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Refining without branching

Could the αBB underestimator be used without an explicit
branching framework? (cf. the SGO algorithm)

We developed a convex formulation that handles breakpoints
with binary variables instead of direct branching

”Why?”

It can readily be integrated with the SGO algorithm
It could turn out to be especially well-suited for some types of
mixed-integer problems
As a convex reformulation it could be of interest in automated
reformulation procedures
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α1 = 1, α2 = 0.6, α3 = 0
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Refining without branching

The underestimation error can be described as the difference of a
parabola and a piecewise linear function.
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Refining without branching

Our formulation: (1D for clarity)

f (x) ≤ 0 (1)

W = αx2 (2)

Overestimating W will relax the feasible domain, we replace W
with a piecewise linear function

Ŵ =
K∑

k=1

Akbk + (Bk − Ak)sk (3)

where
Ak = αxk

2

Bk = αxk
2

(xk and xk denote the interval endpoints)
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Ŵ =
K∑

k=1

Akbk + (Bk − Ak)sk (3)

where
Ak = αxk

2

Bk = αxk
2

(xk and xk denote the interval endpoints)

Anders Skjäl αBB in the SGO framework



Refining without branching

The bk are binary variables, sk are continuous and nonnegative.

Ŵ =
K∑

k=1

Akbk + (Bk − Ak)sk

We relate x to bk and sk with the constraints

K∑
k=1

bk = 1

sk ≤ bk , ∀k

x =
K∑

k=1

xkbk + (xk − xk)sk

Every constraint is convex and the feasible set is relaxed
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In two dimensions

An example:
f (x , y) = sin(x + y) +

√
x cos y

1 ≤ x ≤ 7, 1 ≤ y ≤ 9
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Underestimator - no breakpoints
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Underestimator - 1 breakpoint
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Underestimator - 1+1 breakpoints
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Underestimator - 1+2 breakpoints

2

4

6 x

2
4

6
8

y

-10

-5

0

Figure:

Anders Skjäl αBB in the SGO framework



Underestimator - 1+3 breakpoints
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Underestimator - 3+3 breakpoints
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Constraint feasibility

f(x,y) < 0

f(x,y) < 0
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Constraint feasibility - 1+1 breakpoints
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Constraint feasibility - 3+3 breakpoints
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Constraint feasibility - 7+7 breakpoints
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About convergence

The largest underestimation error in a subdomain depends only on
the value of αi , i = 1, . . . n and the size of the subdomain: (1D)

max
x∈[xk ,xk ]

Ŵ − αx2 = max
x∈[xk ,xk ]

−α(x − xk)(x − xk) = α

(
xk − xk

2

)2

An ε precision is guaranteed if the width of the interval

xk − xk ≤
√

4ε

α
.

⇒ The algorithm will converge
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Challenges & Ideas

The subproblems grow as we add breakpoints, the branching
is ”hidden” in the complexity of the convex MINLPs

The increase in complexity depends on the number of
breakpoints, not directly on the number of constraints

Bound reductions are only partially applicable

We get less information about subdomains as compared to
branch-and-bound

A type of ”minor” breakpoint halving every interval can be
introduced without too much cost
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Integration with SGO

Preprocessing step: Transformations
obtained by solving an MILP problem

The nonconvex terms are re-
placed by convex underestima-

tors; the PLFs are initialized

The convexified and overestimated prob-
lem is solved using a convex MINLP solver

Are the
termination

criteria
fulfilled?

Update
approximations

Optimal solution
no yes
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Thank you
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C 2 constraints

We are interested in handling constraints

f (x) ≤ 0

where f ∈ C 2, i.e. f is twice continuously differentiable.

In addition C 2 objective functions can be handled by rewriting

min f (x) as
min µ
s.t. f (x)− µ ≤ 0
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The αBB underestimator

A C 2 function f on the domain [xL, xU ] ⊂ R can always be
convexified by adding a parabola p(x) = α(x − xL)(x − xU) with a
large enough α.

1 2 3 4 5

−4

−2

0

2

4

x

function
parabola
underest.

Anders Skjäl αBB in the SGO framework



The αBB underestimator

A C 2 function f on the domain [xL, xU ] ⊂ R can always be
convexified by adding a parabola p(x) = α(x − xL)(x − xU) with a
large enough α.

1 2 3 4 5

−4

−2

0

2

4

x

function
parabola
underest.

Anders Skjäl αBB in the SGO framework



The αBB underestimator

This convex underestimator can be extended to multiple
dimensions. Let f be a C 2 function on Rn. For a large enough α
the function g = f + q where

q(x1, . . . , xn) = α

n∑
i=1

(xi − xLi )(xi − xUi )

is convex.

Tighter underestimators can be found by letting α
depend on i

q(x1, . . . , xn) =
n∑

i=1

αi (xi − xLi )(xi − xUi )
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The αBB underestimator

How large must we choose αi?

One dimension: g is convex if g ′′ = f ′′ + 2α ≥ 0

In general: g is convex if the Hessian matrix Hg is positive
semi-definite

Hg = Hf + 2 · diag(αi ) =
∂2f

∂x1∂x1
· · · ∂2f

∂x1∂xn
...

. . .
...

∂2f
∂xn∂x1

· · · ∂2f
∂xn∂xn

+ 2

 α1

. . .

αn


Choose αi such that the eigenvalues of Hg are nonnegative on
the relevant domain
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The αBB underestimator

The αi are calculated (e.g.) by utilizing interval arithmetic
and Gershgorin’s circle theorem

Smaller valid choices usually exist, but finding the optimal αi

is in general as hard as the optimization problem itself

Branch-and-bound methods can be used to solve the original
problem
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Branch-and-bound search

Branch to split a domain in two and get tighter
underestimators

Any feasible solution to the original problem gives an upper
bound on the optimal objective value

Any branch with a lower bound greater than the best found
upper bound is fathomed (cut)

A number of techniques are used to speed up the search, e.g.
bound reduction
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