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Graphical model (GM)

I A GM is a probabilistic model for which a graph structure
represents the dependence structure between a set of random
variables.

I The nodes in the graph represent the variables and the edges
represent direct dependencies among the variables.

I The absence of an edge represents statements of conditional
independence (CI).

I In this talk we will only consider discrete variables.
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Labeled Directed Acyclic Graph (LDAG)

I A directed acyclic graph for which certain labels have been
added to edges.

I In an LDAG-based GM, the labels represent statements of
context-specific independence (CSI).

I Consider the label on edge (4,5):

L(4,5) = {(1,0),(1,1)} ⇒ X5 ⊥ X4 | (X2,X3) ∈ {(1,0),(1,1)}
⇔ X5 ⊥ X4 | X2 = 1,X3
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Factorization of the joint distribution according to an LDAG

"Fundamental to the idea of a graphical model is the notion of modularity – a
complex system is built by combining simpler parts."

I In a GM, the joint distribution is factorized by the graph into
lower order distributions.

I Factorization according to an LDAG over {X1,X2, . . . ,Xd }:

p(X1, . . . ,Xd ) =
d½

j=1

p(Xj | XPa(j))

I The result is a product of conditional probability distributions
(CPD).
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Conditional probability table (CPT)

XPa(5) p(X5 = 1 | XPa(5))

(0,0,0) p1

(0,0,1) p2

(0,1,0) p3

(0,1,1) p4

(1,0,0) p1

(1,0,1) p1

(1,1,0) p5

(1,1,1) p5

I Grows exponentially with the number of parents.

I Fails to capture any regularities among the CPDs.
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Reduced conditional probability table

XPa(5) p(X5 = 1 | XPa(5))

{(0,0,0),(1,0,0),(1,0,1)} p1

{(0,0,1)} p2

{(0,1,0)} p3

{(0,1,1)} p4

{(1,1,0),(1,1,1)} p5

I XPa(j)
Lj−→ SPa(j) = {S1,S2, . . . ,Skj

} where Sl ∩Sl ′ = ∅ (for l , l ′)

and
kj
∪

l=1
Sl = XPa(j).
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Learning of LDAGs

I In the learning process we want to find the optimal LDAG for a
set of data X= {xi }ni=1 consisting of n observations
xi = (xi1, . . .xid ) of the variables {X1, . . . ,Xd } such that xij ∈ Xj .

I This problem can be divided into two parts:

1. To define a score that evaluates the appropriateness of the
models.

2. To develop a search algorithm that searches through parts of the
model space in order to find the model with the highest score.
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The Bayesian approach

I In the Bayesian approach to model learning, one is interested in
the posterior distribution of the models given the data X.

I The posterior probability of an LDAG (GL ) is

p(GL |X) =
p(X,GL )

p(X)
=

p(X | GL ) · p(GL )

p(X)
.

I The denominator is a normalizing constant that does not
depend on GL and can therefore be ignored when comparing
graphs.

I Our goal is thus to maximize

p(X,GL ) = p(X | GL ) · p(GL ).
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Marginal likelihood p(X,GL ) =p(X | GL )·p(GL )

I p(X | GL ) is the marginal probability of observing the data X

given a graph GL .

I To evaluate p(X | GL ), we need to consider all possible instances
of the parameter vector Ú according to

p(X | GL ) =

∫
Ú∈ÊGL

p(X | GL ,Ú) · f(Ú | GL )dÚ,

where ÊGL
denotes the parameter space induced by the LDAG.

I p(X | GL ,Ú) and f(Ú | GL ) are the respective likelihood function
and prior distribution over the parameters.
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Marginal likelihood p(X,GL ) =p(X | GL )·p(GL )

I Under certain assumptions, the marginal likelihood can be
calculated analytically

p(X | GL ) =
d½

j=1

kj½
l=1

È
(´rj

i=1 Óijl

)
È
(
n(Sjl )+

´rj
i=1 Óijl

) rj½
i=1

È (n(xji×Sjl )+Óijl )

È (Óijl )
,

where Óijl are hyperparameters and n(S) is the number of times
any of the elements in S occur in the data.
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Prior over the LDAGs p(X,GL ) = p(X | GL )·p(GL )

I Prior probability of the LDAG.

I Generally not given too much attention in model learning for
ordinary DAGs (Uniform prior).

I Essential part of the score when evaluating LDAGs.

I We define our prior by

p(GL ) = c ·Ü|ÊG |−|ÊGL | = c ·
d½

j=1

Ü(|Xj |−1)·(|XPa(j) |−|Sj |),

where Ü ∈ (0,1] can be considered a measure of how strongly a
label is penalized when added to the graph.
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Putting the pieces together: p(X,GL ) = p(X | GL ) · p(GL )

p(X,GL ) = c·
d½

j=1

Ü(|Xj |−1)·(|XPa(j) |−|Sj |)
kj½

l=1

È
(´rj

i=1 Óijl

)
È
(
n(Sjl )+

´rj
i=1 Óijl

) rj½
i=1

È (n(xji×Sjl )+Óijl )

È (Óijl )
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Example (n=500)

Ü= 0.001
|ÊGL |= 14 (14)

Ü= 0.25
|ÊGL |= 12 (16)

Ü= 0.5
|ÊGL |= 11 (16)

Ü= 1
|ÊGL |= 11 (20)
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Thank you for listening!

Questions?
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