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Introduction

The Application

A nonconvex mathematical programming problem:

min fo(x)
s.t. fm(x)<0 i=1,2,...
xb<x<xY
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Introduction

2121
The Application

A nonconvex mathematical programming problem:

min fo(x)
s.t. fm(x) <0

i=12,....M
XL ngxu

Many global optimization algorithms use convex underestimation
branch-and-bound methods

lower bounds or proof of infeasibility

%
N R
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Introduction

A Comparison

| will describe two underestimation methods:

An aBB variant (Skjal and Westerlund, 2012)
> smooth (C2) functions
> perturbations
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Introduction 3|21

A Comparison

| will describe two underestimation methods:

An aBB variant (Skjal and Westerlund, 2012)

> smooth (C2) functions
> perturbations

An underestimation method with roots in algebraic geometry
(Jean B. Lasserre and Tung Phan Thanh, 2012)

> polynomials
> underestimator of a specified degree
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aBB Method

Perturbations
All BB methods use
perturbations

—a;(x - XiL)(XiU - X;)
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aBB Method 5|21

Perturbations

All aBB methods use T
perturbations 0 xt

v

—ai(x - XiL )(Xiu - X;)

Biixix; — conc (i x;x;)
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Perturbations

All aBB methods use T
perturbations 0 xt

v

—ai(X,‘ - X,'L)(Xiu - Xi)
Bijxix; —conc(Bix; ;)

underestimation: ok

convexity: use a sufficient
condition for positive
semidefiniteness

sz(x)+HP >0,Vxe [XL,XU]

(
[ B
SOV N R
O, Bl o
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aBB Method
Parameter Calculation

Adjiman, Dallwig, Floudas &
Neumaier, 1998

> diagonal
> many calculation methods
(e.g. “Gerschgorin”)
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aBB Method

Parameter Calculation

Adjiman, Dallwig, Floudas &
Neumaier, 1998
> diagonal
> many calculation methods
(e.g. “Gerschgorin”)

Skjal & Westerlund,
manuscript

> additional methods,
nondiagonal

6|21

6000 =

5000

4000

# cases

3000(

2000

1000 -

Bd1
Gd1, NGd1
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aBB Method 621

Parameter Calculation

Adjiman, Dallwig, Floudas &
Neumaier, 1998
> diagonal
> many calculation methods
(e.g. “Gerschgorin”)

Bd1

6000 =

Skjal & Westerlund, [ e
manuscript

4000

# cases

> additional methods,
nondiagonal 2000}

3000(

1000 -

The scaled diagonal - - .

GerSCthrin method iS within p % from best method
(maximum error)

recommended for general

purposes

> calculation: O(n?)
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Quadratic Functions

Quadratic functions have constant second derivatives
No need for interval approximations

Convexity of the perturbed function is equivalent to

2ay P12 - B1,n

HyHP=H+| Prz B : >0
: Ignfl,n
ﬁl,n ﬁn—l,n 2Oln
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aBB Method

7121
Quadratic Functions

Quadratic functions have constant second derivatives

No need for interval approximations

Convexity of the perturbed function is equivalent to

2a1 P12 Bi,n
HiHP =H 1| P2 >0
: T T ﬁnfl,n

ﬁl,n ﬁn—l,n 2Oln
The best perturbation(s) minimize some error measure

> in literature: the maximum underestimation error
> a new choice: the average error

ON N R
(O340, B 5
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aBB Method

Error Measures

Maximum underestimation error (L*-norm)

Y GO -x e+ )Y -

1
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Error Measures

Maximum underestimation error (L*-norm)

Y GO s e+ )Y S 6 - xh 0P - 16y

i i >
Average error (normalized L!-norm)
> a; weight

(xi—x}‘)(xiu—xi)dx
[xt,xY] _lou_ 1
J dx 6

Y]

[xE,x
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Error Measures

Maximum underestimation error (L*-norm)

Y GO s e+ )Y S 6 - xh 0P - 16y

i i >
Average error (normalized L!-norm)
> a; weight

(xi—x}‘)(xiu—xi)dx
[xtxV) 1y
J dx 6

Y]

[xE,x
> |Bjj| weight, symbolical integration with Mathematica

U L U L
E(xi =x; ) (%7~ = x7) 2
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Lasserre & Thanh's Method
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L&T Method
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Positive Polynomials on R"

If a function can be decomposed as a sum of squares it is
nonnegative

x° —4xy + 5y - 2yz + z° :(X—Zy)z—l—(y—z)2 >0

SON = §
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Positive Polynomials on R"

Hilbert's Seventeenth Problem

Can any nonnegative polynomial be represented as a sum of squares
of rational functions?

If a function can be decomposed as a sum of squares it is
nonnegative

x2—4xy+5y2—2yz+22:(X—Zy)z—l—(y—z)zzo

N
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Positive Polynomials on R"

Hilbert's Seventeenth Problem

Can any nonnegative polynomial be represented as a sum of squares
of rational functions?

If a function can be decomposed as a sum of squares it is
nonnegative

x2—4xy+5y2—2yz+22:(X—Zy)z—l—(y—z)zzo

Hilbert showed that a nonnegative polynomial is not in general a
sum of squares of polynomials

Motzkin gave the first example (1966)

25 4+ x%y2 +x2yt —3x2y2 72

) \ b
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L&T Method

1121
Positive Polynomials on Semialgebraic Sets

A set is called semialgebraic if it is described by polynomial
inequalities

{xeR":p1(x)>0,...,pm(x) >0}

Let 3 denote all sums of squares of polynomials in x; a convex
cone

N R
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Positive Polynomials on Semialgebraic Sets

Putinar’s Positivstellensatz

Let K be a compact semialgebraic set. Assume that p; ... p,, have
even degrees and that their highest degree homogenous parts have
no common zeroes in R”, except 0. Then any positive polynomial p
on K belongs to the cone ¥ +p1¥ +... +p,%.

A set is called semialgebraic if it is described by polynomial
inequalities

{xeR" :pi(x)>0,...,pm(x) >0}

Let 3 denote all sums of squares of polynomials in x; a convex
cone

\

W,

/gt

S |

N o, B
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Underestimation and Convexity

Lasserre and Thanh use the Positivstellensatz for both
properties
> underestimation:

f(x)-h(x)>0, Vxe[xt,xY]
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L&T Method 12121

Underestimation and Convexity

Lasserre and Thanh use the Positivstellensatz for both
properties
> underestimation:

f(x)-h(x)>0, Vxe[xt,xY]

> convexity:

vy V2h(x)y >0, Vxe[xb,xY,VyeR":|yl<1
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L&T Method 12121
Underestimation and Convexity
Lasserre and Thanh use the Positivstellensatz for both

properties
> underestimation:

f(x)-h(x)>0, Vxe[xt,xY]

> convexity:

vy V2h(x)y >0, Vxe[xb,xY,VyeR":|yl<1

> the sets are compact semialgebraic

{XE[R” : (x,-—x,-L)(in—Xi)ZO,i:1,...,n}
m{yefR”:I—Zy,ZZO} :
i
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L&T Method

Finite-Dimensional Approximation

The underestimator degree is fixed, deg(h) = d

The sum-of-squares cones are restricted

Y, :={peX:deg(p) < 2k}

Anders Skjal: Two approaches to underestimating quadratic functions
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Finite-Dimensional Approximation

The underestimator degree is fixed, deg(h) = d

The sum-of-squares cones are restricted

Y, :={peX:deg(p) < 2k}

Lasserre & Thanh proved convergence properties as k — oo

N R
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Finite-Dimensional Approximation

The underestimator degree is fixed, deg(h) = d
The sum-of-squares cones are restricted
Y, :={peX:deg(p) < 2k}
Lasserre & Thanh proved convergence properties as k — oo

Elements in ¥, kan be represented as positive semidefinite
matrices

-1 1
(x—2y)2+(y—1)2:[ 1 x y 1 0 [ 0 1 -2 ] X
1 y

5 -1 0 1
117T1 0 -11[1

= x 0 1 -2 X
y -1 -2 5 y

X
>0 SN IR
BN, Bl o>
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L&T Method 14121

Constraints

The underestimation condition takes the form:

F(x)-h(x) = +Zo, ) (6 =xP)(x? =x),  Vx

O'Oezk
oi€Xq,i=1,...,n
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14|21
Constraints

The underestimation condition takes the form:

1

n
F(x)=h(x) = oo(x) + ) 0i(x) (xi=x ) =x), ¥
i=1
(o) Ezk
oi€Xq,i=1,...,n

Rewritten in the monomial basis we get (”J;Zk) linear constraints

n

fo—hg = Z(ZJ’C£L>

i=0

involving n 4+ 1 semidefinite variable matrices

Z>0,j=0,1,...,n

N IR
(O340, B 5
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Example - 1D

1 1 1
-1 -1 -1
-4 3 -4 3 -4 3
d =0, average error = 1.08 d =1, average error = 0.85 d =2, average error = 0.81
1 1 1
-1 -1 -1
-4 3 -4 3 -4 3

d = 3, average error = 0.71 d = 4, average error = 0.55 d =5, average error = 0.54



Example - 2D

d=1, average error = 19.8 d=2, average error = 97




Example - 2D (detail)

d=1, average error = 19.8 d=2, average error = 9.7

d=3, average error = 9.1




Comparison 18|21
L&T, Quadratic Case

Lasserre & Thanh's constraints simplify when
deg(f)=2,d=2,k=1

F(x) = (b+a'x+x'Ax) = ) _oi(x—xF)(x = x) + [x" 1] C[x 1]
i=1
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Comparison 18|21
L&T, Quadratic Case

Lasserre & Thanh's constraints simplify when
deg(f)=2,d=2,k=1

f(x)-(b+a’x+x'Ax) = ZU,-(X,- —x,»L)(x,-U -x) +[x" 1]C[x" 1]
i=1

A>0,C>0
O','ZO, Vi=1,...,n

Note the similarity with a perturbations
= average error better (<) than diagonal aBB methods
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Comparison 18|21
L&T, Quadratic Case

Lasserre & Thanh's constraints simplify when
deg(f)=2,d=2,k=1

f(x)-(b+a’x+x'Ax) = ZU,-(X,- —x,»L)(x,-U -x) +[x" 1]C[x" 1]
i=1

A>0,C>0
O','ZO, Vi=1,...,n

Note the similarity with a perturbations
= average error better (<) than diagonal aBB methods

Nondiagonal aBB was better on a test suite of 300 generated
quadratic functions

> lower average error in all cases, higher minimum in 279 cases

Bp
ON N R
(O340, B 5
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Properties

Similar calculation complexity in the quadratic case

N\
Bpot
SOl SR
O, B>
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Comparison

Properties

Similar calculation complexity in the quadratic case

L&T

> better for general polynomials
> a hierarchy of underestimators
> attractive theoretical convergence

Anders Skjal: Two approaches to underestimating quadratic functions
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Comparison 19]21

Properties

Similar calculation complexity in the quadratic case
L&T

> better for general polynomials
> a hierarchy of underestimators
> attractive theoretical convergence

aBB

only requires smoothness

relatively fast

introduces additional (linear) constraints and variables
slightly tighter and faster in the quadratic case

vV V vV V¥V

|
Bp
N IR
(O340, B 5
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Properties

Similar calculation complexity in the quadratic case
L&T

> better for general polynomials
> a hierarchy of underestimators
> attractive theoretical convergence

aBB

only requires smoothness

relatively fast

introduces additional (linear) constraints and variables
slightly tighter and faster in the quadratic case

vV V vV V¥V

Conclusion: your best choice is problem-dependent!

|
Bp
ON N R
(O340, B 5
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Thank you for listening!

B
o) ~H @S

O, Bl o
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Thank you for listening!

Questions?

N

(
Bpot
NN, ;
O, B>
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L&T, Function Form

max | hdx
hGR[X]d,O‘j,Qf B

FX) =hx)+ > 0j(x)gjx) ¥x

i=0

s.t. Th(x.y) = Z fi(x.y)g;(x)
0

+On+1(X, ¥)gn+1(X,y) VX, ¥
00 € X[xlk, 0j € E[x[g—1, j = 1
O € Z[x, ¥k 0; € Z[x, ylk—1. J = 1,

T
S |

Oty B>
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L&T, SDP Form

h
heRIXgoZ}.O; an o
aelNj
n . .
fo =ha+ D (Z).C)). VaeNy
j=0
n+1
St (Thiap = D (O Agg), V(. p) € N3]
£=0
7/, et =0, j=0..... n £=0,..., n+1,
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