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What is Global Optimization?

Several interpretations:
I Many trials increase the chance of catching the global optimum

. Multistart, scatter search

. Metaheuristics: genetic algorithms, simulated annealing, particle
swarm, ant colony...

I Many of the algorithms converge asymptotically to a global
optimum with probability 1

. No way to know when it happens

I A method classification by Neumaier (2004)
. Incomplete: clever heuristics
. Asymptotically complete: converges eventually
. Complete: converges and knows when prescribed tolerance is

reached
. Rigorous: converges despite rounding errors (floating point

arithmetic)

I “Deterministic global optimization”
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What is Complexity Theory?

I Aims to establish absolute limits for how fast a problem can be
solved

I Algorithm-independent

I Results are sometimes negative
. n ×n chess/checkers/go cannot be solved in polynomial time
. Conjecture A implies that problem B is C -hard

I The terminology is well-suited for studying global optimization
(in the strict sense)

I will discuss some concepts in complexity theory and their
implications for our field

I The NP class, approximation complexity, randomized algorithms
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Algorithm Analysis

I First contact with runtimes
I Big O notation

. f(n) = O(g(n)) if f is asymptotically bounded from above by a
constant times g

I Also Ò (asymptotically from below) and Ê (asymptotically from
above and below)

I Sorting algorithms
. Naïve sort: O(n2) operations
. Quicksort (1960): O(n logn) operations on average
. Merge sort (1945): O(n logn) operations in worst case
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Improved Runtimes

I Asymptotic improvements may have practical significance
. Fast Fourier transform, O(n logn)
. Matrix multiplication

– Trivial bounds: O(n3), Ò(n2)

– Strassen algorithm (1969): O(n2.81)

I ...or not
. Coppersmith-Winograd algorithm (1987), O(n2.38)

more efficient only for enormous matrices
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Tractability

Polynomial runtime is sometimes considered synonymous with
“reasonable algorithm”
I Define P

. the class of decision problems with a O(nk ) algorithm

I Objections:
. O(2n) is ok for small n

. O(20.000001n) is better than O(n100) for moderate n (artificial)

I Polynomial on what machine?
. Any classical computer
. Turing machines, random-access machines and other theoretical

machines can simulate each other with only polynomial slow-down
. Not true for quantum computers as far as we know
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Example: Satisfiability

Does any truth assignment of the Boolean variables x ,y ,z satisfy the
expression:

(x ∨ y ∨ z)∧ (x̄ ∨ ȳ ∨ z)∧ (x ∨ ȳ ∨ z̄)∧ (x̄ ∨ y ∨ z̄)

I A satisfiability problem, 3-SAT

I Naïve algorithm: O(2n)

I Best known: O(1.439n)
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“Easy to verify”

I Many difficult problems have this in common:
. A ’yes’ answer can be verified quickly by checking a candidate

(proof/certificate/witness)

I Define the class NP of problems for which any ’yes’ instance has
a proof which can be checked in polynomial time

. Formal definitions with a Turing machine (checking the proof) or a
non-deterministic Turing machine (guessing the proof)

. P ⊂ NP

I Examples
. Decision versions of many optimization problems, discrete and

continuous
. Is minx∈X f(x) <M? If it is, then a point x0 ∈ X , f(x0) <M is a proof
. Graph isomorphism, traveling salesman, quadratic assignment,

longest path, bin packing, knapsack, ...
. Games like Battleships, Mastermind, Minesweeper, ...
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Complete Problems

Some problems in NP are as hard as any other NP problem

I If one of these problems can be solved in polynomial time, then
so can any NP problem

I Cook and Levin proved that any NP problem can be reduced to
(reformulated as) a satisfiability problem

I Karp (1972) listed 21 problems with the property

I Definition: C belongs to the class of NP-hard problems if
. every problem in NP can be reduced to C in polynomial time

I Definition: C belongs to the class of NP-complete problems if
. C is NP-hard, and
. C ∈ NP

Anders Skjäl: Complexity theory for the global optimizer
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Proving NP-hardness

If B is NP-complete and B reduces to C (in polynomial time), then C is
NP-hard

I Three common techniques: restriction, local replacement,
component design

I Restriction: 0-1 Linear Programming is NP-complete
⇒ MINLP is NP-hard

I Local replacement: Satisfiability to 3-SAT

. A local replacement of long clauses by clauses with three literals

x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5

↓
(x1 ∨ x2 ∨ y1)∧ (ȳ1 ∨ x3 ∨ y2)∧ (ȳ2 ∨ x4 ∨ x5)
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Figure 5: Lemmings level encoding the formula (v̄1 ∨ v2 ∨ v̄3) ∧ (v̄2 ∨ v3 ∨ v4) ∧ (v1 ∨ v̄2 ∨ v̄4) ∧ (v̄1 ∨ v̄3 ∨ v̄4)

8

A recreational example: Lemmings is NP-complete (Cormode 2004)
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Is P , NP?
I Maybe all problems in NP have an efficient algorithm?

I Why didn’t we find one yet?

I Often stated as “P versus NP”, one of the Millennium Prize
problems

© Behnam Esfahbod / CC-BY-SA-3.0
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Decision Problems and Optimization

I Optimization problem:
What is the minimum value of f(x),x ∈ X?

I Related decision problem:
Is there a solution x ∈ X with f(x) ≤M?

I The optimization version is at least as hard as the decision
version

I In practice we rarely need the exact optimum

I Is approximation any easier?
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Approximative Solutions

A solution x to a minimization problem is ê-optimal if:

f(x) ≤ (1 + ê) f(x∗)

I Example: Bin packing, first-fit

...

stuff1

stuff3

stuff2
stuff4

stuff5

I The optimal number of bins N ∗ ≥ d
´
stuffi e

I The first-fit solution NFF < d2
´
stuffi e

I NFF < 2N ∗ (an improved analysis gives NFF ≤ 1.7N ∗+ 2)

Anders Skjäl: Complexity theory for the global optimizer
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Approximation Complexity

By reducing approximation problems to NP-complete decision
problems they are shown to be hard
I The gap technique

. Objective range ⊂ (0,a]∪ [b ,+∞)

. If it is NP -hard to decide if the minimum belongs to (0,a]

. ... then approximation within ê = (b −a)/a is NP-hard

I A simple application shows that approximation of general
Traveling Salesperson problems is NP -hard for any constant ê

I Many hardness results followed on the PCP Theorem (Arora et
al. 1990)

. Probabilistically Checkable Proofs

I A hierarchy of complexity classes emerges: APX ⊃ PTAS ⊃ FPTAS

I The classes are not equal unless P = NP

Anders Skjäl: Complexity theory for the global optimizer
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APX - efficient approximation within constant ê

I Polynomial time approximation algorithms for some constant ê

I Metric Traveling Salesperson (symmetric distances, triangle
inequality)

. Christofides’ algorithm, ê = 1
2 , O(n3)

. Approximation with ê < 1
219 is NP-hard

(Papadimitriou and Vempala 2000)

I < APX: Linear Integer Programming, general TSP, and Quadratic
Assignment have no efficient approximation algorithms for any
constant ê (unless P = NP)

Anders Skjäl: Complexity theory for the global optimizer
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Polynomial Time Approximation Schemes

PTAS: problems with polynomial time approximation algorithms for
any ê

I Geometric Traveling Salesperson
. Euclidean distances or lp ,p ≥ 1 norm
. Dimension d

I O
(
nd+1(logn)(O(

√
d /ê))d−1)

(Arora 1998)

I Two dimensions: O
(
n3(logn)O(1/ê)

)
I Grows exponentially with 1/ê

Anders Skjäl: Complexity theory for the global optimizer
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Fully Polynomial Time Approximation Schemes

FPTAS: problems with approximation schemes that are polynomial in
both n and 1/ê

I Knapsack Problem (see Vazirani 2001)
. O(n3/ê)

I Quadratic Programming
. Compact polytope, t negative eigenvalues
. L = complexity of solving a convex QP of the same size
. (Vavasis 1992)

O
(⌈
n(n + 1)/

√
ê
⌉t
L
)

. Fully polynomial if t is bounded

Anders Skjäl: Complexity theory for the global optimizer
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So which Problems are Hard?

I Not always obvious for discrete problems
I Plenty of references

. Garey & Johnson: Computers and Intractability (1979)

. Ausiello et al.: Complexity and Approximation (1999)

I Continuous problems: “convex easy, nonconvex hard”
. Polynomial-time interior-point methods for convex programming,

Nesterov (1988)
. Self-concordant barrier functions exist for all closed convex solids

I Some exceptions
. Geometric programming: posynomials cxp1

1 · · ·x
pn
n ,c > 0

. Linear fractional programming: (pT x +Ó)/(qT x + Ô)

. ...
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Will Randomization Help?

Some tasks seem to benefit from using random numbers

I Complexity theory provides frameworks for analysis

I Genuine randomness versus pseudorandomness
I ZPP - zero-error probabilistic polynomial-time

. correct answers in polynomial time, but...

. returns no answer with probability ≤ 1/2

I BPP - bounded-error probabilistic polynomial-time
. wrong answer with probability ≤ 1/3

I RP - randomized polynomial-time
. outputs ’no’ if the correct answer is ’no’
. outputs ’no’ if the correct answer is ’yes’ with probability ≤ 1/2
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Randomized Decision Classes

P

ZPP

RP

BPP

NP
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Example: MAX-3-SAT

K∧
k=1

(xk1
∨ xk2

∨ xk3
)

I A clause (three different literals) is satisfied by a random
assignment with probability

1−
(1

2

)3
=

7
8

I The expected number of satisfied clauses is 7
8K

I There is always an assignment satisfying ≥ 7
8K clauses

I The fraction of such assignments is Ò(1/K)

I Approximation within ê = 1/7 (r = 8/7 in CS texts) is in ZPP

I Can be derandomized to give deterministic algorithm

Anders Skjäl: Complexity theory for the global optimizer



Randomized Algorithms 22 | 26

Example: MAX-3-SAT

K∧
k=1

(xk1
∨ xk2

∨ xk3
)

I A clause (three different literals) is satisfied by a random
assignment with probability

1−
(1

2

)3
=

7
8

I The expected number of satisfied clauses is 7
8K

I There is always an assignment satisfying ≥ 7
8K clauses

I The fraction of such assignments is Ò(1/K)

I Approximation within ê = 1/7 (r = 8/7 in CS texts) is in ZPP

I Can be derandomized to give deterministic algorithm

Anders Skjäl: Complexity theory for the global optimizer



Randomized Algorithms 22 | 26

Example: MAX-3-SAT

K∧
k=1

(xk1
∨ xk2

∨ xk3
)

I A clause (three different literals) is satisfied by a random
assignment with probability

1−
(1

2

)3
=

7
8

I The expected number of satisfied clauses is 7
8K

I There is always an assignment satisfying ≥ 7
8K clauses

I The fraction of such assignments is Ò(1/K)

I Approximation within ê = 1/7 (r = 8/7 in CS texts) is in ZPP

I Can be derandomized to give deterministic algorithm

Anders Skjäl: Complexity theory for the global optimizer



Randomized Algorithms 22 | 26

Example: MAX-3-SAT

K∧
k=1

(xk1
∨ xk2

∨ xk3
)

I A clause (three different literals) is satisfied by a random
assignment with probability

1−
(1

2

)3
=

7
8

I The expected number of satisfied clauses is 7
8K

I There is always an assignment satisfying ≥ 7
8K clauses

I The fraction of such assignments is Ò(1/K)

I Approximation within ê = 1/7 (r = 8/7 in CS texts) is in ZPP

I Can be derandomized to give deterministic algorithm

Anders Skjäl: Complexity theory for the global optimizer



Randomized Algorithms 23 | 26

Example: Primality Testing

Is n a prime number?

I Let D = logn , the number of digits in n
I Adleman-Pomerance-Rumely (Jacobi sums), O(Dc loglogD )

. Deterministic, not polynomial-time

I Miller-Rabin, O(D2 logD loglogD) = Õ(D2)

. Wrong answer for composite numbers with probability < 1/4

. Primality testing ∈ coRP

I Elliptic Curve Primality Proving
. Expected runtime Õ(D4)
. Primality testing ∈ ZPP

I Agrawal-Kayal-Saxena (2002), Õ(D6)

. Deterministic

. Primality testing ∈ P
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. Wrong answer for composite numbers with probability < 1/4

. Primality testing ∈ coRP

I Elliptic Curve Primality Proving
. Expected runtime Õ(D4)
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Primality testing was known to be in BPP, and now in P

I It has been conjectured that P = BPP

I Randomized algorithms might not be fundamentally stronger
I But they may have advantages

. Lower degree runtimes

. Sometimes conceptually easier, faster to program

I A probability of errors may be tolerable if it can be bounded
. Example: “industrial strength primes”
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