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integer signomial programming (MISP) problems to global
optimality.
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What is the signomial global optimization algorithm?

» The SGO-algorithm is a method for solving nonconvex mixed
integer signomial programming (MISP) problems to global
optimality.

» Convex underestimators for signomial functions through
single-variable transformations x; = Tji(Xj,-) applied termwise.

> Transformations obtained by solving a MILP problem.
> Piecewise linear functions (PLFs) are used to approximate

T;i(Xi)-

= Gives a convex overestimation of the feasible region.

» The overestimated convex MINLP problem is solved using any
convex solver.

|
» As the PLFs are updated, the approximations are improved. ) %ﬁf‘
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The considered class of MINLP problems

The MISP problem formulation

minimize  f(x) X = (X1,X2,.--,X])
subjectto Ax=a Bx<b
gn(x) <0 n=12,...,J,
gm(X)+om(x) <0 m=1,2,...,dy
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The considered class of MINLP problems

The MISP problem formulation

minimize  f(x) X = (X1,X2,.--,X])
subjectto Ax=a Bx<b
gn(x) <0 = 1,2c00df5

gm(X)+om(x) <0 m=1,2,...,dy

» The vector x can contain both continuous and integer-valued
variables.
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The considered class of MINLP problems

The MISP problem formulation

minimize  f(x) X = (X1,X2,.--,X])
subjectto Ax=a Bx<b
gn(x) <0 = 1,2c00df5

gm(X)+om(x) <0 m=1,2,...,dy

» The vector x can contain both continuous and integer-valued
variables.

» The differentiable real functions f and g are (pseudo)convex,
and the functions g and o are convex and signomial
respectively.
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The generalized signomial functions g + ¢

» A generalized signomial function is a sum of a convex function
g and a signomial function o.
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The generalized signomial functions g + ¢

» A generalized signomial function is a sum of a convex function
g and a signomial function o.

» A signomial function is a sum of signomial terms, where each
term consists of products of power functions, i.e.,

J |
pii
O'(X): le_[Xi ﬂ, Cj, pjiEJR.
1 i=1

The variables x; are positive.
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The generalized signomial functions g + ¢

» A generalized signomial function is a sum of a convex function
g and a signomial function o.

» A signomial function is a sum of signomial terms, where each
term consists of products of power functions, i.e.,

J |
pii
O'(X): le_[Xi ﬂ, Cj, pjiEIR.
1 i=1

The variables x; are positive.

Example

q(x1,x2) + 0 (x1,%2) = X12 +e*e+ 2.3x?'35 - 4X1xg'5 + X1%5.
—

q(x1,x2) a(xux2) [ =2 5%
\\ifqg\%,&k &ﬁv
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Convexification and relaxation of MISP problems

1. Convexification

» Every signomial term can be transformed to convex form by
using single-variable transformations.

» Additional variables and a number of nonlinear equality
constraints defining the inverse transformations are obtained.
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Convexification and relaxation of MISP problems

1. Convexification

» Every signomial term can be transformed to convex form by
using single-variable transformations.

» Additional variables and a number of nonlinear equality
constraints defining the inverse transformations are obtained.
2. Underestimation, convexification and relaxation

» By using properly selected transformations, the convexified
terms are underestimated when the inverse transformations
are approximated by piecewise linear functions.

» The MINLP problem is now convexified and relaxed.
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Convexity of signomial terms

» The convexity of signomial terms depends on the sign of
the term:
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Convexity of signomial terms

» The convexity of signomial terms depends on the sign of
the term:

Positive term

One of the following is true:
» All powers are negative
Example: xl_o'Sxi2

» One power is positive, the
rest negative, and the sum of
the powersis > 1

2

0 -1
Example: x7 x5
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Convexity of signomial terms
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» The convexity of signomial terms depends on the sign of

the term:

Positive term

One of the following is true:
» All powers are negative

. 05, -2
Example: x77x;

» One power is positive, the
rest negative, and the sum of
the powersis > 1

2

0 -1
Example: x7 x5

Negative term

» All powers are positive and

the sum of the powersis <1

. 0.5,0.5
Example: —x72 x5

W
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Convexifying and underestimating signomial terms

» A nonconvex signomial term c; ]_[;:1 X,Pﬁ is convexified by applying
certain transformations to the individual variables in the term:
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The transformation approach
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Convexifying and underestimating signomial terms

» A nonconvex signomial term c; ]_[;:1 X,Pﬁ is convexified by applying
certain transformations to the individual variables in the term:

Positive term
Foralli,j: pji >0:
» Exponential transformation (ET)
G = e%ii
» Positive power transformation (PPT)
Xi = Xj,' jS
|
Qjiz1 ifi=k,
iQji = 1.
{Qj,»<o if ik, i;pﬂo”

» Negative power transformation (NPT)
Xj = Xj[jS, ij <0.
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Convexifying and underestimating signomial terms

» A nonconvex signomial term c; ]_[;:1 X,Pﬁ is convexified by applying
certain transformations to the individual variables in the term:

Positive term Negative term
Foralli,j: pj > 0: » Power transformation (PT)
» Exponential transformation (ET) xi = Xji Qji
Xj = eXii
0<Q;<1 ifp;>0,
» Positive power transformation (PPT) )
= Qji Qj,'<0 'iji<01
xj = Xji it
/ I
Qjiz1 ifi=k,
iQji 2 1. P Qi < 1.
{jS<0 ifi k, ;pﬂQ” ::Zf ji K ji

» Negative power transformation (NPT)
Xj = Xj[jS, ij <0.

» The convexified term is underestimated by replacing the inverse

1/Q;
transformations (X = Inx; or Xj; = x Qi

1) with PLFs. ) %%
\\lfqg\%,g@h &ﬁv
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The transformation approach

Examples of the transformations
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Transforming a positive signomial term

Original term  Transformation

Transformed term

PPT
Xl1 2x01 X3 X42 NPT

ET

414-0.1 -1 -2
X1 X2 X37 Xy

-1.2y-0.1 -1 -2
X1 X2 X37 Xy

1.2X1 0.1X2 -1,-2
e €] X3 X4
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Examples of the transformations

Transforming a positive signomial term

Original term  Transformation Transformed term

414-0.1 -1 -2
PPT X1 X2 X37 Xy
1.2 01 -2 -1.2y-0.1 -1 -2
X7 CX3 X3 X4 NPT X1 X2 X37 Xy
ET el.2X1 e0.1X2 Xg].XZZ

Transforming a negative signomial term

Original term  Transformation Transformed term

1,05 0.5 05
X]7X5 PT -X7

gp o
N 5
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The transformation approach

Example: a univariate nonconvex signomial term

f(x) = -8x +0.05x> +25x%°, 1<x<7

—
convex nonconvex
25 +
20 +
X
15 ; ; I

2 4 6 sg%

Bp

B S
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Example: a univariate nonconvex signomial term

f(x) = —8x+0.05x>4+25x%°, 1<x<7
—_——
convex nonconvex

» A convex underestimator is obtained by applying the ET

7(x, Xg) = —8x +0.05x3 + 250-5%

or one of the PPT or NPT PPT NPT

—

" ~ £0.5Q —_—
fo(x, Xp) = =8x +0.05x>+25X,7%, Q > 2 or Q <O0.

Here, XE and Xp are piecewise linear approximations of \
the inverse transformations Xg = lnx and Xp = x¥/@.
[ISECN %S
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Example: a univariate nonconvex signomial term

PPTQ =2 15 ET
2 X o
Xp i 1 {E X
1.5 Xp 0.5
1 Y 0 y x
1 3 5 7 1 3 5 7

» A convex underestimator is obtained by applying the ET
7(x, Xg) = —8x +0.05x3 + 250-5%

or one of the PPT or NPT PPT NPT

“ N ~0.5 — —
Fo(x, Xp) = -8x +0.05x°+25%7°°, Q = 2 or Q <0.

Here, XE and Xp are piecewise linear approximations of \
the inverse transformations Xg = Inx and Xp = x/ @,
o0 & @"
| o7
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Example: a univariate nonconvex signomial term

» The underestimators are improved by adding additional
breakpoints to the PLFs




The transformation approach 11132

Example: a univariate nonconvex signomial term

» The underestimators are improved by adding additional
breakpoints to the PLFs




The transformation approach 11132

Example: a univariate nonconvex signomial term

» The underestimators are improved by adding additional
breakpoints to the PLFs




The transformation approach 1232
Transformation of the signomial constraints

1.

[
(G (%) + om(x) < 0]

[qm (x)+05(x,X) < O]

1. Convexification of o,, by transformations x; = T;;(X;).
Nonconvexities moved to Xj; = 'I'j,Tl(x,-).
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The transformation approach 1232
Transformation of the signomial constraints

1.

[
(G (%) + om(x) < 0]

[qm (x)+05(x,X) < O]
| 2

() + 05 (6 %) <0)

1. Convexification of o,, by transformations x; = T;;(X;).
Nonconvexities moved to Xj; = lefl(x,-).

2. Underestimation of ¢ by approximating Xji = Tj,-_l(xi)
with PLFs )A<j,. The integer-relaxed problem is now convex

and overestimates the original problem. % §E
N RN
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Flowchart of the SGO-algorithm

Preprocessing step: Transformations
obtained by solving a MILP problem

1432
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Flowchart of the SGO-algorithm

Preprocessing step: Transformations
obtained by solving a MILP problem

The nonconvex terms are re-
placed by convex underesti-
mators; the PLFs are initialized
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Flowchart of the SGO-algorithm

obtained by solving a MILP problem

[ Preprocessing step: Transformations

The nonconvex terms are re-

placed by con

vex underesti-

mators; the PLFs are initialized

overestimated prob-

lem is solved using a convex MINLP solver

[ The convexified and

1432
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Flowchart of the SGO-algorithm

Preprocessing step: Transformations
obtained by solving a MILP problem

The nonconvex terms are re-
placed by convex underesti-
mators; the PLFs are initialized

The convexified and overestimated prob-
lem is solved using a convex MINLP solver

Are the
termination
criteria
fulfilled?
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Flowchart of the SGO-algorithm
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Obtaining an optimized set of transformations

The transformations x; = T;;(X);) are applied termwise to all Jr
nonconvex signomial terms (in the problem).

» Some degrees of freedom exist regarding how to choose the
transformations:
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Obtaining an optimized set of transformations

The transformations x; = T;;(X);) are applied termwise to all Jr
nonconvex signomial terms (in the problem).

» Some degrees of freedom exist regarding how to choose the
transformations:

> power or exponential transformations
> value of the transformation powers Q
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Obtaining an optimized set of transformations

The transformations x; = T;;(X);) are applied termwise to all Jr
nonconvex signomial terms (in the problem).

» Some degrees of freedom exist regarding how to choose the
transformations:

> power or exponential transformations
> value of the transformation powers Q

» No transformation on a variable in the term occurs when
choosing the power Q =1: x = X9 = x1 =X
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Obtaining an optimized set of transformations

The transformations x; = T;;(X);) are applied termwise to all Jr
nonconvex signomial terms (in the problem).

» Some degrees of freedom exist regarding how to choose the
transformations:

> power or exponential transformations
> value of the transformation powers Q

» No transformation on a variable in the term occurs when
choosing the power Q =1: x = X9 = x1 =X

Solution approach

Create a MILP problem formulation, whose solution determines the
optimal set of transformations required to transform the signomial

terms, specified by the coefficients ¢; and powers pj;. 3 *gi
NN X
‘.\ifqg\%@)& &ﬁv
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The objective function of the MILP problem

For a MISP problem with Jt signomial terms and [ variables:
Jr Jr

minimize g Z Bi+ 0oz Z B; +5IZZ Z)/jljgl

it xj€R i: xjeZ i=1j1=1j=1
J2#i

I Jr
+ Z Z (ONTbji + ONsAji + SeTby | +dpTblT + 5pBii)
i=1j=1
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The objective function of the MILP problem

For a MISP problem with Jt signomial terms and [ variables:
Jr Jr

minimize g Z Bi+ 0oz Z B; +5IZZ Z)/jljzl

it xj€R i: xjeZ i=1j1=1j=1
J2#i

I Jr
+ Z Z (ONTbji + ONsAji + SeTby | +dpTblT + 5pBii)
i=1j=1
Parameters and variables
» Strategy parameters: 0g, 07, 0;, ONT, ONS, OET, OPT, Op
» Decision variables (binaries):
> x; is transformed in any term = B; =1
> xj is transformed in the j-thterm = bj; = 1
ET or PT used on x; in the j-th term = bj’;T_T =1V bj?T =1
p;iQji>0= Bji=1
> different transformations for x; in terms j; and j> = y;,5,i =1 \gﬂ

v

v

» Penalties (real-valued) Aj; for large/small values of Qj; @ 5
i/ R
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The objective function of the MILP problem

J
minimize oOR Zr,B +OZZ:’,B +O,Z Z, Z Vivjoi F oo

=1jh=1j2=1, j2#j1

» The values of the parameters in the objective function
determine in what respect the set of transformations will be
optimal

» The following aspects can be taken into account

> penalize number of original variables transformed

N\
/R @}
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The objective function of the MILP problem

J
minimize op Zr,B +0z7 ZF/B +OIZi Z Vivigi T

i=1j1=1j>=1, j>#j1

» The values of the parameters in the objective function
determine in what respect the set of transformations will be
optimal

» The following aspects can be taken into account

> penalize number of original variables transformed
> penalize number of nonidentical transformations for the same variables

gp o
N 5
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The objective function of the MILP problem

I Jr

minimize ...+ Z Z (8nTbji + OnsAji + 0pTbET +0pTblT + 6pBji)
i=1j=1

» The values of the parameters in the objective function
determine in what respect the set of transformations will be
optimal

» The following aspects can be taken into account

> penalize number of original variables transformed
> penalize number of nonidentical transformations for the same variables
> penalize total number of transformations
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The objective function of the MILP problem

I Jr
minimize ...+ Z Z (OnTbji + ONSAji + OETbﬁT + DPTbﬁT + opBji)
i=1j=1

» The values of the parameters in the objective function
determine in what respect the set of transformations will be
optimal

» The following aspects can be taken into account

> penalize number of original variables transformed

> penalize number of nonidentical transformations for the same variables
> penalize total number of transformations

> penalize numerically unstable transformations (e.g. Q = —0.001)
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The objective function of the MILP problem

I Jr
minimize ...+ Z Z (‘5NTbji + ONsAji + 6ETbjI}:T + 5PTbj}‘,)T + opBji )
i=1j=1

» The values of the parameters in the objective function
determine in what respect the set of transformations will be
optimal

» The following aspects can be taken into account

penalize number of original variables transformed

penalize number of nonidentical transformations for the same variables
penalize total number of transformations

penalize numerically unstable transformations (e.g. Q = —0.001)

favor the ET or the PTs for positive terms
Bt
o) ~He
\ \\ﬁqgé /y & R
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The objective function of the MILP problem

I Jr
minimize ...+ Z Z (‘5NTbji + ONsAji + ()ETbﬁT + Dp‘rbjf;T + (3;:»[3],‘ )
i=1j=1

» The values of the parameters in the objective function
determine in what respect the set of transformations will be
optimal

» The following aspects can be taken into account

penalize number of original variables transformed

penalize number of nonidentical transformations for the same variables
penalize total number of transformations

penalize numerically unstable transformations (e.g. Q = —0.001)

favor the ET or the PTs for positive terms
Bt
o) ~He
\ \\ﬁqgé /y & R
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v

favor the PPT or NPT for positive terms
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An illustrative example

1932

Two-dimensional example

» The SGO algorithm is now applied to the following MISP problem

minimize

subject to

(x—4)° +(y-1)2 +2.5x%y71
—20+8x-1.5y%% + 11y +0.9y2

1<x<7,

+0.1x y - X +02x15 0.5 1,2)<y—2)<05 2<O
1<y<5, xeZT, ye]R+

| {{ 7S\ \i '&A &l
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Two-dimensional example

» The SGO algorithm is now applied to the following MISP problem

minimize  (x—4)2+(y—1)2 +2.5x%y1

subject to —20—1—8x—1.5y0‘5—l—lly—|—0.9y2
+0.1x7y =x“40.2x""y "7 =12xy —2x "y <
0122 2021505 1.2 20520

1<x<7, 1<y<5 xe€ZT, yeRT




An illustrative example 19|32
Two-dimensional example

» The SGO algorithm is now applied to the following MISP problem

minimize  (x—4)2+(y—1)2 +2.5x%y1
subjectto —-20+48x-— 1.5y0‘5 + 11y + O.9y2
—|—0.1x2y2 —x2 + 0.2><1‘5y0'5 - 1.2xy - 2)(0'5y2 <0
1<x<7, 1<y<5 xezt, yeR'

5 T
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Transformation of the problem

» Optimizing the transformations gives that three
transformations are needed

L+ 0.1x%y% = x? +0.2x17y97 —1.2xy - 2x%7y? < 0.
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Transformation of the problem

» Optimizing the transformations gives that three
transformations are needed

_ y-05 _ yv0.25
y= Y1 y= Y2

| |
L+ 0.1x%y% = x? +0.2x17y97 —1.2xy - 2x%7y? < 0.
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Transformation of the problem

» Optimizing the transformations gives that three
transformations are needed

_ y-05 _ yv0.25
y= Y1 y= Y2

| |
L+ 0.1x%y% = x? +0.2x17y97 —1.2xy - 2x%7y? < 0.
| |
_ y05
x=X]




An illustrative example 20|32

Transformation of the problem

» Optimizing the transformations gives that three
transformations are needed

_ y-05 _ yv0.25
y= Y1 y= Y2

| |
L+ 0.1x%y% = x? +0.2x17y97 —1.2xy - 2x%7y? < 0.
| |
_ y05
x=X]

» This gives the following convexified constraint

L +0.1x2 Y X 4+0.2x 2 Y 0 1. 2x D2 D22 2x 00 v 0S < 0.

g ¥
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An illustrative example 21132

Linear approximation of the transformations

» When the equality constraints
Xl — x2, Yl :y_z, and Y2 :y4

are replaced with the PLFs )A<1, ?1 and ?2, the terms are
also underestimated.
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Linear approximation of the transformations

» When the equality constraints

Xl — x2, Yl :y_z, and Y2 :y4

are replaced with the PLFs )A<1, ?1 and ?2, the terms are
also underestimated.




An illustrative example 21132

Linear approximation of the transformations

» When the equality constraints

Xl — x2, Yl :y_z, and Y2 :y4

are replaced with the PLFs )A<1, ?1 and ?2, the terms are
also underestimated.

» As new breakpoints are added to the PLFs, the
approximations will improve.

g ¥
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An illustrative example 22132

Iteration 1
p%
50 2
5 H-
: 25
I
4 b 0 x
0 1 3 5 7
I
i "
y 3 1
|
| 0.5
[}
2 H 0 y
1 3 5
Y2
1 600
1 2 3 4 5 6 7 300
X 0 y
1 3 5

» The value of the objective function is 9.97 for x =2 andy = 2.12.
» The original signomial constraint is not fulfilled:

.+0.1xy - X +02x15 05 -1.2xy - 2x05 2<0

= 1.996, when x=2, y=2.12

_ B
» Not the global solution to the nonconvex problem! \'ﬁ\g} < @ i
\ \\ﬁqgé /y & R



An illustrative example

Iteration 2
X
50 !
25
O X
1 3 5 7
161
y 1
0.5
0 : ® y
1 3 5
Y2
600
300
X 0 y
1 3 5

» The value of the objective function is 9.97 for x =2 andy = 2.12.
» The original signomial constraint is not fulfilled:

.+0.1xy - X +02x15 05 -1.2xy - 2x05 2<0

= 1.995, when x=2, y=2.12

» Not the global solution to the nonconvex problem!
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An illustrative example

Iteration 3
X
50 !
25
O X
1 3 5 7
161
y 1
0.5
0 : ® y
1 3 5
Y2
600
300
X 0 y
1 3 5

» The value of the objective function is 10.00 for x = 2 and y = 2.24.
» The original signomial constraint is not fulfilled:

.+0.1xy - X +02x15 05 -1.2xy - 2x05 2<0

= 2.195, when x=2, y=2.24

» Not the global solution to the nonconvex problem!
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An illustrative example

Iteration 4

X1
50
25
O X
1 3 5 7
"1
1
0.5
0 - ® >
1 3 5
Y2
600
300
0 y
1 3 5

» The value of the objective function is 10.14 for x =2 and y = 1.84.
» The original signomial constraint is not fulfilled:

.+0.1xy - X +02x15 05 -1.2xy - 2x05 2<0

= 1.377, when x=2, y=1.84

» Not the global solution to the nonconvex problem!
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An illustrative example

Iteration 5

X1
50
25
O X
1 3 5 7
"1
1
0.5
0 - ® >
1 3 5
Y2
600
300
0 y
1 3 5

» The value of the objective function is 10.92 for x =1 and y = 1.5.
» The original signomial constraint is fulfilled:

.+0.1xy - X +02x15 05 -1.2xy - 2x05 2<0

—2.142, when x=1, y=1.50

» Globally optimal solution to the nonconvex problem!
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An illustrative example 27|32
Illustration of the convex underestimation




An illustrative example

28132

lllustration of the convex underestimation

B N W A WU

= N W A~ U,

el

[N]
w

N

=N WA u;

=N
RUNUW A U1 G,

1234567

1234567

Iter. Obj. value x y Constraint
1 9.97 2 212 1.996
2 9.97 2 212 1.995
3 10.00 2 224 2.195
4 10.14 2 184 1.377 8
5 10.92 1 1.50 -2.142 W S



Conclusions 29|32

Final remarks

» The SGO-algorithm is a global optimization algorithm for mixed
integer signomial programming (MISP) problems.

> Convex underestimators through single-variable
transformations

> A set of transformations is obtained by solving a MILP
problem
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Conclusions 29|32

Final remarks

» The SGO-algorithm is a global optimization algorithm for mixed
integer signomial programming (MISP) problems.

> Convex underestimators through single-variable
transformations

> A set of transformations is obtained by solving a MILP
problem

» On-going research:

> Exclusion of unfeasible regions from the search-space.
> Extension of the current problem-scope to also include any

twice-differentiable nonconvex function
N S
) q
‘.\ifqg\%@)& &ﬁv



Thank you for your attention!

Any questions?



A frequently asked question

» The following region does not seem to be convex:

d-q-—-g-4

<
= N W 0N

» The relaxed feasible region is convex, however, this is a
projection of it for feasible values of the discrete variables
defining the PLFs.



A frequently asked question

» The region on the left does not seem to be convex:

<
= N WA U1 O N

» The “projection” (left) and an illustration of the relaxed
feasible region (right).
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