

k¼1

ðak þ a�kÞ ð18Þ

where Kð�; �Þ are kernel functions defined as

KðxðnÞ;xðmÞÞ ¼ gðxðnÞÞT gðxðmÞÞ ð19Þ

The solution is obtained by maximizing the dual cost (18) with
respect to Lagrange multipliers 0 6 ak;a�k 6 C.

Introducing the optimal weight according to (17) into (8) and
(6) gives the SVR model

ŷðnÞ ¼NðxðnÞÞ ¼
XN

k¼1

ðak � a�kÞKðxðnÞ;xtðkÞÞ ð20Þ

where xðnÞ is defined by (5) and (7). A characteristic feature of the
model (20) is that it includes only the support vectors xtðkÞ, such
that one of the constraints (15) is active, i.e., ak and a�k are not both
zero.

The dual cost (18) and the support vector model (20) are de-
fined in terms of the kernel function (19), and therefore there is
no need to define the nonlinear mappings gið�Þ in (8) explicitly.
For the problem to be well defined, the kernels should satisfy Mer-
cer’s conditions [28]. Commonly used kernels which satisfy Mer-
cer’s conditions are gaussian radial basis functions, polynomial
kernels, multilayer perceptrons and splines.

Maximization of the dual cost (18) subject to the constraints
0 6 ak;a�k 6 C is a box-constrained quadratic programming prob-
lem in 2N variables. The global optimum of a quadratic program-
ming problem can be found in a finite number of iterations, but
for large data sets the optimization becomes computationally
demanding due to the large number of constrained variables in-
volved. However, special-purpose methods which exploit the par-
ticular structure of the cost (18) have been developed for efficient
solution of support vector regression problems [5].

Application of the support vector method requires selection of
design parameters � in the loss function (12) and C in the structural
risk function (14). Guidelines to find robust parameter values have
been discussed in the literature, cf. for example [16] for a discus-
sion in the context of dynamic system identification. The threshold
value � affects the model accuracy and the number of support vec-
tors, which contribute to the sum in (20). As the support vectors
consist of those components of the training data set for which
the approximation error exceeds �, it follows that the model com-
plexity increases with decreasing �. A standard robust choice is to
select a value of � for which approximately 30–50% of the training
data points are support vectors. The parameter C in (13) deter-
mines the tradeoff between the empirical risk L�ð�Þ and the com-
plexity penalty in the structural risk function. For a very small C,
the complexity term will dominate, resulting in larger prediction
errors. Increasing the value of C results in better approximation,
but for excessively large C the relative importance of the prediction
errors grows with respect to the complexity penalty term, which
may result in large model weights wi associated with overtraining
and poor generalization properties.

As the parameter values are problem specific, it is in practice
usually preferable to tune the parameters to the specific data at
hand. This can be achieved by cross-validation techniques, in
which selection of design parameters is based on the model perfor-
mance on independent test data which are not used for identifica-
tion. In practice the first half of the observed input–output
sequence can be taken as a training sequence and used for identi-
fication, whereas the latter half is used for cross-validation. This
method will be used in the numerical studies in Section 4.

Remark 3.1. Using the support vector Wiener model to compute
an estimate ŷðnÞ of the system output requires evaluation of (20),
where xðnÞ is calculated from the system inputs according to (5)
and (7), and the support vectors xtðkÞ are determined a priori in a
similar way from the training data. The support vectors correspond
to the active constraints of the quadratic programming problem
defined by (18). Hence the number of support vector may be rather
large, implying a complex model. Therefore, methods to reduce
model complexity in support vector regression is a very important
topic of research [14].

Remark 3.2. For the sake of clarity, the identification method has
been formulated for single-input single-output system. At the cost
of increased complexity, it is, however, straightforward to apply
the procedure to multivariable systems as well. In this case, basis
filters are introduced in analogy with (5) for each individual input,
and separate support vector models of the form (20) are then iden-
tified for each output.

4. Numerical example

The purpose of the following simulated example is to illustrate
the properties of the identification method described in Section 3.
In [33,10] a valve for fluid flow control was modelled by the
equations

xðnÞ � 1:4138xðn� 1Þ þ 0:6065xðn� 2Þ
¼ 0:1044uðn� 1Þ þ 0:0883uðn� 2Þ ð21Þ

y0ðnÞ ¼
xðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:10þ 0:90xðnÞ2
q ð22Þ

where uðnÞ is a pneumatic control signal applied to the valve, xðnÞ is
the position of the valve plug and y0ðnÞ is the fluid flow. The fluid
flow measurement yðnÞ is given by

yðnÞ ¼ y0ðnÞ þ eðnÞ ð23Þ

where eðnÞ is measurement noise. The model (21) and (22) is a Wie-
ner model, with a second-order linear dynamic block having the
complex conjugate poles 0:7069� 0:3268j.

In this example the noise eðnÞ consists of independent normally
distributed random numbers with standard deviation 0.05. The in-
put u was generated using a pseudo-random binary signal alternat-
ing between �1 and +1 and having a basic clock period of seven
sampling intervals. In each time interval of constant signal level,
the input was multiplied by a random factor, uniformly distributed
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number between 0 and 0.4 added on a bias of 0.5. This gives the
signal an amplitude between 0.1 and 0.9. The same procedure of
generating the input signal was used in [10,33]. Two input–output
sequences consisting of 1000 samples each were generated as de-
scribed above. The training data sequence shown in Fig. 3 was used
for model identification, while the test data sequence in Fig. 4 was
used for model validation.
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Fig. 3. Traini
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Fig. 4. Tes
Although the system is described by a Wiener model, no knowl-
edge is assumed about the dynamics or the structure of the static
nonlinearity. Here the linear part (5) of the Wiener model was
expanded using Laguerre filters [30], i.e.,

Giðq�1Þ ¼ q�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

1� aq�1

q�1 � a
1� aq�1

� �i�1

; i ¼ 1;2; . . . ;M ð24Þ
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The static nonlinear block of the support vector Wiener model
(cf. Eq. (20)) was represented by gaussian kernels

KðxðnÞ;xðmÞÞ ¼ e�cjjxðnÞ�xðmÞjj2 ð25Þ

The Laguerre filter pole a, filter order M and kernel parameter
c > 0 are design parameters to be selected.

Support vector Wiener models based on the training sequence
in Fig. 3 were computed using the support vector machine program
package LIBSVM [5]. The SVR design parameters were selected by
cross-validation to minimize the root mean square error (RMSE)
for the test data sequence. Tables 1 and 2 show how the identifica-
tion results depend on the choice of design parameters. Table 1
shows the RMSEs achieved with various filter poles and orders. It
is seen that filter order M ¼ 5 minimizes the RMSE on test data
and results in the smallest number of support vectors. For higher
filter orders, overtraining results in larger mean square errors. As
Table 1
Root mean square errors between system output y and output ŷ of identified models
in example using various Laguerre filter poles a and filter orders M. The design
parameters were taken as � ¼ 0:08, C ¼ 2000 and c ¼ 0:1. ŷ denotes the output of the
identified Wiener model and y is the system output (23). The number of support
vectors (NSV) is also given.

a M RMSEðy� ŷÞ NSV

Training Test

0.4 1 0.1070 0.0967 337
2 0.0761 0.0729 224
3 0.0697 0.0680 212
4 0.0564 0.0577 165
5 0.0541 0.0556 146
6 0.0540 0.0559 161
8 0.0525 0.0556 168

0.1 5 0.0697 0.0694 210
0.2 0.0623 0.0634 194
0.3 0.0561 0.0575 160
0.5 0.0541 0.0564 152
0.6 0.0523 0.0553 153
0.7 0.0528 0.0623 176
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Fig. 5. Test data (last 100 samples). Measured system output yðnÞ (solid line), noisel
expected, increasing filter order results in smaller mean square er-
rors for training data. It is also seen that the value of Laguerre filter
pole is not very critical as long as extreme values (close to 0 or 1)
are avoided. Table 2 shows how the identification results depend
on the choice of support vector design parameters. It is seen that
a small � (high prediction accuracy) results in smaller RMSEs at
the expense of increased model complexity (support vectors).

The cross-validation approach gives SVR model accuracy
� ¼ 0:08, weight parameter C ¼ 2000, and kernel parameter c ¼
0:1. The Laguerre filter pole is a ¼ 0:4 and filter order is M ¼ 5.
The RMSEs between the model output ŷðnÞ and the measured sys-
tem output yðnÞ are 0.0541 for the training data and 0.0556 for the
test data, and between the model output and the noise-free system
output y0ðnÞ the values are 0.0218 and 0.0191, respectively. Fig. 5
shows the model output together with measured and noiseless
system outputs during the last 100 samples for the test data. The
output errors ŷðnÞ � yðnÞ and ŷðnÞ � y0ðnÞ are shown in Fig. 6. The
results show that the identified model describes training data
Table 2
Root mean square errors between system output y and output ŷ of identified models
in example using various values for design parameters �, C and c. A Laguerre-filter
expansion with pole a ¼ 0:4 and order M ¼ 5 was used. ŷ denotes the output of the
identified Wiener model and y is the system output (23). The number of support
vectors (NSV) is also given.

� C c RMSEðy� ŷ NSV

Training Test

0.08 200 0.1 0.0571 0.0567 146
1000 0.0548 0.0560 148
2000 0.0541 0.0556 146
4000 0.0539 0.0560 150

20,000 0.0538 0.0571 156
0.08 2000 0.01 0.0630 0.0611 167

0.2 0.0537 0.0567 150
1 0.0536 0.0783 187

0.04 2000 0.1 0.0531 0.0542 478
0.12 0.0573 0.0589 41

50 960 970 980 990 1000

50 960 970 980 990 1000
les

ess output y0ðnÞ (dashed line) and output of identified model ŷðnÞ (dotted line).
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Fig. 6. Output error for test data between model output ŷðnÞ and measured output yðnÞ (upper diagram) and noise-free output y0ðnÞ (lower diagram).
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and independent test data with equal accuracy, and hence it can be
concluded that the identified model incorporates the relevant dy-
namic behaviour of the system.

The accuracy achieved with the support vector regression
method can be compared to results obtained using a least-squares
prediction error method, in which the mean square error on train-
ing data is minimized. For the same system and noise characteris-
tics, Hagenblad [10] reports the minimum RMSE 0.049 (mean
square error 0.0024) on training data. Hence the support vector
method achieves comparable accuracy in terms of RMSE, although
the mean square error is not explicitly minimized in this method.

It should be noted that system (21), (22) studied in this example
has a model structure which is compatible with (2), and Wiener
model identification can therefore be expected to perform well
on this system. In general, it is important that the selected model
structure is compatible with the dynamic behaviour of the system
[2,22,23], and for other systems some other model class, such as
Hammerstein models, Wiener Hammerstein cascade models or
general nonlinear ARX models, may be a better choice.

5. Conclusion

Support vector regression has been applied to identify nonlinear
systems described by Wiener models, where the linear component
of the model is represented by a basis filter expansion, and the sta-
tic nonlinear block is represented by kernel functions. In this mod-
el structure, the model output is determined as a function of the
system input only, and it does not depend on the measured system
outputs. Similar Wiener model structures have been used by
[9,34,29]. The support vector method is well suited to this kind
of system identification problem, as the model can be determined
by solving a convex quadratic minimization problem, for which
convergence to the global optimum is obtained. In contrast, meth-
ods where the nonlinearity is described by a multilayer perceptron
[29,34] require the solution of nonlinear minimization problem
which may have local minima. Moreover, support vector regres-
sion is based on structural risk minimization, which introduces ro-
bust performance with respect to new data.
Numerical simulations show that the procedure gives accurate
models of systems which have a Wiener model structure, and for
a Wiener model benchmark problem an output error comparable
to the error obtained using a least-squares prediction error method
reported in the literature was achieved.
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