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What is the signomial global optimization algorithm?

I The SGO-algorithm is a method for solving nonconvex mixed
integer signomial programming (MISP) problems to global
optimality.

I Convex underestimators for signomial functions through
single-variable transformations xi = T ji (X ji ) applied termwise.

. Transformations obtained by solving a MILP problem.

. Piecewise linear functions (PLFs) are used to approximate
T ji (X ji ).

⇒ Gives a convex overestimation of the feasible region.

I The overestimated convex MINLP problem is solved using any
convex solver.

I As the PLFs are updated, the approximations are improved.
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The considered class of MINLP problems

The MISP problem formulation

minimize f(x) x= (x1,x2, . . . ,xI )

subject to Ax= a Bx ≤ b
gn(x) ≤ 0 n = 1,2, . . . ,Jn
qm(x)+ σm(x) ≤ 0 m = 1,2, . . . ,Jm

I The vector x can contain both continuous and integer-valued
variables.

I The differentiable real functions f and g are (pseudo)convex,
and the functions q and σ are convex and signomial
respectively.
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The generalized signomial functions q + σ

I A generalized signomial function is a sum of a convex function
q and a signomial function σ .

I A signomial function is a sum of signomial terms, where each
term consists of products of power functions, i.e.,

σ(x) =
J∑

j=1

cj

I∏
i=1

x
p ji
i , cj , pji ∈R.

The variables xi are positive.

Example

q(x1,x2)+ σ(x1,x2) = x2
1 + ex2︸   ︷︷   ︸
q(x1,x2)

+2.3x0.35
1 −4x1x

0.5
2 + x1x2︸                          ︷︷                          ︸

σ(x1,x2)

.
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Convexification and relaxation of MISP problems

1. Convexification

I Every signomial term can be transformed to convex form by
using single-variable transformations.

I Additional variables and a number of nonlinear equality
constraints defining the inverse transformations are obtained.

2. Underestimation, convexification and relaxation

I By using properly selected transformations, the convexified
terms are underestimated when the inverse transformations
are approximated by piecewise linear functions.

I The MINLP problem is now convexified and relaxed.
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Convexity of signomial terms

I The convexity of signomial terms depends on the sign of
the term:

Positive term

One of the following is true:

I All powers are negative

Example: x−0.5
1 x−2

2

I One power is positive, the
rest negative, and the sum of
the powers is ≥ 1

Example: x2
1x
−1
2

Negative term

I All powers are positive and
the sum of the powers is ≤ 1

Example: −x0.5
1 x0.5

2
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Convexifying and underestimating signomial terms

I A nonconvex signomial term cj
∏I

i=1 x
p ji
i is convexified by applying

certain transformations to the individual variables in the term:

Positive term

For all i , j : p ji > 0:

I Exponential transformation (ET)
xi = eX ji

I Positive power transformation (PPT)
xi = X ji

Q jiQ ji ≥ 1 if i = k ,
Q ji < 0 if i , k ,

I∑
i=1

p jiQ ji ≥ 1.

I Negative power transformation (NPT)
xi = X ji

Q ji , Q ji < 0.

Negative term

I Power transformation (PT)
xi = X ji

Q ji

0 <Q ji≤ 1 if p ji > 0,
Q ji < 0 if p ji < 0,

I∑
i=1

p jiQ ji ≤ 1.

I The convexified term is underestimated by replacing the inverse

transformations (X ji = lnxi or X ji = x
1/Q ji
i ) with PLFs.
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Examples of the transformations

Transforming a positive signomial term

Original term Transformation Transformed term

PPT X4.1
1 X−0.1

2 x−1
3 x−2

4

x1.2
1 x0.1

2 x−1
3 x−2

4 NPT X−1.2
1 X−0.1

2 x−1
3 x−2

4

ET e1.2x1e0.1x2x−1
3 x−2

4

Transforming a negative signomial term

Original term Transformation Transformed term

−x−1
1 x0.5

2 PT −X0.5
1 x0.5

2
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Example: a univariate nonconvex signomial term

f(x) = −8x +0.05x3︸           ︷︷           ︸
convex

+25x0.5︸   ︷︷   ︸
nonconvex

, 1 ≤ x ≤ 7

2 4 6
15

20

25

x
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convex

+25x0.5︸   ︷︷   ︸
nonconvex

, 1 ≤ x ≤ 7

I A convex underestimator is obtained by applying the ET

f̂1(x , X̂E ) = −8x +0.05x3+25e0.5X̂E

or one of the PPT or NPT

f̂2(x , X̂P ) = −8x +0.05x3+25X̂0.5Q
P ,

PPT︷︸︸︷
Q ≥ 2 or

NPT︷︸︸︷
Q < 0 .

Here, X̂E and X̂P are piecewise linear approximations of
the inverse transformations XE = lnx and XP = x1/Q .



The transformation approach 10 | 32
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Example: a univariate nonconvex signomial term

I The underestimators are improved by adding additional
breakpoints to the PLFs

2 4 6
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15

20
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PPT Q = 2 ET NPT Q = −1
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PPT Q = 2

1 3 5 7
0
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1

1.5

y

ET

1 3 5 7
0

0.2
0.4
0.6
0.8

1

x

NPT Q = −1
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Transformation of the signomial constraints

qm(x)+ σm(x) ≤ 0

qm(x)+ σC
m(x,X) ≤ 0

1.

qm(x)+ σC
m(x,X̂) ≤ 0

2.

1. Convexification of σm by transformations xi = T ji (X ji ).
Nonconvexities moved to Xji = T−1

ji (xi ).

2. Underestimation of σC
m by approximating X ji = T ji

−1(xi )
with PLFs X̂ ji . The integer-relaxed problem is now convex
and overestimates the original problem.
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Flowchart of the SGO-algorithm

Preprocessing step: Transformations
obtained by solving a MILP problem

The nonconvex terms are re-
placed by convex underesti-

mators; the PLFs are initialized

The convexified and overestimated prob-
lem is solved using a convex MINLP solver

Are the
termination

criteria
fulfilled?

Optimal solution
yesUpdate

approximations
no



The signomial global optimization algorithm 14 | 32

Flowchart of the SGO-algorithm

Preprocessing step: Transformations
obtained by solving a MILP problem

The nonconvex terms are re-
placed by convex underesti-

mators; the PLFs are initialized

The convexified and overestimated prob-
lem is solved using a convex MINLP solver

Are the
termination

criteria
fulfilled?

Optimal solution
yesUpdate

approximations
no



The signomial global optimization algorithm 14 | 32

Flowchart of the SGO-algorithm

Preprocessing step: Transformations
obtained by solving a MILP problem

The nonconvex terms are re-
placed by convex underesti-

mators; the PLFs are initialized

The convexified and overestimated prob-
lem is solved using a convex MINLP solver

Are the
termination

criteria
fulfilled?

Optimal solution
yesUpdate

approximations
no



The signomial global optimization algorithm 14 | 32

Flowchart of the SGO-algorithm

Preprocessing step: Transformations
obtained by solving a MILP problem

The nonconvex terms are re-
placed by convex underesti-

mators; the PLFs are initialized

The convexified and overestimated prob-
lem is solved using a convex MINLP solver

Are the
termination

criteria
fulfilled?

Optimal solution
yesUpdate

approximations
no



The signomial global optimization algorithm 14 | 32

Flowchart of the SGO-algorithm

Preprocessing step: Transformations
obtained by solving a MILP problem

The nonconvex terms are re-
placed by convex underesti-

mators; the PLFs are initialized

The convexified and overestimated prob-
lem is solved using a convex MINLP solver

Are the
termination

criteria
fulfilled?

Optimal solution
yes

Update
approximations

no



The signomial global optimization algorithm 14 | 32

Flowchart of the SGO-algorithm

Preprocessing step: Transformations
obtained by solving a MILP problem

The nonconvex terms are re-
placed by convex underesti-

mators; the PLFs are initialized

The convexified and overestimated prob-
lem is solved using a convex MINLP solver

Are the
termination

criteria
fulfilled?

Optimal solution
yesUpdate

approximations
no



The signomial global optimization algorithm 14 | 32

Flowchart of the SGO-algorithm

Preprocessing step: Transformations
obtained by solving a MILP problem

The nonconvex terms are re-
placed by convex underesti-

mators; the PLFs are initialized

The convexified and overestimated prob-
lem is solved using a convex MINLP solver

Are the
termination

criteria
fulfilled?

Optimal solution
yesUpdate

approximations
no



The signomial global optimization algorithm 15 | 32

Obtaining an optimized set of transformations

The transformations xi = T ji (X ji ) are applied termwise to all JT
nonconvex signomial terms (in the problem).

I Some degrees of freedom exist regarding how to choose the
transformations:

. power or exponential transformations

. value of the transformation powers Q

I No transformation on a variable in the term occurs when
choosing the power Q = 1: x = XQ = X1 = X

Solution approach

Create a MILP problem formulation, whose solution determines the
optimal set of transformations required to transform the signomial
terms, specified by the coefficients cj and powers p ji .
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The objective function of the MILP problem

For a MISP problem with JT signomial terms and I variables:

minimize δR
∑

i : xi∈R
Bi + δZ

∑
i : xi∈Z

Bi + δI

I∑
i=1

JT∑
j1=1

JT∑
j2=1
j2,j1

γj1j2 i

+
I∑

i=1

JT∑
j=1

(δNTbji + δNS∆ji + δETb
ET
ji + δPTb

PT
ji + δPβji )

Parameters and variables

I Strategy parameters: δR , δZ , δI , δNT , δNS , δET , δPT , δP

I Decision variables (binaries):

. xi is transformed in any term⇒ Bi = 1

. xi is transformed in the j-th term⇒ b ji = 1

. ET or PT used on xi in the j-th term⇒ bETji = 1∨ bPTji = 1

. p jiQ ji > 0⇒ βji = 1

. different transformations for xi in terms j1 and j2⇒ γj1j2i = 1

I Penalties (real-valued) ∆ji for large/small values of Q ji
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The objective function of the MILP problem

minimize δR

I∑
i=1

riBi + δZ

I∑
i=1

riBi + δI

I∑
i=1

JT∑
j1=1

JT∑
j2=1, j2,j1

γj1j2 i + . . .

I The values of the parameters in the objective function
determine in what respect the set of transformations will be
optimal

I The following aspects can be taken into account

. penalize number of original variables transformed

. penalize number of nonidentical transformations for the same variables

. penalize total number of transformations

. penalize numerically unstable transformations (e.g. Q = −0.001)

. favor the ET or the PTs for positive terms

. favor the PPT or NPT for positive terms
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Two-dimensional example

I The SGO algorithm is now applied to the following MISP problem

minimize (x −4)2 +(y −1)2 +2.5x2y−1

subject to −20+8x −1.5y0.5 +11y+0.9y2

+0.1x2y2 − x2 +0.2x1.5y0.5 −1.2xy −2x0.5y2 ≤ 0

1 ≤ x ≤ 7, 1 ≤ y ≤ 5, x ∈Z+, y ∈R+

1 2 3 4 5 6 7
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Transformation of the problem

I Optimizing the transformations gives that three
transformations are needed

. . . +0.1x2y2 − x2 +0.2x1.5y0.5 −1.2xy −2x0.5y2 ≤ 0.

y = Y−0.5
1 y = Y0.25

2

x = X0.5
1

I This gives the following convexified constraint

. . .+0.1x2Y−1
1 −X1+0.2x1.5Y−0.25

1 −1.2X0.5
1 Y0.25

2 −2x0.5Y0.5
2 ≤ 0.
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Linear approximation of the transformations

I When the equality constraints

X1 = x2, Y1 = y−2, and Y2 = y4

are replaced with the PLFs X̂1, Ŷ1 and Ŷ2, the terms are
also underestimated.

1 3 5 7
0

25

50

X1
X̂1

x

X1

1 3 5
0

0.5

1

Ŷ1

Y1 y

Y1

1 3 5
0
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600

Y2

Ŷ2

y

Y2

I As new breakpoints are added to the PLFs, the
approximations will improve.
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Iteration 1

1 2 3 4 5 6 7
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I The value of the objective function is 9.97 for x = 2 and y = 2.12.
I The original signomial constraint is not fulfilled:

. . . +0.1x2y2 − x2 +0.2x1.5y0.5 −1.2xy −2x0.5y2︸                                                               ︷︷                                                               ︸
= 1.996, when x=2, y=2.12

≤ 0

I Not the global solution to the nonconvex problem!
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Iteration 2
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I The value of the objective function is 9.97 for x = 2 and y = 2.12.
I The original signomial constraint is not fulfilled:

. . . +0.1x2y2 − x2 +0.2x1.5y0.5 −1.2xy −2x0.5y2︸                                                               ︷︷                                                               ︸
= 1.995, when x=2, y=2.12

≤ 0

I Not the global solution to the nonconvex problem!
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Iteration 3
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I The value of the objective function is 10.00 for x = 2 and y = 2.24.
I The original signomial constraint is not fulfilled:

. . . +0.1x2y2 − x2 +0.2x1.5y0.5 −1.2xy −2x0.5y2︸                                                               ︷︷                                                               ︸
= 2.195, when x=2, y=2.24

≤ 0

I Not the global solution to the nonconvex problem!
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Iteration 4
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I The value of the objective function is 10.14 for x = 2 and y = 1.84.
I The original signomial constraint is not fulfilled:

. . . +0.1x2y2 − x2 +0.2x1.5y0.5 −1.2xy −2x0.5y2︸                                                               ︷︷                                                               ︸
= 1.377, when x=2, y=1.84

≤ 0

I Not the global solution to the nonconvex problem!
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Iteration 5
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I The value of the objective function is 10.92 for x = 1 and y = 1.5.
I The original signomial constraint is fulfilled:

. . . +0.1x2y2 − x2 +0.2x1.5y0.5 −1.2xy −2x0.5y2︸                                                               ︷︷                                                               ︸
= −2.142, when x=1, y=1.50

≤ 0

I Globally optimal solution to the nonconvex problem!
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Illustration of the convex underestimation
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Illustration of the convex underestimation
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Iter. Obj. value x y Constraint

1 9.97 2 2.12 1.996
2 9.97 2 2.12 1.995
3 10.00 2 2.24 2.195
4 10.14 2 1.84 1.377
5 10.92 1 1.50 -2.142
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Final remarks

I The SGO-algorithm is a global optimization algorithm for mixed
integer signomial programming (MISP) problems.

. Convex underestimators through single-variable
transformations

. A set of transformations is obtained by solving a MILP
problem

I On-going research:

. Exclusion of unfeasible regions from the search-space.

. Extension of the current problem-scope to also include any
twice-differentiable nonconvex function
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Thank you for your attention!

Any questions?



A frequently asked question

I The following region does not seem to be convex:
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I The relaxed feasible region is convex, however, this is a
projection of it for feasible values of the discrete variables
defining the PLFs.
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I The “projection” (left) and an illustration of the relaxed
feasible region (right).


