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Structure of the presentation:
> Introduction
> Derivation of the score
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Markov network (MN) e o

A MN is a probabilistic graphical model over a set of discrete
variables (Xg,..., Xg)-

The dependence structure over the variables is represented by
an undirected graph G = (V,E).

The nodes in the graph, V ={1,...,d}, represent the variables
and the edges, E C {V x V}, represent direct dependencies
among the variables.

Absence of edges represents statements of conditional
independence, in particular

Xi L Xv\us(iyuiy | Xus(i)

S
where MB(i) ={j € V : {i,j} € E} is the Markov blanket of node l ‘
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Markov network (MN) e o

AMN is a pair (G,6;) where 6 is a parameterization of a joint
distribution Pg over (X1,..., Xy)

Pg must satisfy the restrictions imposed by G, in particular:

Xi L Xv\ms(iyuiy | Xms (i) © P(Xi I Xvyi) = P(Xi | Xus (i)

We assume that Pg is positive.

The joint distribution factorizes according to its maximal cliques

Potx) =3 [ #cxc)

CeC(G)

where ¢c : Xc — Ry isaclique factorandZ =} , v, Pcl( xv |s ‘

the partition function.
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Structure learning

We assume we have a data set X containing n complete i.i.d.
joint observations x = (Xk,1,...,Xk,4) generated from O-.

The aim is to discover the graph structure G* from the set of all
possible graph structures G.

Structure learning is basically model class learning.
Reasons for structure learning:

> Step in model learning - Learn distribution given the graph.
> Knowledge discovery - The structure is a goal in itself.

Structure learning methods can roughly be divided into two
categories:

> Constraint-based - Independence tests.
> Score-based - Optimization problem.
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The Bayesian approach

We choose the graph with the highest posterior probability given
the data:
p(X16G)-p(G)

p(X)
Since p(X) is a normalizing constant, the problem can be
formulated as

p(G|X)=

argmax p(X|G)-p(G).
Geg

The key term of the Bayesian score is the marginal likelihood
which is evaluated according to

p(X] G) = Lee p(X16,G)- (8] G)do

The marginal likelihood is hard to evaluate for MNs.
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The pseudo-likelihood function

The pseudo-likelihood (Besag, 1975) is given by

p(X16) = Hp|mw

Given a graph, the local Markov property allows us to simplify
the pseudo-likelihood as

d
p(x16,G) = |p(X; | Xus (), 6. ).
j=1

The marginal pseudo-likelihood (MPL) is evaluated according to

mmmzLemmamﬂmmw
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Marginal pseudo-likelihood

We assume global and local independence among the
parameters similarly to the parameter independence

assumption made for Bayesian networks (Heckerman et al.,
1995).

This allows us to factorize the parameter prior distribution and
solve the MPL analytically:

S M) J M (g + o)
A(X|G) = j i ij
P( I ) I_”_IF ,,+ocj, Hl F(a,-j,)

j=11=1

The MPL can in fact be considered the marginal likelihood for a
bi-directional dependency network (Heckerman et al., 2001).

%
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Number of possible graphs, |G|

d [Hvxvil=(3) | 161=20)

2 1 2

4 6 64

8 28 268435456

16 120 1.32...-10%6
32 496 2.04...-10149

Johan Pensar: Marginal pseudo-likelihood

Center of Excellence in Optimization and Systems Engineering at Abo Akademi University

9|14

&
%ﬂ{vﬁt

\\\%@%\@ ‘

=

&



Marginal pseudo-likelihood: Search algorithm 10|14

The direct approach

argmax p(X| G)-p(G)
Geg

We assume uniform prior p(G) = 1/|G|.

Two graphs G; and G, are compared by Bayes pseudo-factor

p(X|Gy)

K(Gy; G) = 5(X| Ga)’

If we assume a single edge difference {i,j} between G; and G,

then
P(Xi | Xuey (1)) P(X; | Xuig, (1))
P(Xi | X, (1)) P(Xj 1 Xug, ()

Johan Pensar: Marginal pseudo-likelihood !i %
Center of Excellence in Optimization and Systems Engineering at Abo Akademi University

K(Gy; G2) =



Marginal pseudo-likelihood: Search algorithm

11|14
Reformulation of the direct approach

By denoting MB(G) = {MB(1),...,MB(d)}, we reformulate the
original problem:

argmax p(X| G)
Geg

(=4

d
argmax l_l P(X; | Xuz(j))
MB(G)exjevP(VVi) j=1

subjectto i€ MB(j)=j € MB(i)foralli,jeV

B
) &
\G% s B>
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Relaxation of the direct approach

Relaxed version of the reformulated problem:

argmax I_I p(X; |XMB(1))
MB(G)EXIE\/P(V\]

We now have d independent subproblems:

argmaxp(X|XMB ) forj=1,...,d

MB(j)CV\j

High-dimensional problems - Parallel solving!
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Forming a MN structure from inconsistent Markov blankets

Solutions to the relaxed problem are in general inconsistent in
the sense that i € MB(j) but j ¢ MB(i).

Post-process the solution to satisfy the structure of a MN.
Simple approaches:
Eanp = {{i,j} €{Vx V}:ieMB(j) AND j € MB(i)}
Eor ={{i,ji}e{VxV}:ieMB(j) OR j € MB(i)}

A more elaborate approach - Treat the Markov blanket discovery
phase as a pre-scan and solve

argmax p(X| G)
GeGor

where Gor ={G € G: E C Egr}.
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