Joint work with Henrik Nyman and Jukka Corander.

Structure of the presentation:

- Introduction
- Derivation of the score
- Search algorithm
Markov network (MN)

A MN is a probabilistic graphical model over a set of discrete variables \((X_1, \ldots, X_d)\).

The dependence structure over the variables is represented by an undirected graph \(G = (V, E)\).

The nodes in the graph, \(V = \{1, \ldots, d\}\), represent the variables and the edges, \(E \subseteq \{V \times V\}\), represent direct dependencies among the variables.

Absence of edges represents statements of conditional independence, in particular

\[X_i \perp X_{V \setminus \{MB(i) \cup i\}} | X_{MB(i)} \]

where \(MB(i) = \{j \in V : \{i, j\} \in E\}\) is the Markov blanket of node \(i\).
Markov network (MN)

- A MN is a pair \((G, \theta_G)\) where \(\theta_G\) is a parameterization of a joint distribution \(P_G\) over \((X_1, \ldots, X_d)\)
- \(P_G\) must satisfy the restrictions imposed by \(G\), in particular:
 \[
 X_i \perp X_{V \setminus \{MB(i) \cup i\}} | X_{MB(i)} \iff P(X_i | X_{V \setminus i}) = P(X_i | X_{MB(i)})
 \]
- We assume that \(P_G\) is positive.
- The joint distribution factorizes according to its maximal cliques
 \[
 P_G(X_V) = \frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \phi_C(X_C)
 \]
 where \(\phi_C : \mathcal{X}_C \to \mathbb{R}_+\) is a clique factor and \(Z = \sum_{x_V \in \mathcal{X}_V} P_G(x_V)\) is the partition function.
Structure learning

- We assume we have a data set X containing n complete i.i.d. joint observations $x_k = (x_{k,1}, \ldots, x_{k,d})$ generated from θ_{G^*}.
- The aim is to discover the graph structure G^* from the set of all possible graph structures \mathcal{G}.
- Structure learning is basically model class learning.
- Reasons for structure learning:
 - Step in model learning - Learn distribution given the graph.
 - Knowledge discovery - The structure is a goal in itself.
- Structure learning methods can roughly be divided into two categories:
 - Constraint-based - Independence tests.
 - Score-based - Optimization problem.
The Bayesian approach

- We choose the graph with the highest posterior probability given the data:
 \[p(G \mid X) = \frac{p(X \mid G) \cdot p(G)}{p(X)} \]

- Since \(p(X) \) is a normalizing constant, the problem can be formulated as
 \[\arg\max_{G \in \mathcal{G}} p(X \mid G) \cdot p(G). \]

- The key term of the Bayesian score is the marginal likelihood which is evaluated according to
 \[p(X \mid G) = \int_{\theta \in \Theta_G} p(X \mid \theta, G) \cdot f(\theta \mid G) d\theta. \]

- The marginal likelihood is hard to evaluate for MNs.
The pseudo-likelihood function

- The pseudo-likelihood (Besag, 1975) is given by
 \[
 \hat{p}(X \mid \theta) = \prod_{j=1}^{d} p(X_j \mid X_{V\setminus j}, \theta).
 \]

- Given a graph, the local Markov property allows us to simplify the pseudo-likelihood as
 \[
 \hat{p}(X \mid \theta, G) = \prod_{j=1}^{d} p(X_j \mid X_{MB(j)}, \theta, G).
 \]

- The marginal pseudo-likelihood (MPL) is evaluated according to
 \[
 \hat{p}(X \mid G) = \int_{\theta \in \Theta_G} \hat{p}(X \mid \theta, G) \cdot f(\theta \mid G) d\theta.
 \]
Marginal pseudo-likelihood

▶ We assume global and local independence among the parameters similarly to the parameter independence assumption made for Bayesian networks (Heckerman et al., 1995).

▶ This allows us to factorize the parameter prior distribution and solve the MPL analytically:

\[
\hat{p}(X \mid G) = \prod_{j=1}^{d} \prod_{l=1}^{q_j} \frac{\Gamma(\alpha_{jl})}{\Gamma(n_{jl} + \alpha_{jl})} \prod_{i=1}^{r_j} \frac{\Gamma(n_{ijl} + \alpha_{ijl})}{\Gamma(\alpha_{ijl})}
\]

▶ The MPL can in fact be considered the marginal likelihood for a bi-directional dependency network (Heckerman et al., 2001).
Number of possible graphs, $|\mathcal{G}|$

| d | $|V \times V| = \binom{d}{2}$ | $|\mathcal{G}| = 2^\binom{d}{2}$ |
|------|-------------------------------|---------------------------------|
| 2 | 1 | 2 |
| 4 | 6 | 64 |
| 8 | 28 | 2^{28} |
| 16 | 120 | $1.32 \ldots \cdot 10^{36}$ |
| 32 | 496 | $2.04 \ldots \cdot 10^{149}$ |
| ... | ... | ... |
The direct approach

\[\arg \max_{G \in \mathcal{G}} \hat{p}(X \mid G) \cdot p(G) \]

- We assume uniform prior \(p(G) = 1/|\mathcal{G}|. \)
- Two graphs \(G_1 \) and \(G_2 \) are compared by Bayes pseudo-factor

\[K(G_1; G_2) = \frac{\hat{p}(X \mid G_1)}{\hat{p}(X \mid G_2)}. \]

- If we assume a single edge difference \(\{i, j\} \) between \(G_1 \) and \(G_2 \), then

\[K(G_1; G_2) = \frac{p(X_i \mid X_{\text{MB}_1(i)})}{p(X_i \mid X_{\text{MB}_2(i)})} \cdot \frac{p(X_j \mid X_{\text{MB}_1(j)})}{p(X_j \mid X_{\text{MB}_2(j)})}. \]
Reformulation of the direct approach

By denoting $MB(G) = \{MB(1), \ldots, MB(d)\}$, we reformulate the original problem:

$$
\arg\max_{G \in \mathcal{G}} \hat{p}(X \mid G) \\
\Leftrightarrow
$$

$$
\arg\max_{MB(G) \in x_{j \in V} \mathcal{P}(V \setminus j)} \prod_{j=1}^{d} p(X_j \mid X_{MB(j)})
$$

subject to $i \in MB(j) \Rightarrow j \in MB(i)$ for all $i, j \in V$
Relaxation of the direct approach

- Relaxed version of the reformulated problem:

\[
\text{arg}\max_{MB(G) \in \prod_{j \in V} P(V \setminus j)} \prod_{j=1}^{d} p(X_j | X_{MB(j)})
\]

- We now have \(d\) independent subproblems:

\[
\text{arg}\max_{MB(j) \subseteq V \setminus j} p(X_j | X_{MB(j)}) \quad \text{for } j = 1, \ldots, d.
\]

- High-dimensional problems - Parallel solving!
Solutions to the relaxed problem are in general inconsistent in the sense that \(i \in MB(j) \) but \(j \notin MB(i) \).

Post-process the solution to satisfy the structure of a MN.

Simple approaches:

\[
E_{\text{AND}} = \{ \{i, j\} \in \{V \times V\} : i \in MB(j) \text{ AND } j \in MB(i)\}
\]

\[
E_{\text{OR}} = \{ \{i, j\} \in \{V \times V\} : i \in MB(j) \text{ OR } j \in MB(i)\}
\]

A more elaborate approach - Treat the Markov blanket discovery phase as a pre-scan and solve

\[
\arg \max_{G \in \mathcal{G}_{\text{OR}}} \hat{p}(X \mid G)
\]

where \(\mathcal{G}_{\text{OR}} = \{ G \in \mathcal{G} : E \subseteq E_{\text{OR}}\} \).
References

Julian Besag.
Statistical analysis of non-lattice data.

D. Heckerman, D. Geiger, and D.M. Chickering.
Learning Bayesian networks: The combination of knowledge and statistical data.

David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounthwaite, and Carl Kadie.
Dependency networks for inference, collaborative filtering, and data visualization.

D. Koller and N. Friedman.
Probabilistic Graphical Models: Principles and Techniques.