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Abstract In this paper some transformation techniques, based on power transformations,
are discussed. The techniques can be applied to solve optimization problems including signo-
mial functions to global optimality. Signomial terms can always be convexified and underes-
timated using power transformations on the individual variables in the terms. However, often
not all variables need to be transformed. A method for minimizing the number of original
variables involved in the transformations is, therefore, presented. In order to illustrate how
the given method can be integrated into the transformation framework, some mixed integer
optimization problems including signomial functions are finally solved to global optimality
using the given techniques.

Keywords Transformation and convexification techniques · Signomial functions ·
Global optimization · Mixed integer non-linear programming

1 Introduction

The transformation techniques presented in this paper are especially useful when solving opti-
mization problems including constraints composed of a convex and a signomial function.
Such constraints can be convexified and underestimated by applying power transformations
to the individual variables in the signomial terms, as long as, the inverse transformations
of the power transformations are approximated with piecewise linear functions. The under-
estimation property is important when developing global optimization approaches, since it
ensures that the feasible region of the convexified problem overestimates that of the original
one. When the transformations are applied, the original non-convex feasible region is con-
vexified and overestimated, as well as, divided into convex sub-regions by the variables used
in the piecewise linear approximations of the inverse transformations. These transformation
methods are studied in, for example [2,7].
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The fact that often not all variables need to be transformed in a term to be convexified,
gives some degree of freedom regarding how the transformations can be chosen. Thus, to
allow for a more efficient solution of the problem, the amount of transformations should be
kept to a minimum, for which a method, of determining the optimal set of transformations
convexifying the problem, is presented.

With the given techniques, some general classes of non-convex MINLP (mixed integer
non-linear programming) problems can be solved to global optimality. The globally optimal
solution to the original non-convex problem can be found by solving a sequence of convex-
ified MINLP sub-problems. After each iteration, a part of the infeasible region is cut off when
the piecewise linear approximations are updated. The algorithm terminates when a solution
point is sufficiently close to, or within, the feasible region of the original problem.

2 The MINLP problem

A non-convex MINLP problem, which can be solved to global optimality by the transforma-
tion method can be written as

min f (z), z = (z1, z2, . . . , zI ),

s.t. Az = a, Bz ≤ b,

gn(z) ≤ 0, n = 1, 2, . . . , Jn,

qm(z) + σm(z) ≤ 0, m = 1, 2, . . . , Jm .

(1)

Different methods to solve the convexified MINLP sub-problems can be applied. If the
method used is the extended cutting plane (ECP) method [10], the objective function f in (1)
can be differentiable pseudo-convex, and g, q and σ pseudo-convex, convex and signomial
functions respectively. The vector z can consist of both continuous variables in a compact
subset of a finite dimensional Euclidian space, as well as, integer variables in a finite dimen-
sional integer set. The matrices A and B, as well as, the vectors a and b should consist of
constants only, and be of appropriate dimensions.

3 The convexity of signomial functions

The signomial functions, σ , in problem (1) are defined as the sum of signomial terms, where
each term is a product of power functions, i.e.,

σm(z) =
J∑

j=1

c j

I∏

i=1

z
p ji
i , (2)

where c j , p ji ∈ R. Obviously, a signomial function, σ , is convex if all the terms are convex.
From now on, it is assumed that only non-convex signomial terms are included in the func-
tion, since it is always possible to move the convex signomial terms into the convex function
q in (1). There are several different techniques for transforming non-convex signomial terms,
such as the exponential transformation [6] and the inverse transformation [7]. The inverse
transformation can be regarded as a special case of the transformation techniques, based on
power transformations [9], used here. Convexity requirements for signomial terms are given
by the following Theorem from [5]:
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Theorem 1 A positive signomial term s(z) = c
∏I

i=1 z pi
i is convex if one of the following

statements is true

(i) pi ≤ 0, ∀i = 1, . . . , I ,
(i i) ∃k : pk + ∑

i �=k pi ≥ 1, where pi ≤ 0, ∀i = 1, . . . , I : i �= k,

and a negative signomial term s(z) = c
∏I

i=1 z pi
i is convex if pi ≥ 0, ∀i = 1, . . . , I, and∑I

i=1 pi ≤ 1.

From Theorem 1 it can be deduced that it is always possible to convexify signomial terms
using power transformations, and this fact will be used in the following chapter to convexify
non-convex signomial terms.

4 The transformation approach

Using power transformations of the form z = Z Q to transform the signomial terms does con-
vexify the terms for certain values of the powers Q, but only by moving the non-convexities
from the signomial terms to the constraints introduced by the power transformations. How-
ever, by approximating the inverse power transformations, Z = z1/Q , with piecewise linear
functions, the whole problem can be convexified on the condition that the approximation of
each transformed signomial term underestimates the original one. This can be guaranteed
by introducing certain restrictions on the transformations. The transformation methods, as
well as, the underestimation properties used in this paper, have been previously presented
in, for example, [2,3,7,9]. Since the convexity requirements are different for positive and
negative signomial terms, the power transformations applied to the individual variables must
also fulfill different conditions depending on the sign of the term.

4.1 Convexifying and underestimating negative terms

According to Theorem 1, a negative signomial term is convex if all the powers are positive
and their sum is less than or equal to one. By using the power transformation

zi = Z Qi
i ⇒ Zi = z1/Qi

i

on each original variable zi included in the term, with the following conditions on the
powers Q

⎧
⎪⎨

⎪⎩

Qi > 0, if pi > 0,

Qi < 0, if pi < 0,

Qi = 0, if pi = 0,

the term will be convexified, as long as the following inequality is true:

I∑

i=1

pi Qi ≤ 1. (3)

Note that each term pi Qi in (3) should be positive. Thus, the sum in the inequality is always
larger than zero for negative signomial terms and the inequality can always be satisfied if
Qi is chosen close enough to zero from either the positive or the negative side. Applying the
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power transformations to the individual variables with the powers Q defined as above, yields
the following expression for the transformed signomial term

c
I∏

i=1

Z pi Qi
i . (4)

For the signomial term to be underestimated when approximating the individual power trans-
formations with piecewise linear functions, the powers Q have to fulfill certain criteria [9],
and when combining these with the convexification conditions, the following requirements
are received for the signomial term to be convexified and underestimated:

{
0 < Qi ≤ 1, if pi > 0,

Qi < 0, if pi < 0,
and

I∑

i=1

pi Qi ≤ 1. (5)

4.2 Convexifying and underestimating positive terms

According to Theorem 1, a positive signomial term is convex if all powers are negative, or at
most one power is positive and the sum of the powers is greater than or equal to one. Using
the power transformation

zi = Z Qi
i ⇒ Zi = z1/Qi

i

on each original variable zi included in the term, with the following conditions on the
powers Q

⎧
⎪⎨

⎪⎩

Qi > 0, if pi > 0 ∧ i = k,

Qi < 0, if pi > 0 ∧ i �= k,

Qi = 1, if pi < 0.

will convexify the term. The index k : 1 ≤ k ≤ I , which may or may not exist, corresponds
to the power remaining positive after the transformation, i.e., the product pk Qk should be
positive, while the products pi Qi should be negative for all other indices i �= k. If a power
is positive after the transformation, the sum of the powers has to be larger or equal to one.
Thus, in this case, the following condition must also be fulfilled

I∑

i=1

pi Qi ≥ 1.

Furthermore, since a variable with a negative power does not need to be transformed, the
power Q is equal to one for all the negative powers. After the transformation, the signomial
term will look like expression (4). As in the case with the negative signomial term, the powers
Q must, furthermore, fulfill certain criteria for the signomial term to be underestimated [9].
The combination of these criteria with the convexification requirements yields the following
conditions on the powers Q:

⎧
⎪⎨

⎪⎩

Qi ≥ 1, if pi > 0 ∧ i = k,

Qi < 0, if pi > 0 ∧ i �= k,

Qi = 1, if pi < 0.

Using power transformations of the mentioned form ensures that it is always possible to con-
vexify non-convex signomial terms. The transformed term is also underestimated whenever
the inverse power transformations are approximated by piecewise linear functions.
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4.3 Piecewise linear functions using special ordered sets

One way to model piecewise linear functions is using so-called special ordered sets (SOS).
This method is usually computationally more efficient than methods using binary variables.
A special ordered set of type 2 is a set of variables (integers, continuous or mixed integer and
continuous), where at most two variables may be non-zero, and if two variables are non-zero,
they must be adjacent in the set.

The following method of approximating piecewise linear functions using SOS is from
[1]: A piecewise linear approximation of the inverse power transformations, Z = z1/Q , with
the values Zk = z1/Q

k at the breakpoints zk , for k = 1, . . . , K , can be written as

Ẑ =
K∑

k=1

Zk · wk, wk ≥ 0,

where

z =
K∑

k=1

zk · wk,

K∑

k=1

wk = 1,

and {wk}K
i=1 is a special ordered set of type 2 with the weights {zk}K

k=1. The weights are used
in the MILP algorithm to order the variables, and therefore, all weights must have different
values. Here, this requirement means that zk �= z j for all k �= j . It should be noted that,
when applying several different transformations Z = z1/Q to the same original variable z in
different signomial terms, the same variables wk can still be used in all the piecewise linear
approximations of the different inverse transformations.

4.4 An example of a one-dimensional underestimation

All terms in the non-convex function

f (x) = (x4 + 79.5x2 − 170x + 120) − 15x3, 1 ≤ x ≤ 6,

are convex, except for −15x3. Using the power transformation x = X Q with Q = 1/3 and
approximating X with a piecewise linear function X̂ taking values Xk at the breakpoints xk ,
gives the following expression for the function f (x, X̂):

f (x, X̂) = (x4 + 79.5x2 − 170x + 120) − 15X̂

X̂ =
K∑

k=1

Xk · wk, wk ≥ 0,

x =
K∑

k=1

xk · wk,

K∑

k=1

wk = 1.

The underestimations of the function f (x) in K = 1, 2, 4, 8 equidistant steps are illus-
trated in Fig. 1.

5 Optimization of the transformations

The convexification and underestimation requirements mentioned above sometimes allow
for the power Q to take the value one, indicating that no transformation occurs. A method for
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Fig. 1 The function f (x) = (x4 + 79.5x2 − 170x + 120) − 15x3 and the convex underestimations f (x, X̂)

in K = 1, 2, 4, 8 steps (a) K = 1 (b) K = 2 (c) K = 4 (d) K = 8

optimizing the transformation approach [4], is described in this chapter, making it possible
to determine which variables need to be transformed, as well as, what values of the powers
should be used in the transformations.

The index j now corresponds the j-th non-convex signomial term in the MINLP problem,
which has a total of JT non-convex signomial terms. By introducing a binary variable b ji

taking the value one if the i-th variable in the j-th signomial term is transformed by a power
transformation, and zero otherwise, the transformed signomial term can be written as

c j

I∏

i=1

z
(1−b ji )p ji
i · Z

b ji p ji Q ji
j i ,

since z(1−b)p · ZbpQ simplifies to z p whenever b is zero and to Z pQ if b is one. A mixed inte-
ger linear programming (MILP) problem with the objective being to minimize the number
of transformations required to convexify and underestimate the non-convex signomial terms
can then be formulated. The total number of transformations required are

JT∑

j=1

I∑

i=1

b ji . (6)
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However, as mentioned previously, when approximating the inverse transformations with
piecewise linear functions, the same variables can be used in the different linear approxi-
mations, even if the power transformations used are not the same. Therefore, it is of greater
importance to minimize the total number of original variables transformed and thus minimiz-
ing the number of variables needed for the piecewise linear approximations of the inverse
transform. This is accomplished by introducing a new binary variable Bi , for each of the
original variables included in the signomial terms, being equal to one if the i-th variable is
involved in any transformation and zero otherwise. This can be expressed as

JT∑

j=1

b ji ≤ JT Bi .

Minimizing the number of original variables transformed, but still also favoring solutions
with less transformations, the sum (6), multiplied with a small positive number δ1, is addi-
tionally included in the objective function. Furthermore, variables � corresponding to the
deviation of the powers Q from +1 or −1, depending on whether Q is positive or negative are
introduced. To promote powers Q closer to +1 or −1 an additional penalty term is included
(multiplied with δ2) in the objective function. Hence, the final objective function becomes:

I∑

i=1

Bi + δ1

JT∑

j=1

I∑

i=1

b ji + δ2

JT∑

j=1

I∑

i=1

� j i . (7)

The requirements on the binaries B and the deviations � can be expressed as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

JT∑
j=1

b ji ≤ JT Bi ,

Q ji − � j i + Mβ j i ≤ M + 1,

−Q ji − � j i + Mβ j i ≤ M − 1,

and

⎧
⎪⎨

⎪⎩

Q ji − � j i − Mβ j i ≤ −1,

−Q ji − � j i − Mβ j i ≤ 1,

M(β j i − 1) ≤ Q ji ≤ Mβ j i ,

(8)

where M is a large positive number and � is the deviation from +1 or −1 if Q is positive
(when the binary β = 1) or negative (when the binary β = 0), respectively. The weights
δ1 and δ2 can be given different values depending on what types of transformations are
wanted; increasing the value of δ1 promotes less transformations and the value of δ2 results
in numerically more stable transformations.

Conditions guaranteeing that the term is convex after transformation must also be added to
the linear problem. Because the convexity requirements for positive and negative signomial
terms are different, the formulations of these conditions are also different in the two cases.

5.1 Conditions for the negative signomial terms

For a positive power (p > 0) in a negative signomial term (c < 0), conditions must be
included that ensure that whenever a transformation is necessary (b = 1) then Q must be
between zero and one, and also, whenever a transformation is not needed (b = 0), then Q
should be equal to one. Furthermore, for the convexified term to be convex, the sum of the
products p ji Q ji should be less or equal to one, so the following inequality must also be
included:

I∑

i=1

p ji Q ji ≤ 1. (9)
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These requirements can be formulated by the following inequalities:
⎧
⎪⎨

⎪⎩

Q ji ≥ 1 − b ji ,

Q ji ≤ 1 − ε b ji ,

Q ji ≥ ε,

⇒
{

b ji = 0 : Q ji = 1,

b ji = 1 : ε ≤ Q ji ≤ 1 − ε.
(10)

A constant ε = 1/M , where M is a large positive number, has been used to receive practical
bounds on the powers Q.

For a negative power (p < 0) in a negative signomial term (c < 0), a transformation is
always necessary and Q should be negative, resulting in the requirements:

b ji = 1 and − M ≤ Q ji ≤ −ε. (11)

5.2 Conditions for the positive signomial terms

In the case of a positive signomial term (c > 0), more freedom exists regarding how the
transformations can be chosen, since there are two different ways to convexify the term
according to Theorem 1: Either all variables have negative powers after the transformation,
or one has a positive power, and the rest have negative powers. Furthermore, if a positive
power exists after the transformation, the sum of the powers must be greater than or equal
to one. Therefore, a binary variable α j i , equal to one if zi in the j-th signomial term has a
positive power and equal to zero otherwise, is introduced, At most one variable per term is
allowed to have a positive power after the transformation, so the following requirement must
be included:

I∑

i=1

α j i ≤ 1. (12)

For a variable with positive power after the transformation (α = 1), the variable Q should
be greater or equal to one, and smaller than zero for the rest of the variables (α = 0). This
can be expressed by the following inequalities:

{
Q ji ≤ α j i M − ε(1 − α j i ),

Q ji ≥ −M + α j i (M + 1),
⇒

{
α j i = 0 : −M ≤ Q ji ≤ −ε,

α j i = 1 : 1 ≤ Q ji ≤ M.
(13)

Also, the binary b, indicating whether a transformation occurs or not, should be equal to zero
when α and Q both are equal to one, and equal to one otherwise. These conditions can be
formulated as:

⎧
⎪⎨

⎪⎩

b ji ≥ 1 − α j i ,

b ji ≥ ε(Q ji − 1),

b ji ≤ (1 − ε)Q ji + M(1 − α j i ),

⇒

⎧
⎪⎨

⎪⎩

α j i = 0 ∧ Q ji < 0 : b ji = 1,

α j i = 1 ∧ Q ji = 1 : b ji = 0,

α j i = 1 ∧ Q ji ≥ 1
1−ε

: b ji = 1.

(14)

In these inequalities, the same values on M and ε can be used as in the case with the
negative signomial terms. For a variable originally having a negative power (p < 0), no
transformation is needed, so

Q ji = 1, b ji = 0 and α j i = 0. (15)

The convexity condition for a positive signomial term is, according to Theorem 1, that if a
variable has a positive power after the transformation (i.e.,

∑I
i=1 α j i = 1) then the sum of

the powers in the term should be greater than or equal to one, and otherwise less than zero.
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Hence the following expression (where M is a large positive number) must be included for
each positive signomial term:

I∑

i=1

p ji Q ji − M
I∑

i=1

α j i ≥ 1 − M. (16)

Solving a MILP problem minimizing (7) subject to the linear requirements in (8–16) will
indicate, not only how many transformations are required to convexify and underestimate
the original MINLP problem (1) but also, which power transformations should be used.

5.3 Some numerical considerations

Since signomial terms (transformed or not transformed) can include power terms with both
small and large powers, numerical difficulties may appear in the calculation of individual
terms. A simple approach to overcome some numerical difficulties of this form is suggested
here.

The variables being transformed are defined by the index set I j . Now, observe that if
variables are transformed in the j-th signomial term, the convexified signomial term under-
estimating the original term (i.e., ŝ j (z) ≤ s j (z)), can be written as

ŝ j (z) = c j

∏

i∈I j

Ẑ
p ji Q ji
j i ·

∏

i /∈I j

z
p ji
i , (17)

where the first product corresponds to the estimated transformation variables, given by piece-
wise linear functions of the inverse transformations, and the second product to all other vari-
ables (not transformed). The piecewise linear approximations of the inverse transformations
at Ki breakpoints zi,k of the variables zi are in explicit form, according to Chapter 4.3, given
by the expressions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ẑ j i =
Ki∑

k=1

z
1/Q ji
i,k · wi,k,

zi =
Ki∑

k=1

zi,k · wi,k,

Ki∑

k=1

wi,k = 1,

∀i ∈ I j . (18)

In order to overcome possible numerical difficulties arising from small and large powers
in Eq. 17, an alternative is to rewrite the equation as follows:

ŝ j (z) = exp

⎡

⎣ln(c j ) +
∑

i∈I j

(p ji Q ji ) · ln(Ẑ j i ) +
∑

i /∈I j

p ji · ln(zi )

⎤

⎦ . (19)

Using this approach, the j-th signomial term (17) can be expressed in the numerically more
stable form (19).

6 The GGPECP algorithm

The GGPECP algorithm, described in [11], combines the transformation techniques pre-
sented in Chapters 4 and 5 with the extended cutting plane (ECP) algorithm from [10], to
solve non-convex MINLP problems containing signomial functions to global optimality as a
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sequence of convexified sub-problems. The algorithm also utilizes information from previous
iterations to make it possible to reach the solution more efficiently.

Before the first iteration, an initial transformation is performed, where the non-convex
signomial terms are convexified using, for example, the power transformations mentioned
earlier. By approximating and underestimating the inverse power transformation with piece-
wise linear functions, the feasible region of the convexified problem is overestimated. If the
solution found by solving the convexified problem is feasible also in the original problem, it
is the globally optimal solution, and the algorithm can be terminated. Otherwise, additional
break points are added to the piecewise linear approximations of the inverse transformations,
after which the new sub-problem is solved. In [11] different strategies for which grid points
to add in each step are discussed. One of the strategies is to add the values of the variables
from the solution of the previous iteration as new grid points, and this method is implemented
in the following example.

6.1 A numerical example in two dimensions

The following is a two dimensional MINLP problem:

min y − 3x,

s.t. y + 5x ≤ 36, −y + 0.25x ≤ −1,

(2y2 − 2y0.5 + 11y + 8x − 39) − 2x0.5 y2 + 0.1x1.5 y1.5 ≤ 0,

1 ≤ x ≤ 7, 1 ≤ y ≤ 7, x ∈ R
+, y ∈ Z

+.

(20)

The integer-relaxed feasible region of this problem is divided into two disjoint regions
as shown in Fig. 2. All inequalities, as well as, the objective function in this problem are
linear, except for the generalized signomial constraint. This constraint is the sum of a convex
function and a signomial function consisting of two non-convex signomial terms. Applying
the method described in Chapter 5 (with the weights δ1 = 0.01 and δ2 = 0.001) to the non-
convex terms gives the MILP problem in Appendix A. Solving the MILP problem gives that
the variable x does not need to be transformed at all, while the variable y will be transformed
in both terms according to:

y = Y 0.25
1 ⇒ Y1 = y4,

y = Y −1/3
2 ⇒ Y2 = y−3.

(21)

By replacing the variable y in the non-convex terms with Y1 and Y2, the generalized
signomial constraint can be written in convex form as:

(2y2 − 2y0.5 + 11y + 8x − 39) − 2x0.5Y 0.5
1 + 0.1x1.5Y −0.5

2 ≤ 0. (22)

The inverse transformations Y1 = y4 and Y2 = y−3 are approximated by piecewise linear
functions with initial breakpoints y = 1 and y = 7 according to:

Ŷ1 = 1 · w1 + 2401 · w2,

Ŷ2 = 1 · w1 + 0.0029 · w2,

y = 1 · w1 + 7 · w2,

w1 + w2 = 1,

where w1 and w2 belong to a special ordered set of type 2. Using these approximations
(i.e., replacing Y1 and Y2 with Ŷ1 and Ŷ2 in Eq. 22) the feasible region of the problem is
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Fig. 2 The original integer-relaxed feasible region of the MINLP problem (20)

overestimated, which is illustrated in Fig. 3a. Solving the convexified MINLP problem gives
the solution x = 6.6, y = 3, the objective value −16.8 and the value 23.9035 of the original
generalized signomial constraint. By adding the solution point y = 3 as an additional grid
point to the linear approximations in the next iteration, the approximation is improved:

Ŷ1 = 1 · w1 + 81 · w2 + 2401 · w3,

Ŷ2 = 1 · w1 + 0.0370 · w2 + 0.0029 · w3,

y = 1 · w1 + 3 · w2 + 7 · w3,

w1 + w2 + w3 = 1.

The feasible region of the problem at iteration 2 is shown in Fig. 3b. Note that the previous
solution point is infeasible in the new feasible region.

Solving the problem again with the updated piecewise linear approximations gives the
solution x = 6.4, y = 4, the objective value −15.2 and the value 16.1984 of the original
signomial constraint. Since the signomial constraint is not yet satisfied, more iterations are
needed. Adding the solution value y = 4 as a new grid point to the linear approximation
gives:

Ŷ1 = 1 · w1 + 81 · w2 + 256 · w3 + 2401 · w4,

Ŷ2 = 1 · w1 + 0.0370 · w2 + 0.0156 · w3 + 0.0029 · w4,

y = 1 · w1 + 3 · w2 + 4 · w3 + 7 · w4,

w1 + w2 + w3 + w4 = 1.

The new feasible region is shown in Fig. 3c, and the solution found in this iteration is
x = 6.2, y = 5, the objective value −13.6 and the value 3.8889 of the original signomi-
al constraint. Again updating the grid points with the previous solution (y = 5) gives the
following linear approximation:

Ŷ1 = 1 · w1 + 81 · w2 + 256 · w2 + 625 · w4 + 2401 · w5,

Ŷ2 = 1 · w1 + 0.0370 · w2 + 0.0156 · w3 + 0.0080 · w4 + 0.0029 · w5,

y = 1 · w1 + 3 · w2 + 4 · w3 + 5 · w4 + 7 · w5,

w1 + w2 + w3 + w4 + w5 = 1.
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(b)(a)

(d)(c)

Fig. 3 The overestimated integer-relaxed feasible region of the problem during the GGPECP iterations. The
solution point at each iteration is marked in black

The final overestimated feasible region is shown in Fig. 3d. Solving this problem gives the
solution x = 6 and y = 6 with the objective function value −12, which is globally optimal,
since the value of the generalized signomial constraint is −12.6622 and the solution was
obtained in an overestimated feasible region.

6.2 A geometric programming example

The following example is a geometric programming problem from [8], and includes a sig-
nomial objective function, as well as, seven signomial inequality constraints. In total eight
variables are used.

min 2.0 z0.9
1 z−1.5

2 z−3
3 + 5.0 z−0.3

4 z2.6
5 + 4.7 z−1.8

6 z−0.5
7 z8,

s.t. 7.2 z−3.8
1 z2.2

2 z4.3
3 + 0.5 z−0.7

4 z−1.6
5 + 0.2 z4.3

6 z−1.9
7 z8.5

8 ≤ 1,

10.0 z2.3
1 z1.7

2 z4.5
3 ≤ 1, 0.6 z−2.1

4 z0.4
5 ≤ 1,

6.2 z4.5
6 z−2.7

7 z−0.6
8 ≤ 1, 3.1 z1.6

1 z0.4
2 z−3.8

3 ≤ 1,

3.7 z5.4
4 z1.3

5 ≤ 1, 0.3 z−1.1
6 z7.3

7 z−5.6
8 ≤ 1.
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Table 1 The original terms, the transformed terms, as well as, the obtained power transformations to transform
the problem (23)

Original term Transformed term Transformations

2.0 z0.9
1 z−1.5

2 z−3
3 2.0 Z−0.9

1,1 z−1.5
2 z−3

3 z1 = Z−1
1,1

4.7 z−1.8
6 z−0.5

7 z8 4.7 z−1.8
6 z−0.5

7 Z−1
2,8 z8 = Z−1

2,8

7.2 z−3.8
1 z2.2

2 z4.3
3 7.2 z−3.8

1 Z−2.2
3,2 Z7

3,3 z2 = Z−1
3,2, z3 = Z1.6279

3,3

0.2 z4.3
6 z−1.9

7 z8.5
8 0.2 z4.3

6 z−1.9
7 Z−1.4

4,8 z8 = Z−0.16471
4,8

10.0 z2.3
1 z1.7

2 z4.5
3 10.0 Z−1.8

5,1 Z−1.7
5,2 z4.5

3 z1 = Z−0.78261
5,1 , z2 = Z−1

5,2

0.6 z−2.1
4 z0.4

5 0.6 z−2.1
4 Z−0.4

6,5 z5 = Z−1
6,5

3.1 z1.6
1 z0.4

2 z−3.8
3 3.1 Z5.2

7,1 Z−0.4
7,2 z−3.8

3 z1 = Z3.25
7,1 , z2 = Z−1

7,2

3.7 z5.4
4 z1.3

5 3.7 z5.4
4 Z−1.3

8,5 z5 = Z−1
8,5

0.3 z−1.1
6 z7.3

7 z−5.6
8 0.3 z−1.1

6 Z−7.3
9,7 z−5.6

8 z7 = Z−1
9,7

The underlined terms are convex, and can therefore be included in the convex functions
q in (1), whilst the rest of the terms are included in the signomial functions σ . Utilizing
the method from Chapter 5 (with the weights δ1 = 0.01 and δ2 = 0.0001) to obtain the
transformations, results in 12 power transformations in total being needed to convexify and
underestimate the signomial terms, and that the variables z4 and z6 do not require any trans-
formation at all. The resulting convexified terms and the power transformations needed for
the transformations are given in Table 1. Solving the convexified and underestimated problem
with the GGPECP algorithm gives the objective value 29.2291 and the following variable
values:

z1 = 0.9688, z2 = 0.1990, z3 = 1.1213, z4 = 0.7844,

z5 = 1.0022, z6 = 0.7007, z7 = 1.0934, z8 = 0.9717.

This solution is slightly better than in [8], where the objective value was 29.5985.

7 Conclusions

Transformation techniques that can be used on optimization problems involving non-convex
signomial terms were discussed in this paper. The techniques are based on power transfor-
mations in combination with piecewise linear approximations of the inverse power transfor-
mations. This makes it possible to convexify and underestimate signomial constraints and to
solve problems including signomial functions to global optimality. An optimization method
for obtaining the power transformations was presented, and applying this method in an initial
convexification step in the GGPECP algorithm allows for the possibility to solve signomial
problems more efficiently. In order to illustrate the transformation techniques, two problems
involving signomial terms were solved to global optimality in the paper.

Appendix A

Below is the MILP problem (using M = 10, δ1 = 0.01 and δ2 = 0.001) to obtain the power
transformations in the example in Sect. 6.1.
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Minimize BB(0,0) + BB(1,1)
+ 0.01 b(0,0) + 0.01 b(0,1) + 0.01 b(1,0) + 0.01 b(1,1) + 0.001
delta(0,0) + 0.001 delta(0,1) + 0.001 delta(1,0) + 0.001 delta(1,1)
Subject to
Eq9(0): 0.5 Q(0,0) + 2 Q(0,1) <= 1
Eq8_0(0): b(0,0) + b(1,0) - 2 BB(0,0) <= 0
Eq8_1(0,0): Q(0,0) - delta(0,0) + 10 beta(0,0) <= 11
Eq8_2(0,0): -Q(0,0) - delta(0,0) + 10 beta(0,0) <= 9
Eq8_3(0,0): Q(0,0) - delta(0,0) - 10 beta(0,0) <= -1
Eq8_4(0,0): -Q(0,0) - delta(0,0) - 10 beta(0,0) <= 1
Eq8_5(0,0): -Q(0,0) + 10 beta(0,0) <= 10
Eq8_6(0,0): Q(0,0) - 10 beta(0,0) <= 0
Eq10_1(0,0): Q(0,0) + b(0,0) >= 1
Eq10_2(0,0): Q(0,0) + 0.1 b(0,0) <= 1
Eq8_1(0,1): Q(0,1) - delta(0,1) + 10 beta(0,1) <= 11
Eq8_2(0,1): -Q(0,1) - delta(0,1) + 10 beta(0,1) <= 9
Eq8_3(0,1): Q(0,1) - delta(0,1) - 10 beta(0,1) <= -1
Eq8_4(0,1): -Q(0,1) - delta(0,1) - 10 beta(0,1) <= 1
Eq8_5(0,1): -Q(0,1) + 10 beta(0,1) <= 10
Eq8_6(0,1): Q(0,1) - 10 beta(0,1) <= 0
Eq10_1(0,1): Q(0,1) + b(0,1) >= 1
Eq10_2(0,1): Q(0,1) + 0.1 b(0,1) <= 1
Eq12(1): alpha(1,0) + alpha(1,1) <= 1
Eq8_0(1): b(0,1) + b(1,1) - 2 BB(1,1) <= 0
Eq8_1(1,0): Q(1,0) - delta(1,0) + 10 beta(1,0) <= 11
Eq8_2(1,0): -Q(1,0) - delta(1,0) + 10 beta(1,0) <= 9
Eq8_3(1,0): Q(1,0) - delta(1,0) - 10 beta(1,0) <= -1
Eq8_4(1,0): -Q(1,0) - delta(1,0) - 10 beta(1,0) <= 1
Eq8_5(1,0): -Q(1,0) + 10 beta(1,0) <= 10
Eq8_6(1,0): Q(1,0) - 10 beta(1,0) <= 0
Eq13_1(1,0): Q(1,0) - 10.1 alpha(1,0) <= - 0.1
Eq13_2(1,0): Q(1,0) - 11 alpha(1,0) >= -10
Eq14_1(1,0): b(1,0) + alpha(1,0) >= 1
Eq14_2(1,0): b(1,0) - 0.1 Q(1,0) >= -0.1
Eq14_3(1,0): b(1,0) + 10 alpha(1,0) - 0.9 Q(1,0) <= 10
Eq8_1(1,1): Q(1,1) - delta(1,1) + 10 beta(1,1) <= 11
Eq8_2(1,1): -Q(1,1) - delta(1,1) + 10 beta(1,1) <= 9
Eq8_3(1,1): Q(1,1) - delta(1,1) - 10 beta(1,1) <= -1
Eq8_4(1,1): -Q(1,1) - delta(1,1) - 10 beta(1,1) <= 1
Eq8_5(1,1): -Q(1,1) + 10 beta(1,1) <= 10
Eq8_6(1,1): Q(1,1) - 10 beta(1,1) <= 0
Eq13_1(1,1): Q(1,1) - 10.1 alpha(1,1) <= - 0.1
Eq13_2(1,1): Q(1,1) - 11 alpha(1,1) >= -10
Eq14_1(1,1): b(1,1) + alpha(1,1) >= 1
Eq14_2(1,1): b(1,1) - 0.1 Q(1,1) >= -0.1
Eq14_3(1,1): b(1,1) + 10 alpha(1,1) - 0.9 Q(1,1) <= 10
Eq16(1): 1.5 Q(1,0) + 1.5 Q(1,1) - 10 alpha(1,0) - 10 alpha(1,1) >= -9
Bounds
0.1 <= Q(0,0) <= 10
0.1 <= Q(0,1) <= 10
-10 <= Q(1,0) <= 10
-10 <= Q(1,1) <= 10
Binaries
BB(0,0) BB(1,1) b(0,0) b(0,1) b(1,0) b(1,1)
beta(1,0) beta(1,1) beta(0,1) beta(0,0) alpha(1,0) alpha(1,1)
End

Solving the MILP problem gives the minimum as 1.0214 with the following non-zero values of the variables:

BB(1,1)=1; b(0,1)=1; b(1,1)=1; beta(0,0)=1; beta(0,1)=1;
beta(1,0)=1; alpha(1,0)=1; delta(1,0)=0.75; delta(1,1)=0.66667;
Q(0,0)=1; Q(0,1)=0.25; Q(1,0)=1; Q(1,1)=-0.33333.
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