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I Joint work with Henrik Nyman and Jukka Corander.

I Structure of the presentation:

. Introduction

. Derivation of the score

. Search algorithm
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Markov network (MN)

I A MN is a probabilistic graphical model over a set of discrete
variables (X1, . . . ,Xd ).

I The dependence structure over the variables is represented by
an undirected graph G = (V ,E).

I The nodes in the graph, V = {1, . . . ,d }, represent the variables
and the edges, E ⊆ {V ×V }, represent direct dependencies
among the variables.

I Absence of edges represents statements of conditional
independence, in particular

Xi ⊥ XV\{MB(i)∪i } | XMB(i)

where MB(i) = {j ∈ V : {i , j } ∈ E } is the Markov blanket of node i .
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Markov network (MN)

I A MN is a pair (G ,ÚG ) where ÚG is a parameterization of a joint
distribution PG over (X1, . . . ,Xd )

I PG must satisfy the restrictions imposed by G , in particular:

Xi ⊥ XV\{MB(i)∪i } | XMB(i)⇔ P(Xi | XV\i ) = P(Xi | XMB(i))

I We assume that PG is positive.

I The joint distribution factorizes according to its maximal cliques

PG (XV ) =
1
Z

½
C∈C(G)

æC (XC )

where æC : XC →�+ is a clique factor and Z =
´

xV∈XV PG (xV ) is
the partition function.
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Structure learning

I We assume we have a data set X containing n complete i.i.d.
joint observations xk = (xk ,1, . . . ,xk ,d ) generated from ÚG ∗ .

I The aim is to discover the graph structure G ∗ from the set of all
possible graph structures G.

I Structure learning is basically model class learning.
I Reasons for structure learning:

. Step in model learning - Learn distribution given the graph.

. Knowledge discovery - The structure is a goal in itself.

I Structure learning methods can roughly be divided into two
categories:

. Constraint-based - Independence tests.

. Score-based - Optimization problem.
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The Bayesian approach

I We choose the graph with the highest posterior probability given
the data:

p(G | X) = p(X | G) · p(G)

p(X)

I Since p(X) is a normalizing constant, the problem can be
formulated as

argmax
G∈G

p(X | G) · p(G).

I The key term of the Bayesian score is the marginal likelihood
which is evaluated according to

p(X | G) =

∫
Ú∈ÊG

p(X | Ú,G) · f(Ú | G)dÚ.

I The marginal likelihood is hard to evaluate for MNs.
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The pseudo-likelihood function

I The pseudo-likelihood (Besag, 1975) is given by

p̂(X | Ú) =
d½

j=1

p(Xj | XV\j,Ú).

I Given a graph, the local Markov property allows us to simplify
the pseudo-likelihood as

p̂(X | Ú,G) =
d½

j=1

p(Xj | XMB(j),Ú,G).

I The marginal pseudo-likelihood (MPL) is evaluated according to

p̂(X | G) =

∫
Ú∈ÊG

p̂(X | Ú,G) · f(Ú | G)dÚ.
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Marginal pseudo-likelihood

I We assume global and local independence among the
parameters similarly to the parameter independence
assumption made for Bayesian networks (Heckerman et al.,
1995).

I This allows us to factorize the parameter prior distribution and
solve the MPL analytically:

p̂(X | G) =
d½

j=1

qj½
l=1

È (Ójl )

È (njl +Ójl )

rj½
i=1

È (nijl +Óijl )

È (Óijl )

I The MPL can in fact be considered the marginal likelihood for a
bi-directional dependency network (Heckerman et al., 2001).
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Number of possible graphs, |G|

d |{V ×V }|= (d2) |G|= 2(d2)

2 1 2
4 6 64
8 28 268435456

16 120 1.32 . . . ·1036

32 496 2.04 . . . ·10149

...
...

...
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The direct approach

argmax
G∈G

p̂(X | G) · p(G)

I We assume uniform prior p(G) = 1/ |G|.
I Two graphs G1 and G2 are compared by Bayes pseudo-factor

K(G1;G2) =
p̂(X | G1)

p̂(X | G2)
.

I If we assume a single edge difference {i , j } between G1 and G2,
then

K(G1;G2) =
p(Xi | XMB1(i))

p(Xi | XMB2(i))
·
p(Xj | XMB1(j))

p(Xj | XMB2(j))
.
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Reformulation of the direct approach

I By denoting MB(G) = {MB(1), . . . ,MB(d)}, we reformulate the
original problem:

argmax
G∈G

p̂(X | G)

⇔

argmax
MB(G)∈×j∈VP (V\j)

d½
j=1

p(Xj | XMB(j))

subject to i ∈MB(j)⇒ j ∈MB(i) for all i , j ∈ V
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Relaxation of the direct approach

I Relaxed version of the reformulated problem:

argmax
MB(G)∈×j∈VP (V\j)

d½
j=1

p(Xj | XMB(j))

I We now have d independent subproblems:

argmax
MB(j)⊆V\j

p(Xj | XMB(j)) for j = 1, . . . ,d .

I High-dimensional problems - Parallel solving!
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Forming a MN structure from inconsistent Markov blankets

I Solutions to the relaxed problem are in general inconsistent in
the sense that i ∈MB(j) but j <MB(i).

I Post-process the solution to satisfy the structure of a MN.

I Simple approaches:

EAND = {{i , j } ∈ {V ×V } : i ∈MB(j) AND j ∈MB(i)}
EOR = {{i , j } ∈ {V ×V } : i ∈MB(j) OR j ∈MB(i)}

I A more elaborate approach - Treat the Markov blanket discovery
phase as a pre-scan and solve

argmax
G∈GOR

p̂(X | G)

where GOR = {G ∈ G : E ⊆ EOR }.
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