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Abstract

Let Z be a maximal nonnegative subspace of a Kreı̆n space X , and let X /Z be the quotient of X
modulo Z . Define

H(Z) = {
h ∈ X /Z

∣∣ sup
{−[x, x]X

∣∣ x ∈ h
}

< ∞}
.

It is proved that sup{−[x, x]X | x ∈ h} � 0 for h ∈ H(Z), and that H(Z) is a Hilbert space with norm

‖h‖H(Z ) = (
sup

{−[x, x]X
∣∣ x ∈ h

})1/2
,

which is continuously contained in X /Z , and the properties of this space are studied. Given any funda-
mental decomposition X = −Y [�] U of X , the subspace Z can be written as the graph of a contraction
A : U → Y . There is a natural isomorphism between X /Z and Y , and under this isomorphism the space
H(Z) is mapped isometrically onto the complementary space H(A) of the range space of A studied by
de Branges and Rovnyak. The space H(Z) is used as state space in a construction of a canonical pas-
sive state/signal shift realization of a linear observable and backward conservative discrete time invariant
state/signal system with a given passive future behavior, equal to a given maximal nonnegative right-shift
invariant subspace Z of the Kreı̆n space X = k2+(W) of all �2-sequences on Z

+ with values in the Kreı̆n
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signal space W . This state/signal realization is related to the de Branges–Rovnyak model of a linear ob-
servable and backward conservative scattering input/state/output system whose scattering matrix is a given
Schur class function in the same way as H(Z) is related to H(A).
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The main result of this article concerns the geometry of Kreı̆n spaces, and it describes the
relationship between the orthogonal companion Z [⊥] of a maximal nonnegative subspace Z of
a Kreı̆n space X and a certain Hilbert space H(Z) that is continuously (but not necessarily
densely) contained in the quotient space X /Z . This result was discovered as a byproduct of our
continuing research on passive linear discrete time invariant s/s (state/signal) systems, which so
far has resulted in the publications [2–5]. The subspace H(Z) can be interpreted as a coordinate
free version of the de Branges complement of the range space of a contractive operator A between
two Hilbert spaces U and Y , as will be explained in more detail in Section 3.

Let Z be a maximal nonnegative subspace of a Kreı̆n space X , and let X /Z be the quotient
of X modulo Z . Define

H(Z) = {
h ∈ X /Z

∣∣ sup
{−[x, x]X

∣∣ x ∈ h
}

< ∞}
. (1.1)

As we shall prove in Theorem 2.3, sup{−[x, x]X | x ∈ h} � 0 for h ∈ H(Z), and H(Z) is a
Hilbert space with norm

‖h‖H(Z ) = (
sup

{−[x, x]X
∣∣ x ∈ h

})1/2
, h ∈ H(Z), (1.2)

which is continuously contained in X /Z . In Lemma 2.4 we prove that the following “Schwarz
type” inequality

∣∣[x, z]X
∣∣2 � [z, z]X

([x, x]X + ‖h‖2
H(Z )

)
, h ∈ H(Z), x ∈ h, z ∈ Z, (1.3)

holds, and that it collapses to an equality if and only if either [z, z]X = 0 or [z, z]X �= 0 and
x = ([x, z]X /[z, z]X )z + z† for some z† ∈ Z [⊥], where Z [⊥] is the orthogonal companion of Z
in X , i.e.,

Z [⊥] = {
x ∈ X

∣∣ [x, z]X = 0 for all z ∈ Z
}
. (1.4)

In Lemma 2.4 and Theorem 2.5 we prove a number of additional results about the space H(Z),
such as the following. Define the subspace H0(Z) of X /Z by

H0(Z) := {
z† + Z

∣∣ z† ∈ Z [⊥]}, (1.5)

where z† + Z stands for the equivalence class in X /Z which contains z†. Then H0(Z) ⊂ H(Z),
and the supremum in (1.1) is achieved if and only if h ∈ H0(Z). The space H0(Z) has a natural
positive inner product induced by X , namely
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(
z

†
1 + Z, z

†
2 + Z

)
H0(Z )

= −[
z

†
1, z

†
2

]
X , z

†
1, z

†
1 ∈ Z [⊥], (1.6)

and this inner product coincides with the inner product inherited from H(Z). Moreover, H0(Z)

is dense in H(Z). This means that the Hilbert space H(Z) is the completion of H0(Z). Fur-
thermore, if we define Z0 = Z ∩ Z [⊥], then Z [⊥]/Z0 can be identified in a natural way with
H0(Z) with the positive inner product inherited from −X , so that we may also regard H(Z) as
the completion of Z [⊥]/Z0 with respect to this inner product.

Since Z [⊥] can be interpreted as a maximal nonnegative subspace of the anti-space −X of
the Kreı̆n space X , it follows that there is a dual version of the space H(Z) that we denote by
H(Z [⊥]). Connections between the spaces H(Z) and H(Z [⊥]) are studied in Theorem 2.12.

All our results on the Hilbert spaces H(Z) and H(Z [⊥]), including those mentioned above,
are formulated and proved in Section 2. As we show in Section 3, there is a close connection
between the Hilbert space H(Z) and the de Branges complementary space H(A) induced by
the contraction A that appear in the graph representation of Z with respect to some fundamental
decomposition of the Kreı̆n space X . All the proofs that we give in Section 2 are “coordinate
free” in the sense that they make no use of such a graph representation. They are also self-
contained in the sense that they require no a priori knowledge whatsoever of the de Branges
complementary space H(A). The connection between H(Z) and the space H(A) is described
in detail in Section 3. In this section we have also included some alternative proofs, which are
based on the above graph representation, of some of the results in Section 2. The main reason
for including these proofs is that they illustrate the connection between the space H(Z) and the
space H(A). Our coordinate free proofs in Section 2 are written in the spirit of the original proof
by de Branges and Rovnyak of Theorem 7 in [10], given on pp. 24–26 of that book, whereas the
alternative proofs in Section 3 are written in the spirit of more recent proofs of the same result.

More precisely, to each space H(Z) there corresponds not only one space H(A), but a whole
family of spaces H(A). As is well known, if X = −Y [�] U is a fundamental decomposition
of the Kreı̆n space X , then each maximal nonnegative subspace Z of X is the graph of a linear
contraction A : U → Y , and conversely, the graph of every linear contraction A : U → Y between
the Hilbert spaces U and Y is a maximal nonnegative subspace of the Kreı̆n space X = −Y [�] U .
However, the correspondence between Z and the contraction A is far from one-to-one, since A

obviously does not depend only on Z but also on the choice of the fundamental decomposition
X = −Y [�] U . It is easy to see that X is the direct sum of Z and −Y , and this implies that
there is a natural isomorphism T : X /Z → Y . It turns out that the restriction of T to H(Z) is
a unitary map of H(Z) onto the de Branges complement H(A) of the range space M(A) of
the operator A. As we mentioned above, this makes it is possible to prove some of the results in
Section 2 by appealing to known results about H(A) and M(A) due to de Branges and Rovnyak.
However, it is also possible to proceed in the opposite direction, and to prove results about the
spaces H(A) by appealing to the results about the Hilbert space H(Z) given in Section 2.

As we mentioned at the beginning, the present article is an outgrowth of our research on pas-
sive linear discrete time invariant s/s (state/signal) systems. In Section 4 we describe how the
space H(Z) is used in passive s/s systems theory. There we take X = k2+(W ), the set of all �2-
sequences on Z

+ with values in the Kreı̆n signal space W , with the indefinite inner product in
k2+(W ) induced by the inner product in W . The subspace Z is a maximal nonnegative right-shift
invariant subspace of X , or in the state/system terminology, Z is a passive future behavior. The
space H(Z) is used as the state space of the canonical shift realization of a linear observable and
backward conservative discrete time invariant s/s system with the given passive future behavior Z
that we construct in Section 4. This s/s realization is related to the de Branges–Rovnyak model of
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a linear observable and backward conservative scattering input/state/output system whose scatter-
ing matrix is a given Schur class function in the same way as H(Z) is related to H(A). The latter
model has been studied in [9,10], and the more recently in [1], with a different terminology: there
the given Schur class function is realized as the “characteristic function” of a “coisometric and
closely outer connected colligation.” The idea of using a quotient of two vector valued sequence
spaces as the state space of a (not necessarily passive) finite-dimensional input/state/output real-
ization of a given rational transfer function with finite-dimensional state, input, and output spaces
goes back to Kalman; see, e.g., the last part of [11].

Notations and conventions. The space of bounded linear operators from one Kreı̆n space X
to another Kreı̆n space Y is denoted by B(X ; Y ). The domain, range, and kernel of a linear
operator A are denoted by D(A), R(A), and N (A), respectively. The restriction of A to some
subspace Z ⊂ D(A) is denoted by A|Z . The identity operator on X is denoted by 1X . The
projection onto a closed subspace Y of a space X along some complementary subspace U is
denoted by P U

Y , or by PY if Y and U are orthogonal with respect to a Hilbert or Kreı̆n space
inner product in X .

We denote the ordered product of the two locally convex topological vector spaces Y and U
by

[ Y
U

]
, and sometimes write Y � U for

[ Y
U

]
(interpreting Y � U as an ordered sum), identifying

vectors
[ y

0

]
and

[ 0
u

]
with y and u for y ∈ Y and u ∈ U .

The inner product in a Hilbert space X is denoted by (·,·)X , and by [·,·]X in the case of a
Kreı̆n space X . The orthogonal sum of two Hilbert spaces Y and U is denoted by Y ⊕ U , and the
orthogonal sum of two Kreı̆n spaces Y and U is denoted by Y [�] U . We identify U and Y with
the appropriate subspaces of these sums.

A Hilbert space Y is continuously contained in a topological vector space X if Y is a subspace
of X , and the inclusion map of Y ↪→ X is continuous.

If X is a Kreı̆n space with inner product [·,·]X , then the Kreı̆n space −X is the same vector
space with the inner product −[·,·]X . We call −X the anti-space of X .

2. The Hilbert space H(Z)

2.1. Preliminaries on Kreı̆n spaces

We assume the reader to be familiar with basic notions and results in Kreı̆n space theory.
A short introduction to this theory can be found in, e.g. [1], and more detailed treatments in [6]
or [7]. Nevertheless, we include here a short summary of Kreı̆n space theory in order to establish
the notations.

Let X be a Kreı̆n space. This means that X is a vector space with an indefinite inner prod-
uct [·,·]X , and that X has a fundamental decomposition X = −Y [�] U , where Y and U
are Hilbert spaces. The topology of X is the one induced by the Hilbert space norm ‖x‖2 =
−[y, y]X + [u,u]X , where x = u + y with y ∈ Y and u ∈ U (different fundamental decomposi-
tions give different but equivalent norms). Such a norm is called an admissible norm.

A subspace Z of X is nonnegative if [x, x]X � 0 for every x ∈ Z . It is maximal nonnegative
if it is not properly contained in any other nonnegative subspace of X . Nonpositive and maximal
nonpositive subspaces are defined analogously. The orthogonal companion Z [⊥] of a subspace Z
is defined by (1.4). It is well known that (Z [⊥])[⊥] = Z if and only if Z is closed. The subspace
Z is neutral if [z, z]X = 0 for all z ∈ Z , or equivalently, if Z ⊂ Z [⊥]. It is called Lagrangian if
Z [⊥] = Z .
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A nonnegative subspace Z is uniformly positive if it is a Hilbert space with respect to the
inner product inherited from X , and it is uniformly negative if it is a Hilbert space with respect
to the inner product norm inherited from −X . If Z is both uniformly positive and maximal
nonnegative, and only in this case, Z induces a fundamental decomposition

X = Z [⊥] [�] Z, (2.1)

and Z [⊥] uniformly negative and maximal nonpositive. In general the intersection

Z0 := Z ∩ Z [⊥] (2.2)

can be different from {0}. It is the maximal neutral subspace contained in Z , and at the same
time the maximal neutral subspace contained in Z [⊥].

In the proof of Theorem 2.3 below we shall need the following lemma.

Lemma 2.1. If Z is a maximal nonnegative subspace of a Kreı̆n space X , then

X = Z � Y (2.3)

for every uniformly negative and maximal nonpositive subspace Y of X .

Proof. If x ∈ Z ∩ Y , then, on one hand, [x, x]X � 0 since x ∈ Z , and on the other hand
[x, x]X � 0 since x ∈ Y . The uniform negativity of Y implies that x = 0. Thus, Z ∩ Y = {0}.

We next show that Z + Y is dense in X , or equivalently, that x = 0 whenever x ∈ (Z + Y )[⊥].
The condition x ∈ (Z + Y )[⊥] is equivalent to x ∈ Z [⊥] ∩ Y [⊥]. Since Z is nonpositive and Y [⊥]
is uniformly positive, this implies that x = 0 (by an argument analogous to the one above).

Finally, we show that Z + Y is closed in X . Let xn = zn +yn → x in X , with zn ∈ Z and yn ∈
Y . Let PY and PY [⊥] be the complementary orthogonal projections onto Y and Y [⊥], respectively.
Then, for each n and m,

0 � [zn − zm, zn − zm]X

= [
PY (zn − zm),PY (zn − zm)

]
X + [

PY [⊥](zn − zm),PY [⊥](zn − zm)
]

X ,

and hence

0 � −[
PY (zn − zm),PY (zn − zm)

]
X

�
[
PY [⊥](zn − zm),PY [⊥](zn − zm)

]
X

= [
PY [⊥](xn − xm),PY [⊥](xn − xm)

]
X .

Here the final expression tends to zero as n, m → ∞, hence so do the other two. As both −Y and
Y [⊥] are uniformly positive, this implies that both PY (zn − zm) and PY [⊥](zn − zm) tend to zero
in X as n, m → ∞, and consequently zn − zm → 0 in X as n, m → ∞. By the completeness
of X , the limit limn→∞ zn := z exists, and hence also limn→∞ yn := y = x − z exists. Both Z
and Y are closed, so z ∈ Z , y ∈ Y , and x = z + y ∈ Z + Y . �
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The partial converse of Lemma 2.1 is also true: if Z is nonnegative and (2.3) holds for some
uniformly negative and maximal nonpositive subspace, then Z is maximal nonnegative.

2.2. Preliminaries on quotient spaces

Let X be a topological vector space, and let Z be a closed subspace of X . The quotient space
of X modulo Z (or over Z ) is denoted by X /Z . Each element in X /Z is an equivalence class
of vectors in X , where x1 and x2 ∈ X are considered to be equivalent if x1 − x2 ∈ Z . Thus, each
equivalence class is a closed affine subset of X . The equivalence class in X /Z which contains
a particular x ∈ X is denoted by x + Z . The quotient X /Z is a vector space with addition and
scalar multiplication defined by (x1 + Z)+ (x2 + Z) = (x1 +x2)+ Z and λ(x + Z) = (λx)+ Z .
The quotient map x �→ x + Z is denoted by πZ , or shortly by π . The quotient topology in X /Z
is the one inherited from X through the quotient map π , i.e., Ω ⊂ X /Z is open in X /Z if and
only if its inverse image π−1(Ω) of Ω is open in X . The quotient map π is obviously linear, and
it is both continuous and open with respect to the quotient topology in X /Z .

If the topology in X is induced by a Hilbert space norm ‖ · ‖X , then the topology in X /Z is
induced by the Hilbert space quotient norm

‖h‖X /Z = min
{‖x‖X

∣∣ x ∈ h
}
. (2.4)

In particular, this is true if X is a closed subspace of a Kreı̆n space (since the topology of a
Kreı̆n space is induced by a Hilbert space norm). In both these cases the quotient map π has a
bounded right-inverse, since π is surjective, and since the topologies in X /Z and X are induced
by Hilbert space norms. If Z is a maximal nonnegative subspace of a Kreı̆n space X , then we
can say more:

Lemma 2.2. If Z is a maximal nonnegative subspace of a Kreı̆n space X and Y is an arbitrary
uniformly negative and maximal nonpositive subspace of X , then the quotient map π : X →
X /Z has a unique bounded right-inverse T with range Y .

Proof. By Lemma 2.1, W = Z � Y . This implies that the restriction of the quotient map πZ to
Y is a continuous linear bijection from Y to X /Z . Since the topology in X /Z is induced by a
Hilbert space norm, this implies that the inverse T of this map is continuous. This map T is the
unique right-inverse of πZ with R(T ) = Y . �
2.3. The space H(Z)

As an introduction to our first main result, presented in Theorem 2.3, we first consider the case
where Z is a uniformly positive maximal nonnegative subspace of X . Then (2.1) is a fundamental
decomposition of X , and every x ∈ X has a unique decomposition

x = z†
x + zx with z

†
x ∈ Z [⊥] and zx ∈ Z;

here z
†
x = PZ [⊥]x and zx = PZ x. When x is decomposed in this way we get, for every z ∈ Z ,

[x − z, x − z]X = [
z†
x + (zx − z), z†

x + (zx − z)
]

X

= [
z†
x, z

†
x

] + [zx − z, zx − z]X ,
X
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where zx − z ∈ Z . Hence, since Z is nonnegative,

sup
z∈Z

(−[x − z, x − z]X
) = −[

z†
x, z

†
x

]
X , (2.5)

and zx is the unique vector in Z for which the supremum is achieved. The right-hand side is the
square of the norm of z

†
x in the Hilbert space −Z [⊥], and the left-hand side can be interpreted

as the square of a Hilbert norm in the quotient space X /Z . We denote X /Z equipped with
the above norm by H(Z), and denote the norm of h ∈ H(Z) by (1.2). With this notation (2.5)
becomes

‖x + Z‖2
H(Z ) = −[

z†
x, z

†
x

]
X , (2.6)

where x + Z stands for the equivalence class in X /Z to which x belongs. The mapping x �→
z

†
x := PZ [⊥]x is a unitary map of H(Z) onto −Z [⊥], whose inverse z† �→ z† + Z is the restriction

of the quotient map π to Z [⊥].
We now proceed to discuss the general case where Z is maximal nonnegative but not neces-

sarily uniformly positive. In this case the supremum in (1.1) can be infinite for some equivalence
classes h ∈ X /Z , and, if finite, it need not always be achieved for some z ∈ Z . Nonetheless, we
define H(Z) to be the subset of X /Z for which the supremum in (1.2) is finite. As we show in the
following theorem, it is still true that H(Z) is a Hilbert space which is continuously contained in
X /Z .

Theorem 2.3. Let Z be a maximal nonnegative subspace of a Kreı̆n space X . Define H(Z)

by (1.1), and define ‖ · ‖H(Z ) by (1.2). Then H(Z) is a Hilbert space with the norm ‖ · ‖H(Z )

which is continuously contained in X /Z .

Proof.

Step 1 (The supremum in (1.1) in nonnegative). If h = Z , then the supremum in (1.1) is zero
since Z is nonnegative. We claim that the supremum is strictly positive if it is finite and h �= Z .

Suppose that x0 ∈ h but x0 /∈ Z , and that sup{−[x, x]X | x ∈ h} � 0, i.e., that

[x0 + z, x0 + z]X � 0, z ∈ Z. (2.7)

Define Z ′ = {λx0 + z | λ ∈ C, z ∈ Z}. Then Z ′ is a subspace which strictly contains Z . We
claim that Z ′ is nonnegative. If λ = 0 then [λx0 + z,λx0 + z]X � 0 because of the nonnegativity
of Z , whereas if λ �= 0, then

[λx0 + z,λx0 + z]X = |λ|2
[
x0 + 1

λ
z, x0 + 1

λ
z

]
X

� 0 (2.8)

because of (2.7). This proves that Z ′ is nonnegative. However, Z was assumed to be maximal
nonnegative, so it cannot have a nontrivial nonnegative extension. This shows that (2.7) cannot
hold, and consequently the supremum in (1.1) is strictly positive.
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Step 2 (‖λh‖H(Z ) = ‖λ‖h‖H(Z ) for all h ∈ H(Z)). If λ = 0, then both sides are equal to zero,
and if λ �= 0 this follows from the same identity that was used in (2.8).

Step 3 (‖ · ‖H(Z ) satisfies the parallelogram law). It is easy to verify that for all x1, x2 ∈ X and
z1, z2 ∈ Z we have

[x1 + x2 + z1, x1 + x2 + z1]X + [x1 − x2 + z2, x1 − x2 + z2]X

= 2

[
x1 + 1

2
(z1 + z2), x1 + 1

2
(z1 + z2)

]
X

+ 2

[
x2 + 1

2
(z1 − z2), x2 + 1

2
(z1 − z2)

]
X

,

and hence

‖x1 + x2 + Z‖2
H(Z ) + ‖x1 − x2 + Z‖2

H(Z )

= sup
z1,z2∈Z

(−[x1 + x2 + z1, x1 + x2 + z1]X

− [x1 − x2 + z2, x1 − x2 + z2]X
)

= 2 sup
z1,z2∈Z

(
−

[
x1 + 1

2
(z1 + z2), x1 + 1

2
(z1 + z2)

]
X

−
[
x2 + 1

2
(z1 − z2), x2 + 1

2
(z1 − z2)

]
X

)

= 2 sup
z′

1,z
′
2∈Z

(−[
x1 + z′

1, x1 + z′
1

]
X − [

x2 + z′
2, x2 + z′

2

]
X

)
= 2‖x1 + Z‖2

H(Z ) + 2‖x2 + Z‖2
H(Z ).

This shows that ‖ · ‖H(Z ) satisfies the parallelogram law.

Step 4 (H(Z) is a subspace and ‖ · ‖H(Z ) is a norm in H(Z) induced by an inner product).
It follows from the homogeneity property proved in Step 2 and the parallelogram law proved
in Step 3 that if both sup{−[x, x]X | x ∈ h1} < ∞ and sup{−[x, x]X | x ∈ h2} < ∞, then
sup{−[x, x]X | x ∈ λ1h1 + λ2h2} < ∞ for all λ1, λ2 ∈ C. Thus H(Z) is a subspace of X /Z .
Since ‖ · ‖H(Z ) is a strictly positive homogeneous function on H(Z) satisfying the parallelo-
gram law, it is a norm on H(Z) induced by an inner product in H(Z), which can be defined in
terms of ‖ · ‖H(Z ) via the standard polarisation identity

4(x1 + Z, x2 + Z)H(Z ) = ‖x1 + x2 + Z‖2
H(Z ) − ‖x1 − x2 + Z‖2

H(Z )

+ i‖x1 + ix2 + Z‖2
H(Z ) − i‖x1 − ix2 + Z‖2

H(Z ).

Step 5 (The inclusion map H(Z) ↪→ X /Z is continuous). Let hn → 0 in H(Z), and let R be a
bounded right-inverse to the quotient map π with a uniformly negative range (such a right-inverse
exists by Lemma 2.2). Then Rhn ∈ hn, and hence −〈Rhn,Rhn〉X � ‖hn‖2 . This implies that
H(Z )
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lim infn→∞〈Rhn,Rhn〉X � 0. Together with the fact that the range of R is uniformly negative,
this implies that Rhn → 0 in X as n → ∞. Consequently, hn = πRhn → 0 in X /Z .

Step 6 (The space H(Z) with the norm ‖ ·‖H(Z ) is complete). Let {hn}∞n=1 be a Cauchy sequence
in H(Z). Since the inclusion map H(Z) ↪→ X /Z is continuous, {hn}∞n=1 is also a Cauchy se-
quence in X /Z , and since X /Z is complete, hn converges to some limit h in X /Z . We claim
that h ∈ H(Z), and that hn converges to h in H(Z).

Let ε > 0, and choose N so large that ‖hn − hm‖H(Z ) � ε whenever both n � N and
m � N . Let R be a continuous right-inverse to the quotient map π (such a right-inverse ex-
ists by Lemma 2.2), and define xn = Rhn and x = Rh. Then hn = xn + Z , h = x + Z , xm → x

in X as m → ∞, and for every z ∈ Z ,

−[x − xn + z, x − xn + z]X = lim
m→∞

(−[xm − xn + z, xm − xn + z]X
)
,

where

−[xm − xn + z, xm − xn + z]X � ‖xm − xn + Z‖2
H(Z ) � ε2

whenever both n � N and m � N . Hence

−[x − xn + z, x − xn + z]X � ε2

for all z ∈ Z when n � N . By the definition of ‖ · ‖H(Z ), x − xn + Z ∈ H(Z) and
‖x − xn + Z‖H(Z ) � ε. Since xn + Z ∈ H(Z) also x ∈ H(Z), and hn = xn + Z → x + Z = h

in H(Z) as n → ∞. �
2.4. Properties of the space H(Z)

We continue to study some properties of the Hilbert space H(Z). In particular we will show
that the subspace H0(Z) defined in (1.5) is a dense subspace of H(Z). We begin with a prelimi-
nary lemma.

Since Z is an nonnegative subspace of X , the Schwarz inequality says that

∣∣[x, z]X
∣∣2 � [z, z]X [x, x]X , x, z ∈ Z.

A generalisation of this inequality is presented in part (1) of the following lemma.

Lemma 2.4. Let Z be a maximal nonnegative subspace of a Kreı̆n space X .

(1) The inequality (1.3) holds.
(2) The inequality (1.3) collapses to an equality if and only if either [z, z]X = 0 or [z, z]X �= 0

and x = ([x, z]X /[z, z]X )z + z† where z† ∈ Z [⊥].
(3) The supremum in (1.1) is achieved if and only if h = z† + Z for some z† ∈ Z [⊥], and in this

case the supremum is equal to

max
{−[

z† + z, z† + z
]

X
∣∣ z ∈ Z

} = −[
z†, z†]

X . (2.9)
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(4) If z† ∈ Z [⊥], x ∈ X , and x + Z ∈ H(Z), then z† + Z ∈ H(Z) and

(
z† + Z, x + Z

)
H(Z )

= −[
z†, x

]
X . (2.10)

Proof.

Proof of claim (1). Let h ∈ H(Z), x ∈ h, z ∈ Z , and λ ∈ C. Then

−[x − λz, x − λz]X � ‖h‖2
H(Z ),

or equivalently,

|λ|2[z, z]X − 2�[x,λz]X + [x, x]X + ‖h‖2
H(Z ) � 0. (2.11)

If [z, z]X = 0, then this implies that [x, z]X = 0 (since the inequality is true for all λ ∈ C),
so (1.3) holds in the trivial form 0 = 0. If [z, z]X �= 0, then we can take λ = [x, z]X /[z, z]X
in (2.11) and multiply the resulting formula by [z, z]X to get (1.3).

Proof of claim (3). It h = z† + Z for some z† ∈ Z [⊥], then

−[
z† + z, z† + z

]
X = −[

z†, z†]
X − [z, z]X � −[

z†, z†]
X .

The supremum in (1.1) is achieved by taking z = 0, and it is equal to −[z†, z†]X .
Conversely, if the supremum in (1.1) is achieved at some point x0 ∈ h, then it follows

from (1.3) with x replaced by x0 that [x0, z]X = 0 for all z ∈ Z . Consequently, x0 ∈ Z [⊥].

Proof of claim (2). If the inequality (1.3) holds in the form of an equality and [z, z]X �= 0, then
we get equality in (2.11) by taking λ = [x, z]X /[z, z]X . This implies that the supremum in (1.1)
is achieved for the vector x − ([x, z]X /[z, z]X ). By claim (3), x − ([x, z]X /[z, z]X ) ∈ Z [⊥].

Proof of claim (4). It follows from part (3) that z† + Z ∈ H(Z). In order to prove (2.10) is suffices
to prove that, for all z† ∈ Z [⊥] and x ∈ X with x + Z ∈ H(Z) we have

∥∥x + z† + Z
∥∥2

H(Z )
= ‖x + Z‖2

H(Z ) − [
z†, x

]
X − [

x, z†]
X + ∥∥z† + Z

∥∥2
H(Z )

, (2.12)

because (2.10) then follows from the polarisation identity. However, for all z† ∈ Z [⊥], x ∈ X
with x + Z ∈ H(Z), and z ∈ Z ,

−[
x + z† + z, x + z† + z

]
X = −[x + z, x + z]X − [

x, z†]
X

− [
z†, x

]
X − [

z†, z†]
X . (2.13)

After taking the supremum over all z ∈ Z and using the fact that ‖z† + Z‖2
H(Z )

= −[z†, z†]X
we get (2.12). �

The following theorem contains a geometrical interpretation of the Hilbert space H(Z) as the
completion of the pre-Hilbert space H0(Z) with the inner product given in (1.6).
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Theorem 2.5. Let Z be a maximal nonnegative subspace of a Kreı̆n space X . Then the subspace
H0(Z) of X /Z defined in (1.5) is a dense subspace of the Hilbert space H(Z) defined in Theo-
rem 2.3, and the inner product in H0(Z) inherited from H(Z) is given by (1.6). Thus, H(Z) is a
Hilbert space completion of the space H0(Z) with the inner product (1.6).

Proof. It follows from part (3) of Lemma 2.4 that H0(Z) ⊂ H(Z). That the inner product in
H0(Z) inherited from H(Z) is given by (1.6) follows from (2.10).

To show that the H0(Z) is dense in H(Z) it suffices to show that (H0(Z))⊥ = {0}. Let x ∈ X
and x + Z ∈ H(Z), and suppose that (x + Z, z† + Z)H(Z ) = 0 for all z† ∈ Z [⊥]. Then by (2.10),
[x, z†]X = 0 for all z† ∈ Z [⊥], and hence x ∈ (Z [⊥])[⊥] = Z and x + Z = Z is the zero vector
in X /Z . �
2.5. The spaces Z [⊥]/Z0 and U (Z)

Up to now we have concentrated our attention on the two subspaces H(Z) and H0(Z) of
X /Z . It turns out that the latter of these spaces is closely related to the space Z [⊥]/Z0, where as
before Z0 = Z ∩ Z [⊥]. The space Z [⊥]/Z0 is defined in the standard way as the quotient of Z [⊥]
modulo its closed subspace Z0. Since the topology in Z [⊥] inherited from −X is induced by a
Hilbert space norm, it follows that also the standard quotient topology in Z [⊥]/Z0 is induced by
a Hilbert space norm. In particular, Z [⊥]/Z0 is complete with respect to the quotient topology.

We define the space U (Z) to be the same vector space as Z [⊥]/Z0, but with a different topol-
ogy induced by the positive inner product inherited from −X , i.e.,

(
z

†
1 + Z0, z

†
2 + Z0

)
U (Z )

= −[
z

†
1, z

†
2

]
X , z

†
1, z

†
2 ∈ Z [⊥]. (2.14)

That this is, indeed, a positive inner product on the vector space Z [⊥]/Z0 follows from the fact
that Z [⊥] is a nonnegative subspace of −X , and that Z0 is the maximal neutral subspace in Z [⊥].
The topology induced by this inner product is weaker than the standard quotient topology of
Z [⊥]/Z0, so that the embedding of Z [⊥]/Z0 in U (Z) is continuous. However, the inverse of
this embedding map need not be continuous, and U (Z) need not be complete. Thus, U (Z) is a
unitary space (a pre-Hilbert space), but U (Z) need not be a Hilbert space. It is a Hilbert space if
and only if Z [⊥] is the direct sum of Z0 and a uniformly negative subspace in X , or equivalently,
if and only if Z is the direct sum of Z0 and a uniformly positive subspace in X . In this case (and
only in this case) the topologies of Z [⊥]/Z0 and U (Z) coincide.

Theorem 2.6. Let Z be a maximal nonnegative subspace of a Kreı̆n space X . Define Z0 =
Z ∩ Z [⊥], and let U (Z), H0(Z), and H(Z) be the spaces defined earlier in this section. Then
the formula

S
(
z† + Z0

) = z† + Z, x† ∈ Z [⊥], (2.15)

defines an linear isometric map S from the unitary space U (Z) into the Hilbert space H(Z) with
R(S) = H0(Z). In particular R(S) is dense in H(Z).

Proof. That (2.15) defines a linear isometric operator S from U (Z) onto H0(Z) follows from the
formulas (2.14) and (1.6) for the inner products in U (Z) and H0(Z), respectively. That H0(Z)

is dense in H(Z) is part of the conclusion of Theorem 2.5. �
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Remark 2.7. The linear bijection S defined in (2.15) is an isomorphism with respect to the two
inner products in U (Z) and H0(Z), and it is still continuous if we replace the topology in U (Z)

by the quotient topology of Z [⊥]/Z0 or if we replace the topology in H0(Z) by the quotient
topology inherited from X /Z . This follows from the fact that the quotient topology in Z [⊥]/Z0
in stronger than the inner product topology of U (Z), and that the inner product topology of
H0(Z) is stronger than the quotient topology inherited from X /Z . However, the inverse S−1

need not be continuous with respect to the quotient topologies. It is continuous if and only if
Z is the direct sum of Z0 and a uniformly positive subspace. In this case the spaces U (Z) and
H0(Z) are complete, and hence H0(Z) = H(Z) and S is a unitary map of U (Z) onto H(Z).
Theorems 2.14 and 3.7 list a number of other equivalent conditions for this case to occur.

2.6. Further properties of the space H(Z)

Convergence of a sequence in H(Z) is related to convergence of the corresponding represen-
tatives in X as follows.

Lemma 2.8. Let Z be a maximal nonnegative subspace of a Kreı̆n space X , and let H(Z) be the
Hilbert space defined in Theorem 2.3.

(1) If yn + Z → x + Z in H(Z) as n → ∞, then there exists a sequence xn ∈ X such that
xn → x in X and xn + Z = yn + Z → x + Z in H(Z) as n → ∞. The same claim remains
true if we throughout replace the strong convergence by weak convergence.

(2) Given any x + Z ∈ H(Z) there exists a sequence xn ∈ Z + Z [⊥] such that xn → x in X and
xn + Z → x + Z in H(Z) as n → ∞.

(3) If z
†
n ∈ Z [⊥] and supn�0(−[z†

n, z
†
n]X ) < ∞, then there exist a vector x ∈ X , a subse-

quence z
†
nj

, and a sequence znj
∈ Z such that z

†
nj

+ znj
→ x weakly in X and z

†
nj

+ Z →
x + Z weakly in H(Z) as j → ∞.

Proof.

Proof of claim (1). Since H(Z) is continuously contained in X /Z , the sequence yn + Z con-
verges to x + Z also in the topology of X /Z . The quotient map πZ has a bounded right-inverse,
and this implies that there exists a sequence x′

n ∈ X which tends to a limit x′ ∈ X such that
x′
n + Z = yn + Z for all n and x′ + Z = x + Z . In particular, x −x′ ∈ Z . Define xn = x′

n +x −x′.
Then xn + Z = yn + Z for all n, xn + Z → x + Z in H(Z), and xn → x in X as n → ∞. The
version where the strong convergence has been replaced by weak convergence is proved in the
same way.

Proof of claim (2). Since H0(Z) is dense in H(Z), for each x+ Z ∈ H(Z) there exists a sequence
yn ∈ Z [⊥] such that yn + Z → x + Z in H(Z). By applying claim (1) to this sequence we can
find a sequence xn satisfying the conclusion of claim (2), since the condition xn + Z = yn + Z
implies that xn ∈ Z + Z [⊥].

Proof of claim (3). For each z
†
n we have ‖z†

n + Z‖2
H(Z )

= −[z†
n, z

†
n]X , so the given condition im-

plies that the sequence z
†
n + Z is bounded in H(Z). The unit ball in H(Z) is weakly sequentially

compact, and hence some subsequence znj
+ Z converges weakly to a limit x + Z in H(Z). The

conclusion of claim (3) now follows from claim (1). �
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Proposition 2.9. Let Z be a maximal nonnegative subspace of a Kreı̆n space, and define H(Z)

as in Theorem 2.3. Then ‖x + Z‖H(Z ) defined in (1.2) (finite or infinite) is equal to

‖x + Z‖H(Z ) = sup
{∣∣[z†, x

]
X

∣∣ ∣∣ z† ∈ Z [⊥] and − [
z†, z†]

X � 1
}
. (2.16)

Proof. If x ∈ X and x + Z ∈ H(Z), then (2.16) follows from (2.10) and density of H0(Z)

in H(Z). Conversely, suppose that the supremum in (2.16) is finite. Then the linear functional
F(z†) := [z†, x]X : Z [⊥] → C is bounded on Z [⊥] (with respect to the semi-norm inherited
from −X ). However, every such functional can be interpreted as a bounded linear functional on
H0(Z) with respect to the norm inherited from H(Z). Since H0(Z) is dense in H(Z) and H(Z)

is a Hilbert space, there is some y + Z ∈ H(Z) such that F(z†) = [z† + Z, y + Z]H(Z ) for every
z† ∈ Z [⊥]. By (2.10), [z† + Z, y + Z]H(Z ) = [z†, y]X . Thus, F(z†) = [z†, x]X = [z†, y]X for
all z† ∈ Z [⊥]. This implies that x − y ∈ Z , and so x + Z = y + Z ∈ H(Z). As we observed
above, this implies (2.16). �

Given a maximal nonnegative subspace Z of a Kreı̆n space X we define L(Z) by

L(Z) = {
x + Z

∣∣ x ∈ Z + Z [⊥]}. (2.17)

Lemma 2.10. The set L(Z) defined above is a closed subspace of X /Z .

Proof. It is easy to see that L(Z) is a subspace. To see that it is closed we argue as follows. Let
hn ∈ L(Z), and let hn → h in X /Z as n → ∞. Let R be a bounded right-inverse of the quotient
map πZ , and define xn = Rhn and x = Rh. Then xn → x in X as n → ∞, and xn + Z =
hn ∈ L(Z) for all n. This implies that xn − yn ∈ Z for some yn ∈ Z + Z [⊥], and consequently
xn ∈ Z + Z [⊥]. Therefore also x = limn→∞ xn ∈ Z + Z [⊥]. Thus h = x + Z ∈ L(Z). �
Proposition 2.11. Let Z be a maximal nonnegative subspace of a Kreı̆n space, and let H(Z)

and H0(Z) be the spaces defined earlier in this section. Then the closure in X /Z of each of the
spaces H0(Z) and H(Z) in X /Z is equal to L(Z) defined in (2.17).

Proof. In view of claim (2) of Lemma 2.8 and the continuous inclusion of H(Z) in X /Z ,
H(Z) ⊂ L(Z). Consequently,

H0(Z) ⊂ H(Z) ⊂ L(Z) = L(Z).

To complete the proof we still have to show that L(Z) ⊂ H0(Z). Take any h ∈ L(Z), and choose
some x ∈ Z + Z [⊥] such that h = x + Z . Then there exists a sequence xn ∈ Z + Z [⊥] such that
xn → x in X as n → ∞. By the definition of H0(Z), xn + Z ∈ H0(Z) for all n. By the continuity
of the quotient map πZ , xn + Z → x + Z in X /Z , and so h = x + Z ∈ H0(Z). �
2.7. Relation between H(Z) and H(Z [⊥])

If Z is a maximal nonnegative subspace of a Kreı̆n space X , then Z [⊥] can be interpreted as
a maximal nonnegative subspace of the anti-space −X of X . We can therefore repeat the same
construction presented above with X replaced by −X , and with Z replaced by Z [⊥] to get the
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Hilbert space H(Z [⊥]) which is a Hilbert completion of the inner product space H0(Z [⊥]). The
unitary space U (Z [⊥]) is obtained in an analogous way, and it can be canonically embedded in
the Hilbert space H(Z [⊥]).

As the following theorem shows, there are certain connections between the two spaces H(Z)

and H(Z [⊥]). To explore this connection we investigate the following two subspaces of X :

X (Z) = {
x ∈ X

∣∣ x + Z ∈ H(Z)
}
, (2.18)

X
(

Z [⊥]) = {
x ∈ X

∣∣ x + Z [⊥] ∈ H
(

Z [⊥])}. (2.19)

Indeed, they are subspaces, since X (Z) is the inverse image of H(Z) under the quotient map πZ ,
and X (Z [⊥]) is the inverse image of H(Z [⊥]) under the quotient map πZ [⊥] .

Theorem 2.12. Let Z be a maximal nonnegative subspace of a Kreı̆n space Z , let Z0 = Z ∩ Z [⊥],
and let X (Z), X (Z [⊥]), H(Z), H0(Z), H(Z [⊥]), and H0(Z [⊥]) be the spaces defined above.
Then the following claims are true.

(1) X (Z) = X (Z [⊥]).
(2) Z + Z [⊥] ⊂ X (Z) ⊂ Z + Z [⊥].
(3) Z0 is the maximal subspace of Z + Z [⊥] which is orthogonal to Z + Z [⊥], and the same

statement remains true if we replace Z + Z [⊥] by X (Z) or by Z + Z [⊥].
(4) Let F be one of the spaces listed in part (2). Then the formula

[y1 + Z0, y2 + Z0]F /Z0 = [y1, y2]X , y1, y2 ∈ F , (2.20)

defines a nondegenerate indefinite inner product in the quotient space F /Z0.
(5) The formula

Q(x + Z0) =
[

x + Z
x + Z [⊥]

]
, x ∈ X (Z), (2.21)

defines a linear isometric map from the space X (Z)/Z0 with the inner product defined
in (2.20) with F = X (Z) into the Kreı̆n space −H(Z) [�] H(Z [⊥]). The image of (Z +
Z ⊥)/Z0 under Q is −H0(Z)[�] H0(Z [⊥]). In particular, both R(Q|(Z +Z ⊥)/Z0

) and R(Q)

are dense in −H(Z) [�] H(Z [⊥]).

Proof.

Proof of claim (1). Let x ∈ X and x + Z ∈ H(Z). It follows from (1.6) and (2.12) that

[
x + z†, x + z†]

X = [x, x]X + [
z†, x

]
X + [

x, z†]
X + [

z†, z†]
X

= ‖x + Z‖2
H(Z ) + [x, x]X − ∥∥x + z† + Z

∥∥2
H(Z )

.

Taking the supremum over all z† ∈ Z [⊥] we find that x + Z [⊥] ∈ H(Z [⊥]), and that

‖x + Z [⊥]‖2
H(Z [⊥]) = ‖x + Z‖2

H(Z ) + [x, x]X − inf
† [⊥]

∥∥x + z† + Z
∥∥2

H(Z )
.

z ∈Z
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Since H0(Z) is dense in H(Z), the infimum is zero, and hence

[x, x]X = −‖x + Z‖2
H(Z ) + ∥∥x + Z [⊥]∥∥2

H(Z [⊥]). (2.22)

That x + Z ∈ H(Z) whenever x + Z [⊥] ∈ H(Z [⊥]) can be proved in the same way (or by
replacing X by −X and Z by Z [⊥]).

Proof of claim (2). That Z + Z [⊥] ⊂ X (Z) follows from part (3) of Lemma 2.4, and that X (Z) ⊂
Z + Z [⊥] follows from Proposition 2.11.

Proof of claims (3), (4). The straightforward proofs of claims (3) and (4) are left to the reader.

Proof of claim (5). That Q is well defined it follows from the fact that N (πZ )∩ N (πZ [⊥]) = Z0.
That Q is an isometry follows from (2.20) and (2.22). The remaining claims are obvious. �
Remark 2.13. The operator Q in (2.21) is also a well-defined continuous linear map from

Z + Z [⊥]/Z0 into
[ X /Z

X /Z [⊥]
]
, but the range of this extended map is not necessarily contained

in −H(Z) [�] H(Z [⊥]), neither does it necessarily contain −H(Z) [�] H(Z [⊥]). In fact, the
space X (Z) is the maximal subspace of X whose image under this extended map Q is contained
in −H(Z) [�] H(Z [⊥]). However, the image of X (Z) need not be all of −H(Z) [�] H(Z [⊥]). To
see this it suffices to observe that the intersection of the image with the closed subspace −H(Z)

of −H(Z) [�] H(Z [⊥]) is equal to −H0(Z). It is not difficult to show that the image is all of
−H(Z) [�] H(Z [⊥]) if and only if H0(Z) = H(Z).

Theorem 2.14. Let Z be a maximal nonnegative subspace of a Kreı̆n space X , let Z0 = Z ∩ Z [⊥],
and let H(Z), H(Z [⊥]), H0(Z), H0(Z [⊥]), U (Z), U (Z [⊥]), and X (Z) be the spaces defined
above. Then the following conditions are equivalent.

(1) Z = Z0 [�] Z+ where Z+ is a uniformly positive subspace of Z .
(2) Z [⊥] = Z− [�] Z0 where Z− is a uniformly negative subspace of Z .
(3) Z + Z [⊥] = Z− [�] Z0 [�] Z+, where Z− and Z+ are uniformly negative and positive

subspaces, respectively, of X .
(4) Z + Z [⊥] is closed in X .
(5) U (Z) is a Hilbert space.
(6) U (Z [⊥]) is a Hilbert space.
(7) H0(Z) = H(Z).
(8) H0(Z [⊥]) = H(Z [⊥]).
(9) (Z + Z [⊥])/Z0 is a Kreı̆n space with the inner product defined in (2.20).

(10) X (Z)/Z0 is a Kreı̆n space with the inner product defined in (2.20).
(11) X (Z) = Z + Z [⊥].

Proof.

Proof of the equivalence (2) ⇔ (5). Let Z− be an arbitrary direct complement to Z0 in Z ⊥.
Then by, e.g. [7, Lemmas 5.1 and 5.2, p. 11], Z− with the inner product inherited from −X is
isometrically isomorphic to U (Z). Thus, U (Z) is a complete if and only if Z− is complete, and
this is true if and only if Z− is uniformly negative.



D.Z. Arov, O.J. Staffans / Journal of Functional Analysis 256 (2009) 3892–3915 3907
Proof of the equivalence (5) ⇔ (7). The operator S defined in (2.15) is an isometric map of U (Z)

onto H0(Z), so U (Z) is complete if and only H0(Z) is complete, and this is true if and only if
H0(Z) = H(Z) (since H(Z) is a completion of H0(Z).

Proof of the equivalence (7) ⇔ (9). The operator Q defined in (2.21) is an isometric map of
(Z + Z [⊥])/Z0 onto −H0(Z) [�] H0(Z [⊥]). Thus, (Z + Z [⊥])/Z0 is complete if and only if
−H0(Z) [�] H0(Z [⊥]) is complete, which is true if and only if H0(Z) = H(Z).

Proof of the equivalence (7) ⇔ (11). This follows from the definitions of H0(Z) and X (Z).

Proof of the implication (9) ⇒ (10). The operator Q defined in (2.21) is an isometric map
of X (Z)/Z0 into −H(Z) [�] H(Z [⊥]) which contains the image of (Z + Z [⊥])/Z0. If
(Z + Z [⊥])/Z0 is complete, then this image coincides with −H(Z) [�] H(Z [⊥]) (being
dense in −H(Z) [�] H(Z [⊥])), and hence also the image of X (Z)/Z0 must coincide with
−H(Z) [�] H(Z [⊥]). This means that X (Z)/Z0 is complete.

Proof of the implication (10) ⇒ (7). If (10) holds, then the image of X (Z)/Z0 under the iso-
metric operator Q in (2.21) coincides with −H(Z) [�] H(Z [⊥]) (being dense in −H(Z) [�]
H(Z [⊥])). In particular, the range must contain every vector of the form

[
h
0

]
, where h is an ar-

bitrary vector in H(Z) (and the H(Z [⊥])-component is zero). However, it is easy to see that the
intersection of the image of X (Z)/Z0 under Q with the subspace where the H(Z [⊥])-component
is zero is equal to H0(Z). This implies that H(Z) ⊂ H0(Z), and so H0(Z) = H(Z).

Proof of the equivalence (1) ⇔ (2), (5) ⇔ (6), and (7) ⇔ (8). These equivalences follow from
the equivalence of (1), (5), (7), and (9) and the fact that (9) is invariant under the interchange of
Z and Z [⊥].

Proof of the implication (1) & (2) ⇒ (3). This implication is trivial.

Proof of the implication (3) ⇒ (4). If (3) holds, then X = Z− [�] Z [⊥]
− and also X = Z+ [�] Z [⊥]

+
(see, e.g., [7, Theorem 3.4, p. 104]). This means that there exist bounded orthogonal projections
P∓ of X onto Z∓. Out of these P− vanishes on Z0 [�] Z+ and P+ vanishes on Z− [�] Z0. For
each x ∈ X , define P0x = x −P−x −P+x. Then also P0 is bounded, and for every x ∈ Z + Z [⊥]
we have x = P−x +P0x +P+x, where P−x ∈ Z−, P0x ∈ Z0, and P+x ∈ Z+. Let xn ∈ Z + Z ⊥,
and let xn → x ∈ X . Then xn = P−xn + P0xn + P+xn → P−x + P0x + P+x = x, and hence
x ∈ Z− [�] Z0 [�] Z+ = Z + Z [⊥]. Thus Z + Z [⊥] is closed.

Proof of the implication (4) ⇒ (11). This follows from part (2) of Theorem 2.12. �
3. Connection with the complementary space H(A)

In this section we shall discuss the connection between the space H(Z) for some maximal
nonnegative subspace Z of a Kreı̆n space X , and the de Branges complementary space H(A)

induced by the contraction A that appears in the graph representation of Z with respect to some
fundamental decomposition of X . We shall also give alternative proofs of some of the results in
Section 2 that depend on the standard graph representation of a maximal nonnegative subspace
of a Kreı̆n space.



3908 D.Z. Arov, O.J. Staffans / Journal of Functional Analysis 256 (2009) 3892–3915
3.1. The graph representation of a maximal nonnegative subspace

Lemma 3.1. Let A be a linear contraction from a Hilbert spaces U to a Hilbert space Y , and let

Z =
{
z =

[
Au

u

] ∣∣∣ u ∈ U
}

(3.1)

be the graph of A. Then Z is a maximal nonnegative subspace of the Kreı̆n space −Y [�] U .
Conversely, let Z be a maximal nonnegative subspace of a Kreı̆n space X , and let X = −Y [�] U
be a fundamental decomposition of X . Then Z has the graph representation (3.1) for a unique
linear contraction A : U → Y .

Proof. See, e.g., [7, Theorem 1.7, p. 54 and Theorem 4.2, pp. 105, 106]. �
Lemma 3.2. The orthogonal companion Z [⊥] of the maximal nonnegative subspace Z in
Lemma 3.1 has the graph representation

Z [⊥] =
{
z =

[
y

A∗y

] ∣∣∣ y ∈ Y
}

. (3.2)

Proof. This is well known, and it is a simple corollary of Lemma 3.1. �
Alternative proof of Lemma 2.1. Let U = Y [⊥]. Then X = Y [�] U is a fundamental decom-
position of X , and hence Z has the graph representation (3.1) for some A ∈ B(U ;−Y ). This
implies that every x ∈ X has the unique decomposition

x =
[

y

u

]
=

[
Au

u

]
+

[
y − Au

0

]
, (3.3)

where
[

Au
u

] ∈ Z and
[

y−Au

0

] ∈ Y . �
The following lemma is a slight extension of Lemma 2.2.

Lemma 3.3. Let Z be a maximal nonnegative subspace of a Kreı̆n space X , and let
X = −Y [�] U be a fundamental decomposition of X . Then the operator T in Lemma 2.2 is
a bounded linear operator X /Z → Y with a bounded inverse, and

T (x + Z) = y − Au, z =
[

y

u

]
∈

[
Y

U

]
. (3.4)

Proof. Most of this follows from Lemma 2.2. The explicit formula (3.4) for T (x + Z) follows
from (3.3). �
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3.2. The de Branges complement of a range space

Let A ∈ B(U ; Y ). By definition, the range space M(A) of A is the range of A endowed
with the range norm which makes A|[N (A)]⊥ a unitary operator [N (A)]⊥ → M(A). In other
words, to each y ∈ R(A) we can find a unique vector u ∈ [N (A)]⊥ such that y = Au, and
define ‖y‖M(A) = ‖u‖U . The basic properties of the space M(A) can be found in many books,
including [12, pp. 2, 3].

We next assume that A is a contraction, and proceed to define the de Branges complement
H(A) of M(A). One starts by defining H(A) to be the following subset of Y :

H(A) = {
y ∈ Y

∣∣ ‖y‖H(A) < ∞}
, (3.5)

where

‖y‖2
H(A) = sup

u∈U

(‖y − Au‖2 − ‖u‖2
U
)
. (3.6)

It is known from the work of de Branges and Rovnyak [9,10] that H(A) is a linear subspace
of Y , that ‖ · ‖H(A) defined in (3.6) is a norm in H(A) induced by a Hilbert space inner product,
and that H(A) with this norm is continuously (but not necessarily densely) contained in Y .

The following well-known facts explain in which sense H(A) can be interpreted as a comple-
ment of M(A) (see, e.g., [12, Chapter 1] for the proofs):

(1) Y = M(A)+ H(A), i.e., every y ∈ Y can be written as a sum y = y1 +y2, where y1 ∈ M(A)

and y2 ∈ H(A). The sum is direct (i.e., M(A) and H(A) are closed and M(A)∩ H(A) = 0)
if and only if it is orthogonal, i.e., H(A) = M(A)⊥, and this is true if and only if A is a
partial isometry (i.e., A is an isometry on [N (A)]⊥).

(2) If y = y1 + y2 with y1 ∈ M(A) and y2 ∈ H(A), then ‖y‖2
Y � ‖y1‖2

M(A)
+ ‖y2‖2

H(A)
.

Moreover, for each y ∈ Y there exist unique vectors y1 ∈ M(A) and y2 ∈ H(A) such that
y = y1 +y2 and ‖y‖2

Y = ‖y1‖2
M(A)

+‖y2‖2
H(A)

, namely y1 = AA∗y and y2 = (1Y −AA∗)y.

The above definition of H(A) follows the original approach taken by de Branges and Rovnyak
in [9,10]. It was later realized that H(A) also can be characterised in a different way, namely

(3) H(A) = M((1Y − AA∗)1/2).

A proof of this fact can be found in, e.g., [12, Note (NI-6), pp. 7, 8].

3.3. The connection between H(Z) and H(A)

We proceed to investigate the connection between H(Z) and H(A).

Lemma 3.4. The bounded linear operator T : X /Z → Y defined in Lemma 2.2 maps the subset
H(Z) ⊂ X /Z defined in (1.1) one-to-one onto the subspace H(A) ⊂ Y defined in (3.5), and
‖x + Z‖H(Z ) = ‖T (x + Z)‖H(A) for all x + Z ∈ H(Z).
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Proof. Because of (1.1) and (3.5), it suffices to show that ‖x + Z‖H(Z ) = ‖T (x + Z)‖H(A) for
all x ∈ X with x + Z ∈ H(Z) (finite or infinite), or equivalently, that ‖T −1y‖2

H(Z )
= ‖y‖2

H(A)
for all y ∈ H(A). However, this follows from the fact that the right-hand side is given by (3.6),
whereas the left-hand side is given by

∥∥T −1y
∥∥2

H(Z )
= sup

z∈Z

(−[y − z, y − z]X
)

= sup
u∈U

(
−

[[
y

0

]
−

[
Au

u

]
,

[
y

0

]
−

[
Au

u

]]
X

)

= sup
u∈U

(‖y − Au‖2
Y − ‖u‖2

U
) = ‖y‖2

H(A). �
Alternative proof of Theorem 2.3. Theorem 2.3 follows from Lemma 3.4 and the fact that
H(A) is a Hilbert space which is continuously (but not necessarily densely) contained in Y . �
Corollary 3.5. The restriction of the operator T in Lemma 3.4 to H(Z) is a unitary map from
H(Z) to H(A).

Proof. This, too, follows from Lemma 3.4. �
Lemma 3.6. The bounded linear operator T : X /Z → Y defined in Lemma 2.2 maps the sub-
space H0(Z) of X /Z defined in (1.5) one-to-one onto the range of the operator (1Y − AA∗).

Proof. Take any z† ∈ Z [⊥]. Then z† = [ y

A∗y
]

for some y ∈ Y . Consequently, T (z† + Z) =
y − A(A∗y) = (1Y − AA∗)y. Thus, R(T|H0(Z )) ⊂ R(1Y − AA∗).

Conversely, suppose that x ∈ X , and that T (x + Z) = (1Y − AA∗)y for some y ∈ Y . Then
x + Z = (1Y −AA∗)y + Z = {[ (1Y −AA∗)y+Au

u

] | u ∈ U }. In particular, by replacing u by A∗y +u

we find that x + Z = [ y

A∗y
] + Z . Thus, x + Z = z† + Z , where z† = [ y

A∗y
] ∈ Z [⊥]. Thus,

R(1Y − AA∗) ⊂ R(T|H0(Z )). �
Alternative proof of part (4) of Lemma 2.4. Write z† = [ y

A∗y
]
, and denote T (x + Z) by y′.

Then y′ = (1Y − AA∗)1/2y1 for some y1 ∈ [N ((1Y − AA∗)1/2)]⊥, and

(
z† + Z, x + Z

)
H(Z )

= (
T

(
z† + Z

)
, T x + Z

)
H(A)

= (
(1Y − AA∗)y, y′)

H(A)

= (
(1Y − AA∗)y, (1Y − AA∗)1/2y1

)
M((1Y −AA∗)1/2)

= (
(1Y − AA∗)1/2y, y1

)
Y = (

y, (1Y − AA∗)1/2y1
)

Y

= (y, y′)Y = −[
z†, y′]

X = −[
z†, x

]
X . �

Alternative proof of Theorem 2.5. That H0(Z) is a dense subset of H(Z) follows from Corol-
lary 3.5 and the fact that T (H0(Z)) = R(1Y −AA∗) is a dense subspace of T (H(Z)) = H(A) =
M((1Y −AA∗)1/2). That the inner product in H0(Z) inherited from H(Z) is given by (1.6) fol-
lows from part (iv) of Lemma 2.4. �
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Alternative proof of part (3) of Lemma 2.4. If h ∈ H0(Z), then h = z† + Z for some
z† ∈ Z [⊥], and by Theorem 2.5,

sup
x∈h

(−[x, x]X
) = −[

z†, z†]
X .

Thus, the supremum is achieved for x = z†.
Conversely, suppose that the supremum in (1.1) is achieved for some x0 ∈ h. Let y = T h,

where T is the operator in Lemma 3.3. Then x0 = y + z0 for some z0 ∈ Z , and

max
{−[y + z, y + z]X

∣∣ z ∈ Z
} = −[x + z0, x + z0]X .

By using the graph representation (3.1) we can write z = [
Au
u

]
and z0 = [ Au0

u0

]
for some u, u0 ∈ U

to get

max
{‖y + Au‖2

Y − ‖u‖2
U

∣∣ u ∈ U
} = ‖y − Au0‖2

Y − ‖u0‖2
U . (3.7)

We claim that u0 ∈ (N (A))⊥, and prove this as follows. It is always possible to write u0 =
u1 + u2 where u1 ∈ (N (A))⊥ and u2 ∈ N (A). If u2 �= 0, then

‖y − Au0‖2
Y − ‖u0‖2

U = ‖y − Au1‖2
Y − ‖u1‖2

U − ‖u2‖2
U < ‖y − Au1‖2

Y − ‖u1‖2
U ,

contradicting (3.7). Thus, u0 ∈ (N (A))⊥. Define y0 = Au0 and y′ = y − y0. Then y′ =
y + (−y0), y ∈ H(A), −y0 ∈ M(A), and

‖y′‖2
Y = ‖y‖2

H(A) + ‖−y0‖2
M(A).

Consequently, by property (2) of the complementary spaces H(A) and M(A) listed ear-
lier in this section, y = (1Y − AA∗)y′, and hence y ∈ R(1Y − AA∗). By Lemma 3.6, h =
T −1y ∈ H0(Z). �

We end this section with the following addition to Theorem 2.14.

Theorem 3.7. Let Z be a maximal nonnegative subspace of a Kreı̆n space X , and let H(Z),
H(Z [⊥]), and X (Z) be the spaces defined in Section 2. Then the following conditions are equiv-
alent to each other, and they are also equivalent to conditions (1)–(11) in Theorem 2.14,

(12) H(Z) is closed in X /Z .
(13) H(Z [⊥]) is closed in −X /Z [⊥].
(14) X (Z) is closed in X .

Proof. When we in this proof refer to conditions (1)–(11) we mean the corresponding conditions
in Theorem 2.14.

Proof of the equivalence (7) ⇔ (12). Choose some fundamental decomposition W = −Y [�] U
of W , let T be the operator defined in Lemma 2.2, and let A be the contraction in the
graph representation (3.1). Then T is an isomorphism X /Z → Y which maps H(Z) onto



3912 D.Z. Arov, O.J. Staffans / Journal of Functional Analysis 256 (2009) 3892–3915
H(A) = R((1 −AA∗)1/2) and H0(Z) onto R(1 −AA∗). Thus, the condition H0(Z) = H(Z) is
equivalent to the condition R(1 − AA∗) = R((1 − AA∗)1/2), whereas the condition that H(A)

is closed in X /Z is equivalent to the condition that R((1 − AA∗)1/2) is closed in Y . However,
both of these conditions are equivalent to the condition that

R
(
(1 − AA∗)1/2) = [

N (1 − AA∗)
]⊥ = R

(
(1 − AA∗)

)
.

Thus (7) and (12) are equivalent.

Proof of the implication (4) ⇒ (14). This follows from part (2) of Theorem 2.12.

Proof of the implication (14) ⇒ (12). If X (Z) is closed in X , then it follows from part (2) of
Theorem 2.12 that X (Z) = Z + Z [⊥]. By (2.17), (2.18), and Lemma 2.10, H(Z) is closed in
X /Z .

Proof of the equivalence (12) ⇔ (13). Both of these are equivalent to (14) (since X (Z) =
X (Z [⊥])), and hence equivalent to each other. �

Above we have given alternative proofs of some of the coordinate free results in Section 2 by
appealing to known results about the de Branges complementary spaces H(A). It is also possible
to proceed in the opposite direction and to re-derive results about the spaces H(A) from the
results in Section 2 using the isomorphism T in Corollary 3.5. We leave this to the reader.

4. Application to passive state/signal systems theory

As was mentioned in the introduction, the results presented in this article were obtained as
byproducts of our study of the realization problem in passive state/signal systems theory [2–5].
Here we shall only give a short outline of one of the motivating applications.

A passive linear discrete time invariant s/s (state/signal) system Σ = (V ; X , W ) has a Kreı̆n
signal space W (enabling connections to the external environment), a Hilbert state space X (rep-
resenting an internal memory), a generating subspace V of the Kreı̆n space K = −X [�] X [�] W
(defining the dynamics) with the properties (i)–(iv) listed in [2], and the set of trajectories, which
consists of sequences (x(·),w(·)) ∈ (X × W )Z

+
satisfying[

x(n + 1)

x(n)

w(n)

]
∈ V, n ∈ Z

+,

where Z
+ = 0,1,2, . . . . This system is passive if V is a maximal nonnegative subspace of K.

The nonnegativity of V equivalent to the requirement that the trajectories of Σ satisfy∥∥x(n + 1)
∥∥2

X − ∥∥x(n)
∥∥2

X �
[
w(n),w(n)

]
W , n ∈ Z

+, (4.1)

and the maximal nonnegativity of V is equivalent to the requirement that, in addition, the adjoint
system Σ∗ = (V∗; X ,−W ) defined in a natural way has the same property. See [3] for details.

Trajectories (x(·),w(·)) with x(0) = 0 (i.e., trajectories whose internal memory is zero at
the starting time zero) are called externally generated. The future behavior Wfut of a passive
s/s system Σ consists of all sequences w(·) of signals in �2+(W ) = �2(Z+; W ) that are obtained
from the externally generated trajectories (x(·),w(·)) of Σ by ignoring the state component x(·),
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Wfut = W ∩ �2+(W ).

It is not difficult to show that Wfut is a maximal nonnegative subspace of the Kreı̆n space k2+(W )

of sequences w(·) ∈ �2+(W ) with indefinite inner product

[
w1(·),w2(·)

]
k2+(W )

=
∞∑

k=0

[
w1(k),w2(k)

]
W .

Moreover, Wfut is S+-shift invariant, where S+ is the right shift in k2+(W ).
The inverse problem to the one described above is the following: is it true that every maximal

nonnegative S+-invariant subspace in k2+(W ) can be realized as a future behavior of some passive
s/s system? This inverse problem is more difficult to solve, but it turns out that it has a positive
answer (given in Theorem 4.1 below), even if we impose some additional constraints on the
system Σ , which will be discussed below.

A s/s system Σ is forward conservative if (4.1) holds in the form of an equality for all trajecto-
ries of Σ , and it is backward conservative if the adjoint system Σ∗ is forward conservative. Thus,
Σ = (V ; X , W ) is passive and forward conservative if and only if V is maximal nonnegative and
V ⊂ V [⊥] (this inclusion means that V is neutral), and Σ is passive and backward conservative
if and only if V is maximal nonnegative and V [⊥] ⊂ V . Both of these conditions hold if and only
if V is a Lagrangian subspace of K, in which case Σ is called conservative.

The subspace of X that we get by taking the closure in X of all states x(n) that appear
in externally generated trajectories (x(·),w(·)) of Σ is called the (approximately) reachable
subspace, and we denote it by RΣ . If RΣ = X , then Σ is called controllable. The subspace
of all x0 ∈ X with the property that (x(·),w(·)) with x(0) = x0 and w(n) = 0 for all n ∈ Z

+
is a trajectory of Σ is called the unobservable subspace, and it is denoted by UΣ . If UΣ = {0},
then Σ is called (approximately) observable. A s/s system is called simple if X = RΣ + U⊥

Σ , or
equivalently, if UΣ ∩ R⊥

Σ = {0}.
The following solution to the inverse problem is given in [3] (see [3, Theorem 3.8] and its

proof).

Theorem 4.1. Let W be a Kreı̆n space, and let Z be an arbitrary maximal nonnegative S+-
invariant subspace of the Kreı̆n space k2+(W ). Then there exists a passive s/s system Σ with
future behavior Z satisfying one of the following sets of additional conditions:

(1) Σ is observable and backward conservative.
(2) Σ is controllable and forward conservative.
(3) Σ is simple conservative s/s system.

Each of the above three s/s systems are defined by Z up to unitary similarity.

The notion of unitary similarity of s/s systems used above is defined in a natural way; see [3].
The idea behind the proof of Theorem 4.1 given in [3] is the following. First one chooses

a fundamental decomposition W = −Y [�] U of W , which induces the fundamental decom-
position k2+(W ) = −�2+(Y ) [�] �2+(U ) of k2+(W ). A maximal nonnegative right-shift invariant
subspace Z of k2+(W ) has the graph representation (3.1) with respect to this fundamental de-
composition of k2 (W ), where the operator A is a contractive linear block Toeplitz operator
+
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from �2+(U ) to �2+(Y ). The symbol of this operator is a B(U ; Y )-valued Schur function (i.e.,
an analytic and contractive-valued function) D(z) in the unit disk. There exist three different
de Branges–Rovnyak i/s/o (input/state/output) models with the same scattering matrix (charac-
teristic function) equal to the given Schur function D(z). All of these three models are passive
discrete-time invariant i/s/o scattering systems, with one of the following sets of additional prop-
erties: (1) the first one is observable and backward conservative, (2) the second one is controllable
and forward conservative, and (3) the third one is simple and conservative. In operator theory one
calls systems with the above properties “operator colligations” (nodes) that are (1) “co-isometric
and closely outer connected,” or (2) “isometric and closely inner connected,” or (3) “unitary
and closely connected”; see, e.g., [1, Chapter 2]. The state space of the observable and back-
ward conservative de Branges–Rovnyak model is the de Branges–Rovnyak space H(A), where
A is the contractive shift-invariant operator of multiplication by D(z), acting from the Hardy
space H 2+(U ) to the Hardy space H 2+(Y ), and the main operator in this model is the incoming
shift operator y(z) �→ [y(z) − y(0]/z. The three passive s/s systems constructed in the proofs
of parts (1)–(3) of Theorem 4.1 are the unique passive s/s systems whose i/s/o representations
corresponding to the fundamental decomposition W = −Y [�] U are the time domain versions
of the three de Branges–Rovnyak models (1)–(3) described above. By the time domain ver-
sions of these models we mean the models that one gets by mapping the Hardy spaces H 2+(U )

and H 2+(Y ) isometrically onto the sequence spaces �2+(U ) and �2+(Y ) by means of the inverse
Fourier transform. In the time domain the inverse i/s/o problem becomes the problem of realizing
a contractive right-shift invariant map from �2+(U ) to �2+(Y ) as the i/o (input/output) map of a
scattering passive systems.

The main disadvantage with the proofs outlined above is that they do not in each case produce
just one single s/s realization but infinitely many, all of which are unitarily equivalent to each
other. In all cases the realizations that we obtain depend on the fundamental decomposition W =
−Y [�] U that we start with. This is obvious from the fact that, for example, in case (1) the state
space is a subspace of �2+(Y ), so different choices of Y result in different (albeit unitarily similar)
s/s realizations.

The results presented in Section 2 were obtained in our search for a one and only canonical
(or coordinate free) s/s realization in each of cases (1)–(3). By “canonical” we mean that this
realization should be uniquely determined by the given data, i.e., by the original maximal non-
negative shift-invariant subspace Z of k2+(W ) that we want to realize. In particular, it must not
depend on some arbitrary choice of a fundamental decomposition of the signal space W . Indeed,
our search was successful, and in case (1) it led to the following result.

Theorem 4.2. Let W be a Kreı̆n space, and let Z be a maximal nonnegative S+-invariant sub-
space of k2+(W ). Let Xobc = H(Z), and let

Vobc =
{[

S∗+w + Z
w + Z
w(0)

]
∈

[ H(Z)

H(Z)

W

] ∣∣∣ w ∈ X (Z)

}
,

where X (Z) is the space defined in (2.18) with X = k2+(W ). Then Σobc = (Vobc; Xobc, W ) is a
passive observable backward conservative s/s system with future behavior Wfut = Z .

As a part of the proof of this theorem one shows thatVobc is well defined, i.e., that
S∗ w + Z ∈ H(Z) whenever w ∈ X (Z).
+



D.Z. Arov, O.J. Staffans / Journal of Functional Analysis 256 (2009) 3892–3915 3915
Analogous canonical shift realization models can also be obtained for cases (2) and (3) based
on the results presented in Section 2. The proof of Theorem 4.2 and the corresponding passive
s/s realizations of the types (2) and (3) will be given elsewhere.

Remark 4.3. As we have seen above, our construction in Theorem 2.3 of the Hilbert space H(Z)

(contained in the quotient of a Kreı̆n space X over the maximally nonnegative subspace Z of X )
is related to the corresponding construction in [10] of the Hilbert space H(A), where A is a
contraction between two Hilbert spaces. That construction was extended by Louise de Branges
in [8] to the case where A is a contraction between two Kreı̆n spaces, in which case the resulting
space H(A) is a Kreı̆n space. The primary motivation for our interest in H(Z) was explained
above: we need the space H(Z) in our construction of a canonical model of an observable and
backward conservative passive state/signal system with a Hilbert state space. However, it seems
plausible that there also exists a coordinate free version of the construction in [8] that would lead
to canonical models of state/signal systems with a Kreı̆n state space. We leave this as an open
question.
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