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Frame 3 of 17

What are state/signal systems? [AS1]

The classic state-space model of a discrete-time-invariant system
with input u, state x , and output y is

Σi/s/o :
[
x(n+1)
y(n)

]
=
[
A B
C D

] [ x(n)
u(n)

]
, n ∈ Z+, (1)

where
[
A B
C D

]
is bounded on the Hilbert spaces

[ X
U
]
→
[ X
Y
]
.

This can be turned into a state/signal system by setting
w(n) := u(n) u y(n) and writing (1) equivalently as

Σs/s :

[
x(n+1)
x(n)
w(n)

]
∈
{[

Ax ′+Bu′

x ′

Cx ′+Du′uu′

] ∣∣ [ x ′
u′

]
∈
[ X
U
]}

=: V , n ∈ Z+.

Main idea: make minimal distinction between input u and output y .

Useful for unifying i/s/o theory [S1] and systems interconnection!
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Frame 4 of 17

What are state/signal systems? [AS1] (cont.)

The subspace V =
[
A B
1 0
C Du1

] [ X
U
]

has the following properties:

1 V is closed in
[ X
X
W

]
, where W = U u Y

2 If
[
z
0
0

]
∈ V then z = 0

3 The set D :=
{

[ x
w ] |

[
z
x
w

]
∈ V

}
is closed in

[ X
W
]

4 For every x ∈ X there are some x and w such that
[

z
x
w

]
∈ V

Definition

We call any subspace V ⊂
[ X
X
W

]
, where X ,W are Hilbert spaces,

with properties (1) – (4) a discrete-time state/signal system.

The sequence
[

x(n)
w(n)

]
is a trajectory of V if

[
x(n+1)
x(w)
w(n)

]
∈ V , n ∈ Z+.
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Frame 5 of 17

Input/state/output representations [AS1]

Definition

Let V be a s/s system on (X ,W).

A decomposition W = U u Y is admissible for V if there exists a

bounded operator
[
A B
C D

]
:
[ X
U
]
→
[ X
Y
]

s.t. V =
[
A B
1 0
C Du1

] [ X
U
]
.

In this case we call
[
A B
C D

]
an i/s/o representation of V .

Thus: If the i/o decomposition W = U u Y is admissible for the
s/s system V , then

V =

{[
Ax ′+Bu′

x ′

Cx ′+Du′uu′

] ∣∣ [ x ′
u′

]
∈
[ X
U
]}

,

which means that [ x
w ] is a trajectory generated by V if and only if[

x(n+1)
y(n)

]
=
[
A B
C D

] [ x(n)
u(n)

]
, n ∈ Z+.
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Frame 6 of 17

Semi-canonical i/s/o representations [AS1]

A general s/s system V does not a priori have an i/s/o represent.

However, we can always construct one by choosing the canonical

input space U0 :=
{

w |
[

z
0
w

]
∈ V

}
and letting the output space Y

be an arbitrary complement to U0: W = U0 u Y.
(The output space is not canonical.)

Then W = U0 u Y is an admissible i/o decomposition. The
corresponding i/s/o representation of V is given by the map[

A B
C D

]
: [ x

u0 ] 7→ [ zy ]
∣∣ [ z

x
yuu0

]
∈ V , y ∈ Y, u0 ∈ U0.

This is very useful,
because it allows us to use the well-developed i/s/o theory.
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Frame 7 of 17

Continuous-time boundary-control examples

Standard example: The transmission line [AKS2]

∂

∂t
i(t, ξ) = −

1

L(ξ)

∂

∂ξ
v(t, ξ)

∂

∂t
v(t, ξ) = −

1

C(ξ)

∂

∂ξ
i(t, ξ)

x(t) =
[

i(t,·)
v(t,·)

]
, x(0) given,

(t, ξ) ∈ R+ × [0, `].

The external signal is w(t) = (i(t, 0), v(t, 0), i(t, `), v(t, `))>.

Much more demanding: n-D spatial domains

The wave equation on a 2-D spatial domain Ω:

∂2

∂t2
x(t, ξ, η) = c2

(
∂2

∂ξ2
+

∂2

∂η2

)
x(t, ξ, η), (ξ, η) ∈ Ω.

We need Sobolev-space machinery: W is ∞-dimensional.
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Frame 8 of 17

Approaching continuous-time s/s systems

In discrete time[
x(n+1)
y(n)

]
=
[
A B
C D

] [ x(n)
u(n)

]
, n ∈ Z+,

was turned into[
x(n+1)
x(n)
w(n)

]
∈
[
A B
1 0
C Du1

] [ X
U
]

=: V , n ∈ Z+.

In continuous time we have[
ẋ(t)
y(t)

]
=
[
A&B
C&D

] [ x(t)
u(t)

]
, t ∈ R+,

which similarly can be turned into[
ẋ(t)
x(t)
w(t)

]
∈ V , t ∈ R+,

but here V has much more complicated structure. . .
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ẋ(t)
y(t)

]
=
[
A&B
C&D

] [ x(t)
u(t)

]
, t ∈ R+,

which similarly can be turned into[
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Frame 9 of 17

Some problems with continuous time [KS1]

A discrete-time state/signal system V ⊂
[ X
X
W

]
satisfies:

1 V is closed in
[ X
X
W

]
2 If

[
z
0
0

]
∈ V then z = 0

3 The set D :=
{

[ x
w ] |

[
z
x
w

]
∈ V

}
is closed in

[ X
W
]

4 For every x ∈ X there are some x and w such that
[

z
x
w

]
∈ V

Conditions (i) – (iii) mean that V is the graph of a bounded

operator F with domain D: V =
{[

z
x
w

] ∣∣ [ x
w ] ∈ D, z = F [ x

w ]
}

.

Continuous time: For all PDE:s F is unbounded!

Even worse: in general there is no canonical input space.
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A discrete-time state/signal system V ⊂
[ X
X
W

]
satisfies:

1 V is closed in
[ X
X
W

]
2 If

[
z
0
0

]
∈ V then z = 0

3 The set D :=
{

[ x
w ] |

[
z
x
w

]
∈ V

}
is closed in

[ X
W
]

4 For every x ∈ X there are some x and w such that
[

z
x
w

]
∈ V

Conditions (i) – (iii) mean that V is the graph of a bounded

operator F with domain D: V =
{[

z
x
w

] ∣∣ [ x
w ] ∈ D, z = F [ x

w ]
}

.
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State/signal systems in continuous time [KS1, KS2, AKS2]

Definition (Continuous-time state/signal system)

Let V ⊂
[ X
X
W

]
be closed. Then [ x

w ] ∈
[
C1(R+;X )
C(R+;W)

]
is a classical

trajectory generated by V if

[
ẋ(t)
x(t)
w(t)

]
∈ V for all t > 0.

V is a continuous-time state/signal system if:

1

[
z
0
0

]
∈ V =⇒ z = 0

2 For every
[

z0
x0
w0

]
∈ V there exists a classical trajectory [ x

w ]

generated by V that satisfies

[
ẋ(0)
x(0)
w(0)

]
=
[

z0
w0
w0

]
.

Well-posed s/s systems by definition have some admissible i/o
decomposition. However, there’s no way of constructing it. [KS1]

All discrete-time s/s systems are well-posed, because of U0.

Mikael Kurula A brief overview of the state/signal approach
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ẋ(t)
x(t)
w(t)

]
∈ V for all t > 0.

V is a continuous-time state/signal system if:

1

[
z
0
0

]
∈ V =⇒ z = 0

2 For every
[

z0
x0
w0

]
∈ V there exists a classical trajectory [ x

w ]

generated by V that satisfies

[
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Passive state/signal systems [AS2, AS3, KS2, K1, AKS1]

Intuitively: A passive system has no internal energy sources.
A conservative system is passive and dissipates no energy.

Mathematically: (For passive systems W is a Krĕın space.)

1 The system has “enough” trajectories [ x
w ].

2 Every trajectory satisfies (passive):

‖x(t)‖2
X ≤ ‖x(0)‖2

X +

∫ t

0
[w(s),w(s)]W ds, t ≥ 0. (2)

“Enough” means more or less that (2) holds for the dual system.

Passivity yields surprisingly useful additional structure:
much of the discrete theory can be transferred to continuous time.

Passive systems have easily found admissible i/o decompositions:
we know how to split the external signal w into [ yu ].

Conservative ⇒ passive ⇒ well-posed.
Mikael Kurula A brief overview of the state/signal approach
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Time-domain behaviour, discrete time

Definition

The time-domain behaviour of a discrete s/s system V is the set

W =
{

w
∣∣ [ x

w ] is a trajectory of V with x(0) = 0
}
.

The behaviour of a passive s/s system is a passive behaviour:

1 W is invariant under right shift with zero padding: S∗W ⊂W

2 W is a maximal nonnegative subspace of the Krĕın space
`2

+(W):
∑∞

k=0[w(k),w(k)]W ≥ 0 for all w ∈W.

The realisation problem

Given a passive time-domain behaviour W, find a passive s/s
system V whose time-domain behaviour coincides with W.

Canonical realisations: Under what additional assumptions is the
realisation V uniquely determined by W, and in what sense?

Mikael Kurula A brief overview of the state/signal approach
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Current research topic: Functional models for s/s systems

Canonical realisations of arbitrary given passive behaviors were
developed in [AS5, AS6] (discrete time) and [AKS1] (cont. time).

These articles are very long and technical!

⇒ I am looking for (noncanonical) realisations in the frequency
domain using reproducing kernel Hilbert space techniques –
hopefully this turns out simpler.

Mikael Kurula A brief overview of the state/signal approach
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Conclusions

Main idea is minimal distinction between inputs and outputs.

Some formulations simplify, but some proofs are unintuitive.

Discrete-time theory simpler and much more developed.

Hot topics are realisation theory and interconnection:

I see this as the beginning of a
very promising research field.

Thank you for your attention!
Any questions?

mkurula@abo.fi
http://users.abo.fi/mkurula/

Mikael Kurula A brief overview of the state/signal approach

http://users.abo.fi/mkurula/
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