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Sammanfattning på svenska

Kombinatorisk optimering handlar om att hitta en bra eller rent av den bästa möjliga
lösningen från ett känt antal lösningar eller kombinationer. Ofta är antalet lösningar så
enormt att en genomgång av alla olika lösningar inte är möjlig. En av huvudorsakerna
till att det forskas inom kombinatorisk optimering är att liknande frågeställningar eller
problem uppkommer inom så många olika områden. Påståendet stämmer speciellt bra
för kvadratiska tilldelningsproblem (eng. Quadratic Assignment Problem, QAP). Sådana
problem uppstår då man försöker beskriva en stor mängd tillämpade frågeställningar.
Vilken gate skall väljas för flygen på större flygplatser för att minimera den totala
väg människorna behöver gå och bagaget förflyttas? Var skall olika avdelningar på
en fabrik placeras för att minimera materialförflyttningar mellan avdelningarna? Hur
ser ett optimalt tangentbord ut för olika språk? Var skall komponenterna placeras
på ett kretskort? De här är alla frågor som kan besvaras genom att lösa kvadratiska
tilldelningsproblem. Kvadratiska tilldelningsproblem är dock mycket svåra att lösa.
Det beror på att problemet i den standardform det matematiskt formuleras i huvudsak
består av produkter av binära variabler.

I denna avhandling har problemet omformulerats till en linjär diskret form som
innehåller färre variabler. Med omformuleringen har bland annat flera tidigare olösta
kvadratiska tilldelningsproblem kunnat lösas till globalt optimum, den bästa möjliga
lösningen, för första gången någonsin. Avhandlingen börjar med en kort introduktion
till optimering. Sedan en genomgång av kvadratiska tilldelningsproblem samt de nya
lösningsmetoderna. Slutligen finns en kort sammanfattning samt fyra publicerade
artiklar.





Contents

Contents ix

1 Introduction 1

1.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The quadratic assignment problem 5

2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 The quadratic assignment problem library – QAPLib . . . . . . . . 8

2.2 Solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Stochastic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Lower bounding techniques . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Exact methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Formulations 13

3.1 Formulating the discrete bilinearities . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 McCormick envelopes . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Discrete linear reformulation . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 DLR-version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Examples of the formulations . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Special structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.1 Matrix modification . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Results and notes on the papers 23

5 Conclusion 27

5.1 A remark on solution times . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Bibliography 29

ix





CHAPTER 1
Introduction

In a highly globalized world, optimization of the processes in a company is essential for
keeping its competitiveness. As computers, solvers and formulation techniques improve,
more and more complex problems can be solved to optimality. When I tell people I work
with optimization the usual follow up question is “optimization of what?” Optimization
of anything and everything is the only real answer to that question. Since my work is in
the field of combinatorial optimization, finding real world examples is not very difficult.
Explaining the fact that optimizing the design of a computer chip can mathematically be
exactly the same as optimizing gate assignments at airports might, on the other hand, be
more challenging. However, the versatility of the fields of application where some of the
well known combinatorial problems are found is also the reason why they are important
to study. The above statement holds particularly true for the quadratic assignment
problem (QAP).

1.1 Optimization

There are different classes of optimization problems. Linear programming (LP) problems
consist of a linear objective, linear constraints and only continuous variables. LPs are usu-
ally solved using the simplex method readily implemented in most commercial solvers.
If any of the variables in the problem are integer (or binary) then it is a mixed integer
linear programming (MILP) problem. Binary variables usually represent decisions in the
problem, e.g., x1 = 1 if a machine is bought and x1 = 0 otherwise. Integer variables can,
for example, represent the number of units to manufacture. For solving MILP problems
branch and bound or cutting plane methods can be used. A combination of the two
methods, called branch and cut, is the most widely used by commercial software and
is implemented in solvers such as Cplex, Mosek and Gurobi. In a branch and bound
approach, all the integer requirements of the MILP problem are first discarded. This
makes it an LP relaxation which is used for obtaining a valid lower bound (LB) of the
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2 CHAPTER 1. INTRODUCTION

MILP problem. The problem is then branched into two subproblems. This is done on one
of the integer variables with a fractional value in the solution of the LP relaxation. For a
binary variable where 0 < x1 < 1 in the LP relaxation, two new subproblems are created,
one where x1 = 1 and one where x1 = 0. These new LP subproblems are solved and
branched again. This gives rise to a tree structure where the branches represent different
subproblems. After a number of iterations all integer variables have integer values and a
valid solution, which is also an upper bound (UB) for the problem, is found. If any open
subproblem has a lower bound greater than (if minimizing) the best found upper bound,
the node and all subproblems created from that node can be discarded. This is called
pruning and is essentially the step that inhibits the search tree from becoming too large.
When the best found upper bound coincides with the lower bound the optimal solution
has been found.

In a nonlinear programming (NLP) problem, the objective or some of the constraints
are nonlinear, but all variables are continuous. These classes are all subclasses of mixed
integer nonlinear programming (MINLP) problems where some of the variables are
integers. One example of MINLP is a problem with a bilinear term x1x2 with two
integer or binary variables. Bilinear terms with binary variables stem from if and only if
decisions, e.g. if both machine 1 (x1 = 1) and machine 2 (x2 = 1) are built, a warehouse
has to be built as well (w = 1). Then the warehouse can be modeled with w = x1x2.

MINLP problems can, in some cases, be linearized to MILP problems by adding addi-
tional variables and constraints and reformulating the problem. Since MILP problems
are generally easier to solve than MINLP problems, reformulations are often used if
possible. A bilinear term x1x2 with two binary variables can easily be reformulated
with an additional positive continuous variable and a single constraint w ≥ x1 + x2 − 1.
Depending on the problem there might be many ways to reformulate the model. The
way a model is formulated will impact the lower bound, the solution time as well as the
optimality gap if the solution process is aborted before optimality is proven. For large
problems choosing the right formulation may dictate if the problem can be solved or not.
A common approach for solving MINLP problems with only a few nonlinear constraints
is using piecewise linear relaxations. In this way, the MINLP can be solved as an MILP
to a predefined optimality gap. In this thesis, the optimality gap is calculated with the
following equation:

gap =
UB–LB
UB

× 100%. (1.1)

The optimal solution of a problem lies somewhere between its UB and LB. A problem is
therefore solved to optimum when the UB and LB reach the same value and the gap is
zero.

1.2 Scope of work

This thesis discusses new solution methods for the QAP and reformulations for bilinear
terms. It is divided into two parts; the first part consists of a short summary of the
QAP, its applications, model formulations and some techniques for solving it. The
second part consists of four peer-reviewed articles on the subject. Some of the methods



1.3. LIST OF PUBLICATIONS 3

presented in the articles have been used to solve certain instances of the QAP, from the
QAP library (Burkard et al., 1997), that have remained unsolved since 1990. The same
type of reformulation of bilinear terms are also used in a different setting for solving a
multiechelon supply chain model.

1.3 List of publications

The work described in this thesis is based mainly on the following scientific papers:

Paper I: Nyberg, A., Westerlund, T., 2012. A new exact discrete linear reformulation
of the quadratic assignment problem. European Journal of Operational Research
220 (2), 314–319.

Paper II: Nyberg, A., Westerlund, T., Lundell, A., 2013. Improved discrete re-
formulations for the quadratic assignment problem. In: Gomes, C., Sellmann,
M. (Eds.), Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems. Vol. 7874 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp. 193–203.

Paper III: Nyberg A. and Westerlund T., 2013. Tightening a discrete formulation of
the quadratic assignment problem, Chemical engineering transactions, 32, 1309–
1314.

Paper IV: Nyberg, A., Grossmann, I.E., Westerlund, T., 2013. An efficient reformu-
lation of the multiechelon stochastic inventory system with uncertain demands.
AIChE Journal 59 (1), 23–28.





CHAPTER 2
The quadratic assignment

problem

The QAP was presented in the literature by Koopmans and Beckmann (1957) as a
mathematical model to allocate economic activities to specific locations. The QAP
is often referred to as a facility location problem that determines the best placing of
facilities on a predefined set of locations. The problem can be illustrated with two
matrices, where one corresponds to the distances between the locations while the other
corresponds to the flows between the facilities. The problem is then to find the optimal
permutation vector p̃ minimizing total cost, i.e.

min
n

∑

i=1

n
∑

j=1

aijbp̃i p̃j , (2.1)

where p̃i and p̃j are elements of the vector p̃ while aij and bp̃i p̃j are elements in the
distance and flow matrices respectively. In this form, the QAP is a permutation problem
for which no direct efficient global optimization method is available today. Koopmans
and Beckmann’s approach is given in section 2.2, where the QAP is formulated as a zero-
one mathematical programming problem. An illustration of the facilities, locations and
the optimal assignment for a small example are shown in fig. 2.1 with their corresponding
distance and flow matrices.

2.1 Applications

The number of applications found in the literature for the QAP is quite astonishing.
Especially interesting is the fact that the same kinds of problems arise from completely
different fields. Dickey and Hopkins (1972) assigned buildings on a university campus
in order to minimize traffic on the campus area. Elshafei (1977) studied the Ahmed
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Figure 2.1: An illustration of a facility location problem and its optimal solution p̃ = [2,4,5,3,1]T .
The factories to be allocated to specific locations are shown to the left. The picture to the right
shows the optimal allocation of the factories. The matrices A and B are the distance and flow
matrices.

Maher Hospital in Cairo, Egypt. The goal was to reorder the 17 clinics so that the
transportation of patients between them was minimized. Krarup and Pruzan (1978)
mention the design of the university hospital Klinikum Regensburg in Germany, also
planned using QAPs. An interesting observation is that the instances were not solved
to optimality until long after the hospitals were built. However, good solutions were
probably used even though Hahn and Krarup (2001) mention that it was impossible for
Krarup himself to know whether they had used the proposed solutions or not when he
passed Klinikum Regensburg 20 years later.

Assigning gates for flights at airports in order to minimize the walking traffic for
passengers can be modeled as QAPs. Haghani and Chen (1998) state that other versions
of the same problems, for example, minimizing the amount of baggage that has to be
moved or minimizing both passenger and baggage movement, can also be formulated as
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QAPs.

One of the earliest applications of the QAP was the Steinberg wiring problem (Stein-
berg, 1961). The problemwas to place computer components on a backboard to minimize
the total wiring between components. In a newer approach to a similar problem, Rabak
and Sichman (2003) minimize the amount of work the component placer has to do when
inserting components on a printed circuit board. The same kinds of problems, address-
ing placement of electronic circuits in computer manufacturing, have been studied in
Grötschel (1992) and Jünger et al. (1994). Also, the components themselves are usually
microchips (or integrated circuits) consisting of numerous transistors. The creation of
integrated circuits by placing transistors on a chip is called very large scale integrated
design. Burkard et al. (1993) applied a generalized version of the QAP, called the bi-
quadratic assignment problem, to minimize the number of transistors needed to model
different states of the chip. This can also be done using finite state machines, but it too
leads to an QAP (Eschermann and Wunderlich, 1990).

Laporte and Mercure (1988) studied turbine balancing in electricity generation. The
idea is to arrange the blades in such a way that the center of gravity for the completed
turbine becomes as close to the geometrical center of the cylinder as possible, thus
maximizing stability of the turbine. The weight of the blades should be the same for
each blade (around 17 000 kg) but due to manufacturing issues the weight can differ
with around ± 5%. Therefore, QAPs are solved in order to determine which blade to
place at what part of the cylindrical turbine. Fathi and Ginjupalli (1993) considered the
same problem and proposed some better heuristics to solve it.

Forsberg et al. (1995) applied the QAP in chemistry while Phillips and Rosen (1994)
optimized molecular conformations in biochemistry.

In order to optimize the layout of the typewriter keyboard for different languages,
Burkard and Offermann (1977) used QAP. When writing running text in a specific
language the letters appear with a known frequency. By checking the most common
words in a language, the frequency of two letters appearing after each other can be
gauged. Then, by solving a QAP the ordering of the letters on the keyboard can be
optimized (w.r.t. writing speed). A more modern application of the same problem is
the design of keyboards on touch screen devices (Dell’Amico et al., 2009). The main
difference in this approach is that on a touch screen only one finger is used, and the
letters can be placed anywhere on the screen instead of in a rectangle as with normal
keyboards.

Ben-David andMalah (2005) looked into a special case of the QAP called index assign-
ment in order to minimize channel errors in vector-quantization. Vector-quantization
is used when mapping images or speech to digital signals. Yet another application in
computer science is the mapping problem studied by Bokhari (1981). Here the objective
is to place communicating modules to adjacent processors in a processor array. This can
be written as a QAP where one of the matrices has only 0-1 entries. A similar mapping
problem is also found when configuring the layout of microarrays, which is a problem in
bioinformatics presented in Hannenhalli et al. (2002). This problem was presented as a
QAP by de Carvalho Jr. and Rahmann (2006). In the production of the microarray chips,
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Figure 2.2: An illustration of a microarray chip with subsection

small DNA fragments on microarrays are arranged in such a way that the exposure to
unwanted illumination is minimized. Since the chips themselves can contain over 10
million probes, only small segments of the chips can be optimized, as shown in fig. 2.2.
Since calculating the optimal conformation for the whole chip is practically impossible
with the solution approaches used today, a heuristic approach is proposed for solving
the subproblems. However, these instances are also especially difficult for heuristic
methods and therefore an effective exact method could be the best option for this class
of problems.

Carlson and Nemhauser (1966) solved scheduling problems as quadratic programs
very similar to the QAP. The assignment of classes at a university were scheduled in
such a way that as few similar classes as possible would be in the same time slot. This
study was extended in Davis et al. (1974) who also included conflicting assignments in
the model. Geoffrion and Graves (1976) studied how to schedule production orders on
production lines with many similar processes in parallel using QAP. They applied the
model on a chemical reactor scheduling problem for Dart Industries Inc.

In addition to all the applications mentioned above, many of the well known difficult
problems in combinatorial optimization, e.g. the traveling salesman problem and the
maximum cut problem, can be expressed as QAPs (Çela, 1998).

2.1.1 The quadratic assignment problem library – QAPLib

Burkard et al. (1997) put together many of the real world, as well as, a few example
instances to form a test library, QAPLib. This library is still updated and maintained
online by Peter Hahn from University of Pennsylvania and Miguel F. Anjos from École
Polytechnique de Montreal. The QAPLib lists lower bounds and best known solutions
for 134 instances with sizes between n = 12 and n = 256. Optimality is proven for all
instances where n ≤ 30, except for the instance tai30a. However, only a handful of the
instances where n > 30 have been solved to optimality. In the QAPLib, solver codes and
links to articles on recent advances on the QAP are also listed.
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2.2 Solution methods

The QAP was introduced by Koopmans and Beckmann (1957) in the basic form:

min
n

∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

aijbkl · xikxjl +
n

∑

i=1

n
∑

j=1

cijxij , (2.2)

subject to
n

∑

i=1

xij = 1, j = 1, ...,n, (2.3)

n
∑

j=1

xij = 1, i = 1, ...,n, (2.4)

xij ∈ {0,1}, i, j = 1, ...,n. (2.5)

Here, aij are given distances between locations and bkl flows between facilities defined
in the matrices A and B. In this thesis we will assume that cij = 0 ∀i, j for brevity. Since
this part is linear it can easily be added to any formulation. Also, we will write eqs. (2.3)
to (2.5) as x ∈ Xn since these assignment constraints are found in all of the presented
formulations.

2.2.1 Stochastic methods

Since the QAP is a very challenging combinatorial problem, a large number of different
heuristics presented in the literature for combinatorial optimization have been imple-
mented and tested also on the QAP. These approaches are often very useful when a close
to optimal solution is sufficient. However, since the emphasis of the work in this thesis is
on deterministic methods only a brief summary of heuristic approaches is given.

The most successful heuristics are tabu search approaches. Taillard (1991) applied
robust tabu search on the QAP. Various improvements to this code has been proposed,
e.g. Misevicius (2005) added some modifications, in order to avoid the stagnation of the
search, with good results. Li et al. (1994) presented a greedy random adaptive search
procedure, Connolly (1990) implemented simulated annealing and Ahuja et al. (2000)
applied a genetic algorithm on the QAP, to name a few.

In practical applications where the values in the flow and distance matrices are
approximations, optimality is not required or when many quick solutions are needed
these methods are often the easiest to implement. Together with a good lower bounding
method, heuristics can provide a reasonable optimality gap within short computational
time.

2.2.2 Lower bounding techniques

Lower bound calculations are important for two different reasons. First, in order to
have an idea of how good a solution a heuristic finds, a tight lower bound is important.
Secondly, in a branch and bound environment a good lower bound is crucial for pruning
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nodes. However, in such a case emphasis should also be put on the computational speed
of the lower bound calculation since it is performed in every node. Therefore the tightest
lower bounding techniques might be too slow in a branch and bound code. Another
critical drawback with many of the tighter lower bound techniques is the amount of
RAM needed when the instances grow larger. One of the first and most widely used
lower bounds for the QAP is the Gilmore-Lawler bound (GLB), presented in Gilmore
(1962) and modified by Lawler (1963). The GLB is very fast to compute and relatively
tight for small instances. However, as the instance size increases, the gap between the
bound and the optimal solution increases quickly (Çela, 1998). Hahn and Grant (1998)
derived a relaxation-linearization lower bounding technique based on the Hungarian
method for solving linear assignment problems. The latest version of this code, the
level-3 reformulation-linearization technique, is one of the tightest lower bounds for the
QAP according to Hahn et al. (2012). However these methods have serious problems
with RAM requirements when the problem sizes increases. The amount of memory
required grows exponentially with instance size and, for example, an instance where
n = 25 require 173 GB of RAM. Still, according to QAPLib, one of the really difficult
problems, tai30b, was solved on the Palmetto Supercomputing Cluster at Clemson
University using this code in a branch and bound environment.

Burer and Vandenbussche (2006) used a lift and project method to calculate good
lower bounds on many quadratic programming problems including the QAP. The lift
and project approach gives some very good bounds, but again, the solution times are
extremely long if the problem is solved more than once.

A more approachable lower bound for calculations on a single computer is the bound
arising from semidefinite programming (SDP) relaxations. The SDP relaxation of the
QAP has been studied by numerous researchers, e.g., de Klerk and Sotirov (2010), Peng
et al. (2010) and Mittelmann and Peng (2010). These bounds are very tight and in fact
most of the best known lower bounds on the unsolved instances in QAPLib are from
SDP calculations by the mentioned authors. However, because of the huge amount of
variables in the SDP relaxation of the QAP, the solution times are quite long when used
as a bounding procedure in a branch and bound code. Anstreicher and Brixius (2001)
derived a new bound using convex quadratic programming. This formulation was used
in a parallel branch and bound environment to solve a few large instances to proven
optimality for the first time on a huge computational grid (Anstreicher et al., 2002).
Among these instances was the infamous nug30 that had remained unsolved since it was
presented in Nugent et al. (1968). Around 1000 computers were used in parallel to solve
nug30 and in total, the solution required seven days with an average of 653 computers
connected to the grid.

2.2.3 Exact methods

Most of the exact methods for solving the QAP are based on MILP formulations and
branch and bound. In general, compact formulations with fewer variables are fast to
calculate, but provide a weak lower bound from the LP relaxation. Some of the tighter
formulations on the other hand use so many variables that the LP relaxation takes a very
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long time to calculate. Finding a good balance between bound quality and problem size
is a challenge when working with MILP formulations. The linearization resulting in
one of the smallest model sizes is the one presented by Kaufman and Broeckx (1978).
Their formulation has n2 binary variables, n2 continuous variables and n2 constraints.
However, the linear relaxation of this formulation is extremely weak with a lower bound
equal to zero in the root node in every case (Zhang et al., 2013). Xia and Yuan (2006)
propose two formulations similar to Kaufman and Broeckx that use the GLB to tighten
the formulations. Both Zhang et al. (2013) and Fischetti et al. (2012) use models derived
from Kaufman and Broeckx. Clearly, this formulation is well studied thanks to its small
model size.

Frieze and Yadegar (1983) proposed a formulation replacing every bilinear term in
the Koopmans-Beckmann formulation with a new variable. This formulation is huge,
with n4 continuous variables, n2 binary variables and n4 +4n3 +n2 +2n constraints (Çela,
1998). Since solving such a huge MILP can be considered intractable (especially in 1983)
a lower bounding technique based on Lagrangian relaxation was derived.

As can be seen from the applications in section 2.1, the QAP is an extremely important
problem class since it arises in so many different fields. As mentioned in Hahn and
Krarup (2001), there might not be a need for solving these real world QAPs to global
optimum since the values in the instances are approximations themselves. However,
since the applications where QAPs arise are so diverse, it can be argued that there is
need for both exact methods and heuristics. Drezner et al. (2005) present instances that
are really difficult for heuristics, while relatively easy to solve with exact methods. For
example the dre instances presented in that paper are solved to optimality in a fraction
of a second even for the largest instances using the GLB. Still the heuristics fail to find
the optimal solution in a much longer time. Also, as modern QAP applications tend
to stem from computer science (e.g. bandwidth minimization) the flow and distance
matrices give an exact description of the underlying problem and therefore the exact
optimum might be of interest.





CHAPTER 3
Formulations

In Paper I we show how to rewrite the objective function of the QAP to a previously
unpublished form in order to decrease the number of bilinear terms. Consider two
permutation vectors p and p̃ where pi = k if facility i is at location k and p̃i = k if facility
k is at location i. The objective function in eq. (2.2) can then be written as:

n
∑

i=1

n
∑

j=1

apipj bij =
n

∑

i=1

n
∑

j=1

aijbp̃i p̃j . (3.1)

In matrix form eqs. (2.3) to (2.4) can be written as Xe = XT e = e where e is a vector
with all elements equal to 1 and X is a so called permutation matrix containing the
binary variables xij . The permutation vectors p and p̃ are given by p = Xq and p̃ = XTq

where qT = (1,2, . . . ,n). Using the properties of the permutation vectors, eq. (3.1) can be
rewritten in the form:

n
∑

i=1

n
∑

j=1

api jbip̃j =
n

∑

i=1

n
∑

j=1

a′ijb
′
ij . (3.2)

By algebraic manipulation we obtain a new MINLP formulation of the QAP:

min
n

∑

i=1

n
∑

j=1

a′ijb
′
ij , (3.3)

subject to

a′ij =
n

∑

k=1

akjxik ∀i, j, (3.4)

b′ij =
n

∑

k=1

bikxkj ∀i, j, (3.5)

x ∈ Xn. (3.6)

13
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This formulation can be illustrated by moving the columns in one of the matrices while
moving the rows in the other matrix. Therefore, each term a′ijb

′
ij is equal to one specific

element in column j of matrix A times an element in row i of the matrix B.
The above QAP form has only n2 bilinear terms instead of n2(n−1)2 as in the original

form by Koopmanns and Beckmann. The variables a′ij and b′ij are continuous and
therefore the bilinear terms are now products of two continuous variables instead of two
binary variables. Continuous bilinear terms are generally difficult to linearize. However,
we take advantage of the fact that the variables can only assume values from the matrices
A and B and are therefore essentially discrete.

3.1 Formulating the discrete bilinearities

Figure 3.1 shows the possible combinations for the term a′11b
′
11 where each dot equals a

specific value. As can be seen, both a′11 and b′11 share one variable, x11. The combinations
in gray are therefore not possible because of eqs. (2.3) and (2.4). The variable xij is always
found in both a′ij and b′ij . This is the variable that corresponds to the diagonals of both A

and B. The values of the diagonal elements are usually zero. If not, then the diagonals
can always be set to zero by adding a linear part

∑n
i=1

∑n
j=1 ajjbiixij to the objective

function. In the following formulations it is assumed that the diagonal elements are zero.
Therefore, if xij = 1, then a′ij and b′ij are both zero. The diagonal elements are therefore
excluded in every example and sum where the number of unique values is calculated. By
taking advantage of the discrete values of the variables, the bilinear term can be written
in linear form and the QAP reformulated to an MILP problem. Next we will present a
few different ways of linearizing bilinear terms starting with the most widely used, the
McCormick underestimators.

3.1.1 McCormick envelopes

McCormick (1976) presented the following over- and underestimators w for a bilinear
term xy:

w ≥ xLBy + yLBx − xLByLB,

w ≥ xUBy + yUBx − xUByUB,

w ≤ xUBy + yLBx − xUByLB,

w ≤ xLBy + yUBx − xLByUB.

(3.7)

Here uppercase LB and UB denote the lower and upper bounds of the variables respec-
tively. These so called McCormick envelopes are exact in the cases when either x or y are
at one of their bounds. These underestimators are therefore an exact reformulation of
a bilinear term as long as one of the variables can only obtain two different values, for
example when one of the variables is binary. When minimizing over w, the two latter
constraints are redundant. The McCormick underestimators can easily be applied on the
QAP in standard form (eq. (2.2)) where all variables are binary. Since the lower bound is
zero for a binary variable, the first underestimator will take the form w ≥ 0 and can be
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x51

x15x14x13x12
x11

x11

x21

x31

x41

b′11

a′11

Figure 3.1: Possible nodes for the bilinear term a′11b
′
11. Since both a′11 and b′11 share one binary

variable and exactly one of the binary variables in each direction equals one, the dots in lighter
gray are not possible.

left out since all the variables w are defined as positive in the MILP solver. However, this
formulation will always yield a LP solution at the root node where all binaries have an
equally large fractional value and a lower bound of zero.

An exact reformulation can also be obtained for discrete bilinear terms using multiple
McCormick envelopes. This can be done by extending the expressions such that the
envelopes are active in decreasing regions and relaxed outside using a big-M formulation.
When rewriting the objective function (eq. (3.3)) with these formulations we add one
new variable wij and two constraints per McCormick envelope c, for every bilinear term
a′ijb

′
ij .

min
N
∑

i=1

N
∑

j=1

wij (3.8)
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wij ≥ Ac
jb
′
ij +Bc

i a
′
ij −A

c
jB

c
i −A

1
j B

1
i





















2−
∑

k∈Cc
j

xik −
∑

k∈Dc
i

xkj





















wij ≥ A
c
jb
′
ij +B

c
i a
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c
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j B
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i





















2−
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j

xik −
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xkj







































































∀c, i, j, (3.9)

where

c = 1, . . . ,min

{⌈

Nj

2

⌉

,
⌈

Mi

2

⌉

}

.

Nj is the number of unique elements in column j of the matrix A and Mi is the

number of unique elements of row i of matrix B. Ac
j , A

c
j and Bc

i , B
c
i are the lower and

upper bounds of the variables a′ij and b′ij respectively in the corresponding envelope c.
The lower and upper bounds for the variables in each envelope are given by the

unique elements of the corresponding column and row of the A and B matrix. For the
first envelope the lower and upper bounds are given by the lower and upper bound of
all the unique elements of the corresponding column and row:

A1
j =min

i,i,j
a′ij , A

1
j =max

i,i,j
a′ij ∀j, (3.10)

B1
i =min

j,i,j
b′ij , B

1
i =min

j,i,j
b′ij ∀i. (3.11)

Cc
j and Dc

i are the sets of indices, connected to the binary variables xij , in eq. (3.9) for

which the variables a′ij and b′ij will obtain values within the bounds specified by Ac
j , A

c
j

and Bc
i , B

c
i according to,

Cc
j =

{

i | Ac
j ≤ a′ij ≤ A

c
j ∧ i , j

}

∀j, (3.12)

Dc
i =

{

j | Bc
i ≤ b′ij ≤ B

c
i ∧ i , j

}

∀i. (3.13)

The lower and upper bounds in eq. (3.12) and eq. (3.13) for each envelope, c, are specified
in increasing and decreasing order. An underestimator composed of multiple McCormick
envelopes for a term a′ijb

′
ij with c = 3 is shown in fig. 3.2.

The multiple McCormick formulation does not need additional variables (except for
the wij ) and thus result in a compact reformulation. However, due to the nature of the
big-M constraints the continuous relaxation of a discrete bilinear term is weak. In the
next section stronger continuous relaxations are derived, by utilizing the discrete nature
of only one of the variables.

3.2 Discrete linear reformulation

In Paper I a discrete linear reformulation (DLR) was presented where auxiliary continu-
ous variables were added in order to linearize the bilinear terms. The following notations
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Figure 3.2: Underestimators for a term a′ijb
′
ij composed of three McCormick envelopes.

are used below. The upper bound of the a′ij variable is written as Aj and is the value of
the largest element in column j of matrix A, i.e.

Aj =max
i

a′ij ∀j. (3.14)

Observe that Aj corresponds to A
1
j in eq. (3.10) but in this formulation only the largest

element is needed. Mi is the number of unique elements in row i of the discretized
matrix and therefore also the number of auxiliary variables added for the specific term.
Finally, Km

i is the set of indices for which the elements are equal to the current value Bm
i :

Km
i =

{

j |bij = Bm
i

}

∀i, j, i , j ∧m = 1, ...,Mi , (3.15)

where
bij ∈

{

B1
i ,B

2
i , ...,B

Mi
i

}

∀i, j, i , j. (3.16)

Here, a positive variable wij is again added for every bilinear term a′ijb
′
ij in the

same manner as earlier. When modeling, the wij variable can be omitted and the right
hand side of eq. (3.17) added straight to the objective function. The discrete linear
reformulation is written as follows:

wij ≥

Mi
∑

m=1

Bm
i z

m
ij , (3.17)

Mi
∑

m=1

zmij = a′ij ∀i, j, (3.18)

zmij ≤ Aj

∑

k∈Km
i

xkj ∀i, j ∧m = 1, . . . ,Mi , (3.19)

zmij ∈ [0,Aj ] ∀i, j ∧m = 1, . . . ,Mi . (3.20)

Bm
i are the constant unique values of the elements bij in row i of the matrix B andMi the

number of unique elements in the row, where Mi ≤ n. The variables zmij are nonnegative
where one will be equal to a′ij while the others will be zero.
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Figure 3.3: Bilinear term a′ijb
′
ij discretized in a′ij (to the left) and in b′ij (to the right). The

underestimators are shown in blue and each level corresponds to a zmij variable in eq. (3.17).

3.3 DLR-version 2

In Paper II a different formulation for the bilinear terms is proposed. This formulation
handles the auxiliary variables differently than the first one. For any solution in the DLR,
only one auxiliary variable is active per bilinear term. In this formulation however, the
auxiliary variables are of the incremental type meaning that the larger the bilinear term
is the more of the auxiliary variables are active:

wij ≥ B1
i a
′
ij +

Mi
∑

m=2

(Bm
i −B

(m−1)
i )zmij , ∀i, j, (3.21)

zmij ≥ a′ij −Aj +Aj

∑

k∈Km′

i
m′≥m

xkj ∀i, j ∧m = 1, ...,Mi . (3.22)

3.4 Examples of the formulations

In this section all of the above reformulations are shown for a single bilinear term where
i = 2 and j = 3. Bilinear terms for all i, j in the QAP can be handled in a similar way. The
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matrices in the examples are:

A =







































0 3 5 9 6
3 0 2 6 9
5 2 0 8 10
9 6 8 0 2
6 9 10 2 0







































and B =







































0 4 3 7 7
4 0 4 10 6

3 4 0 2 3
7 10 2 0 4
7 6 3 4 0







































where a′23 and b′23 are defined as:

a′23 = 5x21 +2x22 +0x23 +8x24 +10x25,

b′23 = 4x13 +0x23 +4x33 +10x43 +6x53,

while the assignment constraints for the specific variables are:

x13 + x23 + x33 + x43 + x53 = 1,

x21 + x22 + x23 + x24 + x25 = 1.

The McCormick formulation (eq. (3.9))

From the unique elements in column j = 3 of A and row i = 2 of B we get N3 = 4, M2 = 3
and c = 1, . . . ,min

{

d42 e,d
3
2 e
}

= 1, . . . ,2. For c = 1, the upper and lower bounds are: A1
3 = 2,

A
1
3 = 10, B1

2 = 4 and B
1
2 = 10. For c = 2, A2

3 = 5, A
2
3 = 8, B2

2 = 6 and B
2
2 = 6. The index sets

in eq. (3.12) and eq. (3.13) are C1
3 = {1,2,4,5}, D

1
2 = {1,3,4,5}, C

2
3 = {1,4} and D2

2 = {5}.
Then, according to eq. (3.9) we get the following constraints:

w23 ≥ 10a′23 +10b′23 − 100− 100(2− x21 + x22 + x24 + x25 + x13 + x33 + x43 + x53),

w23 ≥ 4a′23 +2b′23 − 8− 100(2− x21 + x22 + x24 + x25 + x13 + x33 + x43 + x53),

w23 ≥ 6a′23 +5b′23 − 30− 100(2− x21 + x24 + x53),

w23 ≥ 6a′23 +8b′23 − 30− 100(2− x21 + x24 + x53).

The DLR formulation (eqs. (3.17) to (3.19))

For this term (i = 2, j = 3), A3 = 10 (i.e. the largest value in column three of the Amatrix),
according to eq. (3.14). Then M2 = 3 according to eq. (3.16) since row two (i = 2) in the
discretized matrix B has three unique values. The Bm

i values in eq. (3.16) are the unique

values (of row i = 2 in the B matrix), i.e. b′23 ∈ {4,6,10} =
{

B1
2,B

2
2,B

3
2

}

. The index sets Km
2

are, according to eq. (3.15), in this case K1
2 = {1,3} ,K2

2 = {5} and K3
2 = {4}.

w23 ≥ 4z123 +6z223 +10z323,

z123 + z223 + z323 = 5x21 +2x22 +8x24 +10x25,

z123 ≤ 10(x13 + x33),

z223 ≤ 10x53,

z323 ≤ 10x43.
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The DLR-version 2 formulation (eqs. (3.21) to (3.22))

In this formulation the same index sets are used as in the previous DLR formulation.

w23 ≥ 4a′23 +2z123 +4z223,

z123 ≥ a′23 − 10+10x53,

z123 ≥ a′23 − 10+10x43.

3.5 Special structures

Some of the instances in the QAPLib have rows and columns where every element is
equal to zero. This is a result from adding so called dummy locations or facilities. For
example if a facility location problem has 30 possible locations but only 20 facilities to
place among them, this can still be written as a QAP instance of size n = 30 by simply
adding 10 rows and columns with all values equal to zero in the flow matrix. Then
solving the QAP determines both which locations to leave empty as well as where to
place the facilities. Every location that is assigned a dummy facility is left empty. Clearly,
changing the locations between two dummy facilities will give the same solution value
since all the same locations are still unused and nothing else is changed in the model. In
other words, instances containing many dummy facilities result in models with a lot of
symmetries that can really destroy the efficiency of the branching. Especially the esc
instances contain a lot of zero rows. Paper I shows how to remove these dummy facilities
from the models in order to avoid an excessive number of equal symmetric solutions and
therefore speed up the branch and bound solver.

3.5.1 Matrix modification

The number of variables in the presented linearizations are dependent on how many
unique values each row of the discretized matrix has. Therefore the size of the model can
be reduced by decreasing the number of unique values in one of the matrices. In most
QAP instances at least one of the matrices is symmetric. The facility location problem can
be used as an example. From there it is easy to understand that the distance between two
locations should be the same regardless of the direction. This is not always the case, for
example there might be one way roads or construction work making one of the directions
longer. The modification scheme takes advantage of the fact that it is mathematically
exactly the same if one truck drives between two facilities in both directions as if two
trucks drive only in one direction. When modifying a QAP instance the elements aij in
one of the matrices can therefore be changed (as long as the other matrix is symmetric)
to any new element ãij as long as aij + aji = ãij + ãji holds. When B is symmetric (i.e.
B = BT ):

XA •BX =A •XTBX =AT •XTBTX =AT •XTBX. (3.23)

In eq. (3.23) • represents the scalar product of the matrices, defined as the sum of the
product of the corresponding elements. Then, assuming A =A1 +A2, apply eq. (3.23) to
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A2 and obtain:

n
∑

i=1

n
∑

j=1

a′ijb
′
ij = (A1 +A2) •X

TBX = (A1 +AT
2 ) •X

TBX = Ã •XTBX. (3.24)

Paper II shows two different LP models that can be solved a priori. One modification
scheme minimizes the maximum difference between the elements in the rows in order to
give tighter formulations. The other LP model minimizes the difference between every
element of a row in order to decrease the number of unique elements and thus reducing
the model size. The distance matrix of an example instance shown below can then be
rewritten to a new matrix Ã, e.g. as:

A =



































































0 1 2 2 3 4 4 5
1 0 1 1 2 3 3 4
2 1 0 2 1 2 2 3
2 1 2 0 1 2 2 3
3 2 1 1 0 1 1 2
4 3 2 2 1 0 2 3
4 3 2 2 1 2 0 1
5 4 3 3 2 3 1 0



































































Ã =



































































0 2 2 2 6 6 6 6
0 0 0 0 4 4 4 4
2 2 0 2 2 2 2 2
2 2 2 0 2 2 2 2
0 0 0 0 0 0 0 0
2 2 2 2 2 0 2 2
2 2 2 2 2 2 0 2
4 4 4 4 4 4 0 0



































































.

Thesemodifications do not break the symmetric structure of the QAP itself. Therefore,
techniques such as orbital branching (Ostrowski et al., 2011) and orbital shrinking
(Fischetti and Liberti, 2012) can still be applied on these models. Simple alternative
versions of the modifications can also be used with other formulations where a certain
attribute of one of the matrices is desired. Paper II shows that the modifications also
tighten the GLB in its normal form.

The QAPLib classifies instances as asymmetric for which one of the matrices is not
symmetric. However using the scheme shown here, every instance where one of the
matrices is symmetric can be rewritten as an instance where both matrices are symmetric
without changing the objective value. The elements in the asymmetric matrix are then
changed to aij =

aij+aji
2 ∀i, j. Every instance in the QAPLib is in fact symmetric since

there is not a single instance listed where both of the matrices are asymmetric.





CHAPTER 4
Results and notes on the papers

The work in this thesis is mostly derived from four papers. A short summary as well as
some results from the papers are presented below.

Paper I: A new exact discrete linear reformulation of the quadratic assign-

ment problem

Paper I introduces the new MINLP form of the QAP. Also, the first linearization method
to write the MINLP as a discrete MILP is presented. The formulation turned out to be one
of the best available in the literature on sparse QAP instances. In this paper the instances
esc32a, esc32c, esc32d and esc64a were solved for the first time to proven optimality.
These instances had remained unsolved for over 20 years since their introduction in
Eschermann and Wunderlich (1990). Paper I also shows how to remove auxiliary rows
and columns where all elements are equal to zero. For example, the instance esc64a has
42 rows out of 64 where all the elements are zero. The number of possible permutations
can in the case of esc64a be reduced from 64! = 1.3 · 1089 to 64!

42! = 0.9 · 1038.

Paper II: Improved discrete reformulations for the quadratic assignment

problem

In paper II the original DLR formulation is improved. The most important contribution
of this paper is to remove the diagonal elements from the equations, drastically tightening
the DLR model as well as reducing the solution times. An alternative linearization,
equally tight as the improved formulation, is also presented. In addition to this, two ad

hoc matrix modification schemes are derived.
With these methods the instance esc32b is solved for the first time ever to proven

optimality. The instances solved for the first time in Paper I are solved again in much
shorter time. The solution times for both methods can be seen in table 4.1. Figure 4.1

23
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Table 4.1: Solution times, in seconds, for some of the esc instances from the QAPLIB

Instance Paper I (s) Paper II (s)
esc32a 1 618 580 117 850
esc32b *** 210 045
esc32c 24 365 7 801
esc32d 36 256 610
esc64a 16 370 2 899
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Figure 4.1: Solution progress for the instance esc32c, comparing the methods from Paper I and
Paper II

shows a comparison between the results when solving the models from Paper I and Paper
II for the instance esc32c. Clearly, the improved formulation is significantly better than
the original.

Paper III: Tightening a discrete formulation of the quadratic assignment

problem

One of the biggest drawbacks with most linearizations of bilinear terms is that the binary
variables take as small fractional values as possible in the LP relaxations. This is also the
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case with the formulations presented in Paper I and Paper II. Because of this the auxiliary
variables that correspond to the largest elements in the discretized matrix will in almost
all cases be equal to zero. Paper III deals with an idea of solving QAPs containing only
the largest elements of each column in order to obtain lower bounds on these variables.
By changing every element to zero except the largest element of each column in the
discretized matrix, a new QAP is obtained:

A =





























0 1 2 3
1 0 4 1
2 4 0 5
3 1 5 0





























B =





























0 2 5 8
2 0 6 9
5 6 0 3
8 9 3 0





























−→

Atop =





























0 0 0 0
0 0 0 0
0 1 0 1
1 0 1 0





























B =





























0 2 5 8
2 0 6 9
5 6 0 3
8 9 3 0





























A lower bound, or the optimal solution for the new QAP, is also a lower bound for the
sum of all the variables preceding the largest elements of each column in the objective
function. Unfortunately the subproblems are QAPs of the same size as the original model
and are therefore difficult to solve. The proposed cuts require too much computational
time in order to be effective. However, the optimal solution of the subproblem is not
needed for the cuts to work. Therefore a quick and tight lower bounding technique could
be very useful in this setting.

Paper IV: An efficient reformulation of the multiechelon stochastic inven-

tory system with uncertain demands

In this paper the formulations from Paper I are applied on a large scale supply chain
problem presented in You and Grossmann (2010). One of the objectives for the consid-
ered supply chain is to decide where to place warehouses so that all customer demands
(which are known a priori) are satisfied. This results in bilinear terms very similar to
the objective function in a QAP. By reordering these terms in the objective function
on a multiechelon supply chain model, a similar MINLP formulation is achieved as in
eq. (3.3). Then, the same linearization techniques are used as in Paper I and Paper II.
This results in a model both tighter and significantly smaller in size than the original
one. In You and Grossmann (2010) a Lagrangian decomposition is applied in order
to solve the MINLP problem. After reformulating the problem as in Paper IV these
problems can be solved to a predefined gap without decomposing, using only an MILP
solver in significantly shorter time. The original model contains many bilinear terms
which are reformulated to MILP form before decomposing the problem. However, after
rewriting the terms some of the bilinear reformulations can be left out altogether. For a
supply chain with I plants, J distribution centers and K customer demand zones, the
number of auxiliary continuous variables needed to linearize the bilinearities in the
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You and Grossmann (2010) Paper IV
|I | |J | |K | Bin. vars. Cont. vars. Const. Bin. vars. Cont. vars. Const.
2 20 20 460 2 480 5 300 460 940 1 800
5 30 50 1 680 13 640 33 190 1 680 3 410 6 520
20 50 100 6 050 120 250 335 350 6 050 12 200 22 400
15 100 200 21 600 300 300 1 040 700 21 600 43 400 83 800

Table 4.2: Sizes of the old and reformulated models

objective function decreases from I · J ·K to only I · J when using the new reformulations.
In table 4.2 the number of variables needed for the different formulations is shown.
Clearly, the newer formulations are much more compact with tighter models resulting
in remarkably shorter solution times.



CHAPTER 5
Conclusion

In the work presented in this thesis some new effective techniques for solving the
quadratic assignment problem have been derived. Since the first version of the DLR
already solved a few unsolved instances from the QAPLib, developing these methods
further should yield nice results. In particular thematrix modification schemes presented
in Paper II could prove to be very useful for other solution strategies as well. This thesis
has focused mainly on reformulations of bilinear terms. A good branching strategy
would probably improve these formulations a lot. Also, symmetries could be considered
in much greater detail, especially since many instances, such as the border length
minimization problems, are highly symmetrical.

Future work should also address how to apply similar formulations as in Paper IV to
multiechelon supply chains where single sourcing is not a requirement.

5.1 A remark on solution times

When solving MILP problems using commercial solvers, the objective and the constraints
are written into problem files that are read in by the solver. With problems of this size, a
change in the branching order can have a significant effect on the solution times. Since
both Cplex and Gurobi determine the branching order of the variables from the ordering
of the variables in the problem files, changing the order of the constraints in the file
affects the solution times as well.

Solvers normally have many tunable parameters and some custom parameter settings
might reduce the solution time drastically on one instance while increasing it on another.
Also, choice of and version of solver all impact the solution times. Therefore, all the
models in this work have been solved using Gurobi with default parameters without
putting any effort into changing solver, parameters or branching priorities. All computa-
tions have been conducted on a single PC with an Intel i7 quadcore 2.8 GHz processor
and 6 GB RAM. Finally, it should be mentioned that it is difficult to do a completely fair

27
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comparison between different MILP formulations since there are too many factors to be
considered.
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