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The Application

A nonconvex mathematical programming problem:

min f0(x)

s.t. fm(x) ≤ 0 i = 1,2, . . . ,M

x
L ≤ x ≤ xU

Many global optimization algorithms use convex underestimation

I branch-and-bound methods

I lower bounds or proof of infeasibility
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A Comparison

I will describe two underestimation methods:

I An ÓBB variant (Skjäl and Westerlund, 2012)
. smooth (C2) functions
. perturbations

I An underestimation method with roots in algebraic geometry
(Jean B. Lasserre and Tung Phan Thanh, 2012)

. polynomials

. underestimator of a specified degree
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ÓBB
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Perturbations

I All ÓBB methods use
perturbations

I −Ói (xi − xLi )(x
U
i − xi )

I Ôijxixj − conc(Ôijxixj )

I underestimation: ok

I convexity: use a sufficient
condition for positive
semidefiniteness

∇2f(x)+HP � 0, ∀x ∈ [xL ,xU ]

xL xU0

0
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Parameter Calculation

I Adjiman, Dallwig, Floudas &
Neumaier, 1998

. diagonal

. many calculation methods
(e.g. “Gerschgorin”)

I Skjäl & Westerlund,
manuscript

. additional methods,
nondiagonal

I The scaled diagonal
Gerschgorin method is
recommended for general
purposes

. calculation: O(n2)
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Quadratic Functions

I Quadratic functions have constant second derivatives

I No need for interval approximations

I Convexity of the perturbed function is equivalent to

H +HP = H +


2Ó1 Ô1,2 · · · Ô1,n

Ô1,2
. . .

. . .
...

...
. . .

. . . Ôn−1,n
Ô1,n · · · Ôn−1,n 2Ón

 � 0

I The best perturbation(s) minimize some error measure

. in literature: the maximum underestimation error

. a new choice: the average error
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Error Measures

I Maximum underestimation error (L∞-norm)¼
i

1
4
(xUi − x

L
i )

2Ói +
¼
i

¼
j>i

1
4
(xUi − x

L
i )(x

U
j − x

L
j ) |Ôij |

I Average error (normalized L1-norm)
. Ói weight ∫

[xL ,xU ]

(xi − xLi )(x
U
i − xi )dx∫

[xL ,xU ]

dx
=

1
6
(xUi − x

L
i )

2

. |Ôij | weight, symbolical integration with Mathematica

1
12

(xUi − x
L
i )(x

U
j − x

L
j )
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Lasserre & Thanh’s Method
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Positive Polynomials on �
n

Hilbert’s Seventeenth Problem

Can any nonnegative polynomial be represented as a sum of squares
of rational functions?

I If a function can be decomposed as a sum of squares it is
nonnegative

x2 −4xy +5y2 −2yz + z2 = (x −2y)2 +(y − z)2 ≥ 0

I Hilbert showed that a nonnegative polynomial is not in general a
sum of squares of polynomials

I Motzkin gave the first example (1966)

z6 + x4y2 + x2y4 −3x2y2z2
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Positive Polynomials on Semialgebraic Sets

Putinar’s Positivstellensatz

Let K be a compact semialgebraic set. Assume that p1 . . .pm have
even degrees and that their highest degree homogenous parts have
no common zeroes in �

n , except 0. Then any positive polynomial p
on K belongs to the cone Î+ p1Î+ . . .+ pmÎ.

I A set is called semialgebraic if it is described by polynomial
inequalities

{x ∈�n : p1(x) ≥ 0, . . . ,pm(x) ≥ 0}

I Let Î denote all sums of squares of polynomials in x ; a convex
cone
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Underestimation and Convexity

I Lasserre and Thanh use the Positivstellensatz for both
properties

. underestimation:

f(x)−h(x) ≥ 0, ∀x ∈ [xL ,xU ]

. convexity:

y
T ∇2h(x) y ≥ 0, ∀x ∈ [xL ,xU ],∀y ∈�n : ‖y‖ ≤ 1

. the sets are compact semialgebraic{
x ∈�n : (xi − xLi )(x

U
i − xi ) ≥ 0, i = 1, . . . ,n

}
∩

y ∈�n : 1−
¼
i

y2
i ≥ 0


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Finite-Dimensional Approximation

I The underestimator degree is fixed, deg(h) = d

I The sum-of-squares cones are restricted

Îk := {p ∈ Î : deg(p) ≤ 2k }

I Lasserre & Thanh proved convergence properties as k →∞

I Elements in Îk kan be represented as positive semidefinite
matrices

(x−2y)2+(y−1)2 =
[

1 x y
] 0 −1

1 0
−2 1


[

0 1 −2
−1 0 1

] 1
x
y


=

 1
x
y


T  1 0 −1

0 1 −2
−1 −2 5

︸                ︷︷                ︸
�0

 1
x
y


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Constraints

I The underestimation condition takes the form:

f(x)−h(x) = ã0(x) +
n¼

i=1

ãi (x) (xi − xLi )(xUi − xi ), ∀x

ã0 ∈ Îk

ãi ∈ Îk−1, i = 1, . . . ,n

I Rewritten in the monomial basis we get (n+2k
n ) linear constraints

fÓ −hÓ =
n¼

i=0

〈
Zj ,C

j
Ó

〉
involving n +1 semidefinite variable matrices

Zj � 0, j = 0,1, . . . ,n
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−4 3

−1

1

d = 0, average error = 1.08
−4 3

−1

1

d = 1, average error = 0.85
−4 3

−1

1

d = 2, average error = 0.81

−4 3

−1

1

d = 3, average error = 0.71
−4 3

−1

1

d = 4, average error = 0.55
−4 3

−1

1

d = 5, average error = 0.54
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L&T, Quadratic Case

I Lasserre & Thanh’s constraints simplify when
deg(f) = 2, d = 2, k = 1

f(x)− (b +a
′
x +x

′Ax) =
n¼

i=1

ãi (xi − xLi )(xUi − xi ) + [x ′ 1]C [x ′ 1]′

A � 0, C � 0

ãi ≥ 0, ∀i = 1, . . . ,n

I Note the similarity with Ó perturbations
⇒ average error better (≤) than diagonal ÓBB methods

I Nondiagonal ÓBB was better on a test suite of 300 generated
quadratic functions

. lower average error in all cases, higher minimum in 279 cases
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Properties

I Similar calculation complexity in the quadratic case

I L&T
. better for general polynomials
. a hierarchy of underestimators
. attractive theoretical convergence

I ÓBB
. only requires smoothness
. relatively fast
. introduces additional (linear) constraints and variables
. slightly tighter and faster in the quadratic case

I Conclusion: your best choice is problem-dependent!
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Thank you for listening!

Questions?
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L&T, Function Form
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L&T, SDP Form
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