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 Objective 1

 Determine a global minimum of the objective 

 function subject to the set of constraints

 Objective 2

Determine LOWER and UPPER BOUNDS

on the global minimum

 Objective 3

Identify good quality solutions (i.e., local 

minima close to the global minimum)

 Objective 4

Enclose ALL SOLUTIONS of 

constrained systems of equations

Deterministic Global Optimization: 

Objectives

Objective 2

Objective 3

Major Importance in

Engineering Applications



Deterministic Global Optimization:

C2 NLPs
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Formulation Application Areas
• Phase Equilibrium Problems

• Minimum Gibbs Free Energy

• Tangent Plane Stability

• Pooling/Blending
• Parameter Estimation &

•    Data Reconciliation 

• Physical Properties

• Design Under Uncertainty

• Robust Stability of Control Systems

• Structure Prediction in Clusters

• Structure Prediction in Molecules

• Protein Folding

• Peptide Docking

• NMR Structure Refinement

• Prediction of Crystal Structure
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Deterministic Global Optimization:

MINLPs
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Formulation Application Areas

• Process Synthesis Problems

• HENs

• Separations/Complex Columns

• Reactor Networks

• Flowsheets

• Scheduling, Design, Synthesis of

   Batch and Continuous Processes

• Planning

• Synthesis Under Uncertainty

• Design, Synthesis of Materials

• Metabolic Pathways

• Circuit Design

• Layout Problems

• Nesting of Arbitrary Objects
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Deterministic Global Optimization:

Bilevel Nonlinear Optimization, BNLPs
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Formulation Application Areas

• Economics

• Civil Engineering

• Aerospace

• Chemical Engineering

• Design Under Uncertainty :

  Flexibility Analysis

• Chemical Equilibrium Process Design

• Location/Allocation in Exploration

• Interaction of Design with Control

• Optimal Pollution Control

• Molecular Design

• Pipe Network Optimization
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• The convex envelope of a trilinear monomial is polyhedral

over a coordinate aligned hyper-rectangular domain.

• A triangulation of the domain defines the convex envelope

of the monomial.

• The correct triangulation is determined by a set of

conditions related to the minimal affine dependencies of the

vertices of the hyper-rectangle.

• An explicit set of formulae for the elements of the convex

envelope is defined for each set of conditions.

Convex Envelopes for Trilinear Monomials
(Meyer and Floudas, JOGO, 2003)



 Positive Bounds
If           ,           and            and the auxiliary conditions apply:

the linear equalities defining the facets of the convex envelope are:

Convex Envelopes for Trilinear Monomials
(Meyer and Floudas, JOGO, 2003)
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Illustration
To construct the concave envelope of             for

                                                 .  We substitute            ,             , and

and check conditions:

which translate into,

and,

Both conditions hold, so we can use the substitutions in the facet

defining equations.

Convex Envelopes for Trilinear Monomials
(Meyer and Floudas, JOGO, 2003)
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Facet Defining Equations

Convex Envelopes for Trilinear Monomials
(Meyer and Floudas, JOGO, 2003)
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The separation distance between the function xyz and the convex

envelope (dC) is compared with the separation distance between xyz and:

• the Arithmetic Interval lower bounding approximation (dAI) and,

• the Recursive Arithmetic Interval lower bounding approximation (drAI).

Comparison with Lower Bounding 

Approximations



Convex Envelopes for

Edge-Concave Functions

Definition:

Edge-concave functions are a class of functions that admit

a vertex polyhedral convex envelope (Tardella, 2008)

Several classes of functions are edge-concave on certain domains:

• Concave functions over polytopes

• Multilinear functions over hypercubes (Rikun, 1997)

(Meyer and Floudas, Math. Programming,  2005)

Theorem (Tardella, 2003): Function f(x) defined on a box is edge-concave 

iff it is componentwise concave.  When f(x) is also twice continuously 

differentiable, edge-concavity is equivalent to: 



Convex Envelopes for

Edge-Concave Functions

Step1: Dominance Relations

(Meyer and Floudas, Math. Programming, 2005)
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(6 triangulation types for 3D cube)



Convex Envelopes for

Edge-Concave Functions

Step1: Dominance Relations

(Meyer and Floudas, Math. Programming,  2005)
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Step2: Triangulation Class Determine the triangulation type
(6 triangulation types for 3D cube)

Step3: Reorientation
Apply Transformation:

Representative triangulation  Current triangulation



Convex Envelopes for

Edge-Concave Functions

Step1: Dominance Relations

(Meyer and Floudas, Math. Programming, 2005)

ALGORITHM

RVconvf )(:
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Edge-concave function

Set of vertices of hyperrectangle 

Evaluate function at each vertex point

and determine the dominant subsets
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Step2: Triangulation Class Determine the triangulation type
(6 triangulation types for 3D cube)

Step3: Reorientation
Apply Transformation:

Representative triangulation  Current triangulation

Step4: Compute Facets Calculate FDH from the cells of the current triangulation
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Convex Envelopes for

Edge-Concave Functions

(Meyer and Floudas, Math. Programming, 2005)

Consider function f(x):

The function must be edge-concave because:



Convex Envelopes for

Edge-Concave Functions

Step1: Dominance Relations

(Meyer and Floudas, Math. Programming, 2005)

ALGORITHM

Step2: Triangulation Class
Dominance relations match vertex pattern of 

triangulation type A 

Step3: Reorientation
Standard vertex orientation [1 2 3 4 5 6 7 8] becomes 

problem-specific orientation [1 3 2 4 5 7 6 8] 

Step4: Compute Facets FDH is calculated using cells of triangulation A:

Function is perturbed so that non-dominated 

and dominated subsets coincide



Convex Envelopes for

Edge-Concave Functions

(Meyer and Floudas, Math. Programming, 2005)

  Comparison of underestimation techniques:       Lower Bnd CPU

             Edge-concave technique (Meyer and Floudas, 2005):  -400 0.01 s (GAMS)

      Recursive arithmetic intervals (Maranas and Floudas, 1995): -600 0.01 s (GAMS)

       Second-order semidefinite relaxation (Henrion et al., 2007): -405.72 0.22 s (Matlab)

       Third-order semidefinite relaxation (Henrion et al., 2007): -400 0.40 s (Matlab)



Convex Envelopes for

Edge-Concave Functions

(Meyer and Floudas, Math. Programming, 2005)

Now consider function g(x):

g(x) is not edge-concave because one of the partials is sometimes greater than 0:

But g(x) can be written as the sum of an edge-concave function and an extra term:



Convex Envelopes for

Edge-Concave Functions

(Meyer and Floudas, Math. Programming, 2005)

    Comparison of underestimation techniques:            Lower Bnd     CPU

Global solution 0

Edge-concave algorithm with an extra term underestimated

using recursive arithmetic (Meyer and Floudas, 2005) :  -10.61 0.01 s (GAMS)

Recursive arithmetic intervals only (Maranas and Floudas, 1995) : -13.56 0.01 s (GAMS)

Second-order semidefinite relaxation (Henrion et al., 2007) : -infinity 0.56 s (Matlab)

Third-order semidefinite relaxation (Henrion et al., 2007) : 0 0.44 s (Matlab)
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Relaxation Development:

Disjunctive Formulation
Balas [1979]; Floudas [1995]; Wicaksono & Karimi, AIChE J. [2008]

• Partition x-variables

• Allow exactly one
active relaxation for
each domain point

a(n + 1)
a(n)

a(n - 1)

d(n)



Piecewise Relaxation of Bilinear

Programs

• 10 relaxation schemes from Wicaksono & Karimi,
AIChE J. [2008] & 5 additional schemes from
Gounaris, Misener, Floudas, Ind. Eng. Chem. Res.
[2009] using ab initio domain partitioning

• 3 formulation classes:
– big-M

– convex hull

– incremental cost

• Multiple design choices:

– choice of which variable to partition

– number of partition segments

– uniform grid or not
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Relaxation Development:

Big-M Reformulation
Meyer & Floudas, AIChE J. [2006]; Wicaksono & Karimi, AIChE J. [2008]
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Relaxation Development:
Big-M Reformulation

Meyer & Floudas, AIChE J. [2006]; Wicaksono & Karimi, AIChE J. [2008]



Relaxation Development:
Convex Hull Reformulation

Karuppiah & Grossmann, Comput. Chem. Eng. [2006]; Wicaksono & Karimi, AIChE J. [2008]
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Relaxation Development:
Convex Hull Reformulation

Activates one

Karuppiah & Grossmann, Comput. Chem. Eng. [2006]; Wicaksono & Karimi, AIChE J. [2008]



Formulating an Underestimator (nf4r)

nf4

nf4r

Wicaksono & Karimi,
AIChE J. [2008]

Gounaris et al., Ind. Eng.
Chem. Res. [2009]



Formulating an Underestimator (nf4r)

nf4

nf4r

Eliminate z variable

Wicaksono & Karimi,
AIChE J. [2008]

Gounaris et al., Ind. Eng.
Chem. Res. [2009]



Relaxation Development:
Incremental Cost Reformulation

Wicaksono & Karimi, AIChE J. [2008]



Relaxation Development:
Incremental Cost Reformulation

Wicaksono & Karimi, AIChE J. [2008]

Alternative binary variable



Relaxation Development:
Incremental Cost Reformulation

Wicaksono & Karimi, AIChE J. [2008]

Uses 1 fewer dimension



Relaxation Development:
Incremental Cost Reformulation

Wicaksono & Karimi, AIChE J. [2008]

And avoids disaggregating the variable y 



Formulating an Underestimator (nf7r)

nf7

nf7r

Wicaksono & Karimi,
AIChE J. [2008]

Gounaris et al., Ind. Eng.
Chem. Res. [2009]



Formulating an Underestimator (nf7r)

nf7

nf7r

Remove x & w variables
from the formulation

Wicaksono & Karimi,
AIChE J. [2008]

Gounaris et al., Ind. Eng.
Chem. Res. [2009]



Piecewise Relaxation of Bilinear

Programs

• 10 relaxation schemes from Wicaksono & Karimi, AIChE J.
[2008] & 5 additional schemes from Gounaris et al., Ind. Eng.
Chem. Res. [2009] using ab initio domain partitioning

• 3 formulation classes:

– big-M

– convex hull

– incremental cost

• Multiple design choices:

– choice of which variable to partition

– number of partition segments

– uniform grid or not



Applying Relaxation to a Representative Benchmark

Problem [Audet et al., Manag. Sci. 2004]

Variable length partitioning controlled by parameter 

[Wicaksono & Karimi, AIChE J., 2008]:

‘y’- variant ‘p’- variant

2.00

0.25

0.25

1.50

Global minimum Underestimate using 
uniform partitioning



Comparison of the Relaxation Formulations

To compare the
formulations, finely
partition the
bilinear terms in the
test case pooling
problems and stress
test the relaxation
formulations to see
which ones most
often solve within a
time limit.

Gounaris et al., Ind. Eng. Chem. Res. [2009]
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Convexity of

 Products of Univariate Functions
(Gounaris and Floudas, JOTA, 2008)

)()....()()()( 2211

1

nn

N

i

ii xfxfxfxfxf ==

=

When is f(x) convex?



Convexity of

 Products of Univariate Functions
(Gounaris and Floudas, JOTA, 2008)
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When is f(x) convex?

Sufficient Conditions

• Every factor should be strictly positive

 

• Every factor should be strictly convex

• For every factor:  ( ) 0)()()(
2///

iiiiii xfxfxf

}
An even number of factors are

allowed to instead be strictly

negative and strictly concave



Convexity of

 Products of Univariate Functions
(Gounaris and Floudas, JOTA, 2008)
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When is f(x) convex?

Sufficient Conditions

• Every factor should be strictly positive

 

• Every factor should be strictly convex

• For every factor:  
( ) 0)()()(

2///

iiiiii xfxfxf

}
An even number of factors are

allowed to instead be strictly

negative and strictly concave

These conditions are in fact necessary if

all factors share the same functional form



Convexity of

 Products of Univariate Functions
(Gounaris and Floudas, JOTA, 2008)
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Convexity of

 Products of Univariate Functions
(Gounaris and Floudas, JOTA, 2008)
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….because all four functions satisfy the

sufficient conditions in [1/3,2/3]



• Deterministic Global Optimization: Objectives & Motivation

• Convex Envelopes:
• Trilinear Monomials

• Edge Concave functions

•  Piecewise linearization of Bilinear terms

• Checking Convexity: Products of Univariate Functions

• P BB: Piecewise Quadratic Perturbations
• Pooling Problems: Standard, Generalized & Extended

• Conclusions

Outline



P BB:

Piecewise Quadratic Perturbations

Christodoulos A. Floudas

Princeton University



C2 NLPs - The BB Framework
• Based on a branch-and-bound framework

• Upper bound on the global solution is obtained by

  solving the full nonconvex problem to local optimality

• Lower bound is determined by solving a valid convex

  underestimation of the original problem

• Convergence is obtained by successive subdivision

  of the region at each level in the brand & bound tree

• Guaranteed -convergence for C2 NLPs



Convex Lower Bounding: The BB

Framework
(Androulakis et al., JOGO,1995; Adjiman et al.,Comp.&Chem.Eng. 1998)

• Decompose each constraint into a sum of terms

   LINEAR         CONVEX           BILINEAR                TRILINEAR

    FRACTIONAL    FRACTIONAL TRILINEAR      SIGNOMIAL

 UNIVARIATE CONCAVE      GENERAL NONCONVEX

• Develop valid convex underestimators for each term
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Convex Lower Bounding: The BB

Framework

Linear Terms

Convex Terms

Bilinear Terms  (McCormick, 1976; Al Kayyal, Falk, 1983)

 Define                    and introduce: Convex Envelope

Key Property  (Androulakis et al., 1995)
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Convex Lower Bounding: The BB

Framework
General C2 Nonconvex Terms
(Maranas, Floudas, 1994; Androulakis et. al, 1995)

P1:

P2:

P3:

P4:

P5: Maximum Separation Distance

P6: Convexity of L(x)
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Rigorous Calculations of : The BB

Framework
              (Adjiman, Floudas, 1996; Adjiman et al., 1998a,b)

Key Ideas - Derive Hessian matrix,        , of

- Compute INTERVAL Hessian in

-

- Compute              is P.S.D.

Uniform Diagonal Shift Matrix
O(n2) Methods     O(n3) Methods

- Gerschgorin Theorem     - Hertz

    - Lower Bounding Hessian

    - Mori-Kokane

    - E-Matrix Approach

Non-Uniform Diagonal Shift Matrix

- Scaled Gerschgorin Theorem

- H-Matrix

- Semi-definite Programming
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Scaled Gerschgorin Theorem: The BB

Framework
Gerschgorin Theorem  for real matrices:

Theorem for Interval Matrices     (Adjiman et al., 1998a,b)

   - d is a positive vector

     Use di = 1  or  di = xi
U – xi

L

Inexpensive and simple technique
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C2 NLPs - Illustrative Example

Pseudoethane
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• Curvature of the perturbation function is constant.

• The eigenvectors of the Hessian matrix of the perturbation

function are aligned with the coordinate axes.

BB Underestimator: 

Room for Improvement?

( ) ( )
1

( )
n

i i i i i

i

q x x x x x
=

=



Central Idea

• Partition the domain into subregions.

• Calculate the  parameters in each subregion.

• Construct an underestimator for the whole domain using

these ’s.

Properties of the Underestimator Function

• smoothness

• convexity

• underestimation

Structure of the Underestimator Function

• sum of piecewise quadratic univariate functions

• underestimator matches function at vertices

A Refinement of the BB Underestimator
Meyer, Floudas, JOGO, (2005)



• Partition interval             into       subintervals.

• Endpoints of the subintervals:                     .

A smooth convex underestimator         in an interval               :

Piecewise C2-Continuous Underestimator

[ ],i ix x
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[ ],x x x( )f x

( ) : ( ) ( )x f x q x=

1

1
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• Smoothness: function     and their gradients must match at

the internal endpoints     .

• Tight at extrema:                  at             .

Expands to a linear system in  and .

Joining the Pieces
k
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k
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Linear System

Solution

where                                                .

Formulae for  and 
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                       in the interval                           .

• First term: convex, dominates when x is small

• Second term: concave, dominates when x is large

Minimum eigenvalues:

Illustration: Lennard-Jones Potential

Energy Function
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Standard BB underestimator:

2 subinterval underestimator:

Underestimator when                         :

Underestimator when                       :

Illustration: Lennard-Jones

3.25528-1.627641.92231-3.844622.0002

-1.383491.627643.73905-7.478101.4251

0.8500

kkkmin f’’xkk

( ) ( )
7.47810

( )
2

f x x x x x

( ) ( )( )( ) 3.73905 1.425 0.850 1.62764 1.38349f x x x x+

( ) ( )( )( ) 1.92231 2.000 1.425 1.62764 3.25528f x x x x +

0.850 1.425x

1.425 2.00x



Illustration: Lennard-Jones
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Motivation:
Globally Optimizing Standard, Generalized, and Extended

Pooling Problems

• Applications of pooling problems include:

– Refining & Petrochemical

• Crude Oil Scheduling

• Combining Process Streams into Products

– Wastewater Treatment

• Removing heavy metals, organic matter, etc. from
process streams

– Supply Chain Operations

– Communications

• Pooling is necessitated by limited storage conditions requiring
blending multiple streams into intermediate nodes or pools



Relevant Publications

• Misener & Floudas. Global Optimization of Large-Scale Generalized Pooling

Problems: Quadratically Constrained MINLP Models. Ind. Eng. Chem. Res.

49:5424-5438, 2010.

• Misener, Gounaris & Floudas. Mathematical Modeling and Global Optimization

of Large-Scale Extended Pooling Problems with the (EPA) Complex Emissions

Constraints.  Comp. Chem. Eng., 34, 1432-1456, 2010.

• Misener & Floudas. Advances for the Pooling Problem: Modeling, Global

Optimization, and Computational Studies.  Appl. Comput. Math., 8:3-22, 2009.

• Gounaris, Misener & Floudas. Computational Comparison of Piecewise-Linear

Relaxations for Pooling Problems. Ind. Eng. Chem. Res., 48:5742-5766, 2009.



The Pooling Problem
Standard Pooling Problem:

NLP with Quadratic Nonconvex Terms

-- Monitor a set of components, called qualities

-- Assume linear blending at each intermediate and output node

Haverly, ACM SIGMAP Bulletin [1978]; Floudas & Aggarwal, Comput. Chem. Eng. [1990]; Floudas & Visweswaran,
Comput. Chem. Eng. [1990]; Lodwick, ORSA J. Comput. [1992]; Ben-Tal et al., Math. Prog. [1994]; Adhya et al., Ind.

Eng. Chem. Res. [1999]; Foulds et al., Optimization [1992]; Quesada & Grossmann, Comput. Chem. Eng. [1995];
Tawarmalani & Sahinidis [2002]; Meyer & Floudas, AIChE J. [2006]; Pham et al., Ind. Eng. Chem. Res. [2009]



Generalized Pooling Problems:

MINLP with Quadratic Nonconvex Terms

In the combinatorially complex
generalized pooling problem,
the network topology is a
decision variable

Each stream & pool is assigned a
binary decision variable &
associated cost

Meyer & Floudas, AIChE J. [2006]
solved a 4-plant industrial
problem to a 1.2% gap

Galan & Grossmann, Ind. Eng. Chem. Res. [1998]; Bagajewicz, Comp. Chem. Eng. [2000]; Lee & Grossmann,
Comp. Chem. Eng. [2003]; Audet et al., Manag. Sci. [2004]; Meyer & Floudas, AIChE J.  [2006]; Karuppiah &

Grossmann, Comp. Chem. Eng. [2006]



Generalized Pooling Problems

In the combinatorially complex
generalized pooling problem,
the network topology is a
decision variable

Each stream & pool is assigned
a binary decision variable &
associated cost

Meyer & Floudas, AIChE J. [2006]
solved a 4-plant industrial
problem to a 1.2% gap

Galan & Grossmann, Ind. Eng. Chem. Res. [1998]; Bagajewicz, Comp. Chem. Eng. [2000]; Lee & Grossmann,
Comp. Chem. Eng. [2003]; Audet et al., Manag. Sci. [2004]; Meyer & Floudas, AIChE J.  [2006]; Karuppiah &

Grossmann, Comp. Chem. Eng. [2006]



Solutions Using GAMS/DICOPT and
Random Starting Points

- Continuous variables initialized with uniformly distributed random numbers

- Binary variables initialized by rounding the uniformly distributed numbers in

[0,1] to the nearest integer

- DICOPT used to solve problem from 1000 starting points.

- Number of times best known solution was found: 0.



The Extended Pooling Problem: MINLP

with General Nonconvex Constraints

Refinery
Products

Fuel Additives

• Given refinery exit streams, meet volatile organics, NOX, & toxic
emissions standards for each gasoline blend according to the
EPA Complex Emissions Model & legislative bounds



Extended Pooling Problem:

Standard Backbone

ylj (pool to
product flow)

ofj (product flow)

qil (feed stock to
pool flow fraction)

zij (feed to product flow)

ujk (product qualities)

• Monitor the set of 11 components in the EPA Complex Emissions Model

• Assume linear blending at each intermediate & output node for all
components except Reid Vapor Pressure (RVP), which blends nonlinearly



The Extended Pooling Problem

• The extended pooling problem incorporates the EPA

Complex Emissions Model Constraints and associated

legislative bounds on volatile organics (VOC), NOX, and

toxic (TOX) emissions into the constraint set:
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Generalized Pooling Problem

• Topology: 7 sources; 1 or 2
sinks; multiple possible
treatment plants

• Possible connections: source
to plant; source to sink; plant
to plant; plant to sink

Meyer & Floudas, AIChE J. [2006]; Misener & Floudas, Ind. Eng. Chem. Res. [2010]



Problem Definition [Meyer & Floudas, AIChE J. 2006]

The objective, which represents water treatment
cost, reflects both the variable costs of flow rates &
the fixed costs of activating each plant or connection



Problem Definition [Meyer & Floudas, AIChE J. 2006]

Bilinear terms
in the model



Problem Definition [Misener & Floudas, Ind. Eng. Chem. Res. 2010]

The objective and the discrete decisions of activating or not
each pipe or treatment plant remain the same as the Meyer
& Floudas, AIChE J. [2006] formulation



Problem Definition [Misener & Floudas, Ind. Eng. Chem. Res. 2010]

The material balances are equivalent to
the Meyer & Floudas, AIChE J. [2006]
formulation except that they now permit
multiple sinks (output nodes)



Problem Definition [Misener & Floudas, Ind. Eng. Chem. Res. 2010]

The equations monitoring material
balances across treatment units & limiting
emitted contaminants are also equivalent
to the Meyer & Floudas, AIChE J. [2006]
formulation, but use fewer bilinear terms



Sizes of the Case Studies

The best-known algorithms in 2003 run on a machine in 2009 can

reduce the 4-Plant test case gap to 1.22% in 1561.6 CPU s

[Meyer & Floudas, AIChE J. 2006]

Regulated qualities
Sources to be treatedTreatment plant options

Environmental sinks



Sizes of the Case Studies

The best-known algorithms in 2003 run on a machine in 2009 can

reduce the 4-Plant test case gap to 1.22% in 1561.6 CPU s

[Meyer & Floudas, AIChE J. 2006]

But the problems we actually
want to address are much larger



4 & 10 Plant Cases
z = 1.086 * 106

4-Plant: 38.2 CPU s
10-Plant: 681 CPU s

Optimal Case Study Topologies

10 Plant Case; z = 1.086 * 106; 516 Eqs, 207 Con
Vars, 187 Bin Vars, 300 Bilin Terms, 681 CPU s
4 Plant Case; z = 1.086 * 106; 150 Eqs, 63 Con
Vars, 55 Bin Vars, 48 Bilin Terms, 38.2 CPU s



4 & 10 Plant Cases
z = 1.086 * 106

4-Plant: 38.2 CPU s
10-Plant: 681 CPU s

15 Plant Case
z = 9.437 * 106

2490 CPU s

Optimal Case Study Topologies

15 Plant Case; z = 9.437 * 106; 986 Eqs, 382 Cont
Vars, 352 Bin Vars, 675 Bil Terms, 2490 CPU s



4 & 10 Plant Cases
z = 1.086 * 106

4-Plant: 38.2 CPU s
10-Plant: 681 CPU s

20 Plant Cases
z1 = 1.375 * 106

z2 = 1.416 * 106

15 Plant Case
z = 9.437 * 106

2490 CPU s

Optimal Case Study Topologies

20 Plant Cases; 1663 Eqs, 634 Cont Vars, 594 Bin
Vars, 1260 Bil Terms; z1 = 1.375 * 106; z2 = 1.416 * 106



Optimizing the 4-Plant Test

Case

• The best known algorithms in 2003 run on a machine in

2009 can reduce the 4-Plant test case gap to 1.22% in

1561.6 CPU s [Meyer & Floudas, AIChE J. 2006]

Trade-off: Rlxns with many partitions
tend to be tighter but rlxns with few
partitions tend to solve quickly



Optimizing the 4-Plant Test

Case

• The best known algorithms in 2003 run on a machine in

2009 can reduce the 4-Plant test case gap to 1.22% in

1561.6 CPU s [Meyer & Floudas, AIChE J. 2006]

The new algorithms we have explored can address
the same problem to a 0.1% gap in 38 CPU s (a
ten-fold improvement in one-fortieth the time)

Balancing this trade-off with intermediate
partitioning generates the smallest total CPU time



Optimizing the 15-Plant Test

Case
Using our experience with the 4- & 10-Plant test cases, solve the 15-
Plant test case with N = 5 on the same Linux workstation & converge
to 0.1% in 2489.76 s.  Moving the same problem to parallel CPLEX
on a Beowulf cluster confirms that N = 5 is still appropriate.



Optimizing the 20-Plant Test Cases:
Fixed Disposal Costs

The test cases with 1260 bilinear terms are challenging, so employ
additional strategies:

(1) Limit partitioned terms to those related to commonly-used plants
(2) Solve MILP relaxation to a tight gap only in later nodes of the BB tree

For a topology this large, N = 5 no
longer solves in a reasonable time

Partitioning on a selected portion of the
bilinear terms helps the convergence
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The Extended Pooling Problem

Refinery
Products

Fuel Additives

• Given refinery exit streams, meet volatile organics, NOX, & toxic
emissions standards for each gasoline blend according to the
EPA Complex Emissions Model & legislative bounds



MINLP Model of the Extended Pooling Problem

• To integrate the EPA Complex Emissions Model into

problem framework, introduce outflow variable (ofj) from

each product:

and define the product qualities (uj,k) that blend linearly:

and Reid Vapor Pressure, which blends by a power law:



MINLP Model of the Extended Pooling Problem

• Relate the outflow product qualities (uj,k) to the EPA Model

variables using the specifications in 40 CFR80.45

Some of the variables used in the EPA
Model match the true quality

In the EPA Model, Reid Vapor
Pressure is set to 8.7 psi in the winter

Many variables in the EPA Complex
Emissions Model depend on the range
of the quality (e.g., the toxics model
300oF distillation fraction is set to 95
when the quality is greater than 95)



The Extended Pooling Problem

There are three regulated components in the EPA Model:
volatile organics, NOX, & toxic emissions

Toxics emissions (TOXj) is the sum of six components:
exhaust benzene (BENZj), formaldehyde
(FORMj), acetaldehyde (ACETj), 1,3-butadiene
(BUTAj), nonexhaust benzene (NEBENZj), & 
polycyclic organic matter (POMj)

Emissions standards must be met for each product j



The Extended Pooling Problem

nonlinear (albeit convex) equation

Each of the three regulated emissions is modeled with a nonlinear
expression.  The toxics model is the only convex one of the three.



The Extended Pooling Problem

Logical disjunctions extend
the accurate range of the
model but introduce
nonconvexities into the
optimization problem

Benzene is a component of
the toxic emissions model



The Extended Pooling Problem

Volatile organics is another of the 3 regulated components
in the EPA Model (in addition to NOX, & toxic emissions)

In the summer, the non-exhaust volatile
organic emissions are a non-convex
quadratic function of Reid Vapor Pressure



The Extended Pooling Problem

Volatile organics is another of the 3 regulated components
in the EPA Model (in addition to NOX, & toxic emissions)

Exhaust volatile organic emissions: product
of an exponential & polynomial function

The function in the exponential is itself nonconvex



Extended Pooling Problem:
Characterizing Nonlinear Terms

Underestimate the Nonlinear Terms using …

Piecewise-Linear Relaxations
(Gounaris, Misener, Floudas; 2009)

Outer
Approximation

Edge-Concave
Techniques (Meyer
& Floudas; 2005)

Small, Mid-Size & Large Test Cases have 108, 180 & 640
nonlinear terms, respectively



Relaxation of EPA Model for NEBENZ

of the Edge-Concave Algorithm
• The paradigm of edge-concavity efficiently generates a tight lower bound on

the EPA Model of nonexhaust benzene (a toxic emissions component)

• The EPA nonexhaust benzene model would be edge-concave iff:

The 1st equation is not valid, so NEBENZ is not edge concave. But:

is edge-concave when:

Extended Pooling Problem:
Relaxation of EPA Model for NEBENZ

Nonconvex polynomials are often relaxed using recursive
arithmetic [Maranas & Floudas, J. Global Optim. 1995;
Ryoo & Sahinidis, J. Global Optim., 2001]

Generate a tight relaxation by subtracting a term from NEBENZj to
satisfy the 2nd derivative property.   Derive convex hull of the edge-
concave portion using the method of Meyer & Floudas, Math. Prog.
[2005] & relax the remaining portion with recursive arithmetic



Relaxation of EPA Model for NEBENZ

of the Edge-Concave Algorithm

• Generating the convex hull of the edge-concave portion with the Meyer &

Floudas, Math. Prog. [2005] method produces 22% improvement in the

relaxation lower bound without requiring extra time:

Extended Pooling Problem:
Relaxation of EPA Model for NEBENZ

< 0.01< 0.01CPS (s)

-9.01-11.49LB of NEBENZ

in Reg2

(mg/mile)

0.010.01CPU (s)

-10.61-13.56LB of NEBENZ

in Reg1

(mg/mile)

Edge-Concave

Based Relax.

Recursive

Arith Rlx

Tardella, Discret. Appl. Math. [1988]; Tardella [2003, 2008]; Maranas & Floudas, J. Global
Optim. [1995]; Ryoo & Sahinidis, J. Global Optim. [2001]; Meyer & Floudas, Math. Prog. [2005]



Extended Pooling Problem:
Characterizing the Case Studies

• Small
–214 Contin Vars

–30 Binary Vars

–108 Nonlin Terms

• Mid-Size
–331 Contin Vars

–45 Binary Vars

–180 Nonlin
Terms

• Large
–1104 Contin
Vars

–150 Binary Vars

–640 Nonlin
Terms



Extended Pooling Problem:
Large Case: Branch & Bound

LB: -14998
UB: -14902

LB: -14988
UB: -14902

LB: -14980
UB: -14902

LB: -14973
UB: -14902

LB: -14965
UB: -14902

LB: -14975
UB: -14902

LB: -14977
UB: -14902

LB: -14984
UB: -14902

LB: -14974
UB: -14902

LB: -14969
UB: -14902

LB: -14972
UB: -14902

Terminate at 0.5% gap
in 5274 s Å 88 min



APOGEEAPOGEE
helios.princeton.edu/APOGEE/

AAlgorithms for PPooling-problem global OOptimization
in GEGEneralized and EExtended classes
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Globally Optimize Pooling Problems in Three Classes



Problem Complexity

•

•



• Motivational Areas & Review of contributions

• Convex Envelopes: Trilinear Monomials;

      Edge Concave Functions

• Piecewise Relaxation of Bilinear Terms

• Checking Convexity:Products of Univariate Functions

• P BB: Piecewise Quadratic Perturbation Based BB

• Generalized & Extended Pooling Problems: Large

Scale Global Optimization Successes

Conclusions

Exciting theoretical and algorithmic advances

with potential impact on several application areas
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