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Introduction

2126
What is Global Optimization?
Several interpretations:

Many trials increase the chance of catching the global optimum
> Multistart, scatter search

> Metaheuristics: genetic algorithms, simulated annealing, particle
swarm, ant colony...
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What is Global Optimization?
Several interpretations:
Many trials increase the chance of catching the global optimum

> Multistart, scatter search
> Metaheuristics: genetic algorithms, simulated annealing, particle
swarm, ant colony...

Many of the algorithms converge asymptotically to a global
optimum with probability 1

> No way to know when it happens
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What is Global Optimization?
Several interpretations:
Many trials increase the chance of catching the global optimum
> Multistart, scatter search

> Metaheuristics: genetic algorithms, simulated annealing, particle
swarm, ant colony...

Many of the algorithms converge asymptotically to a global
optimum with probability 1

> No way to know when it happens
A method classification by Neumaier (2004)

> Incomplete: clever heuristics

> Asymptotically complete: converges eventually

> Complete: converges and knows when prescribed tolerance is
reached

> Rigorous: converges despite rounding errors (floating point
arithmetic)

“Deterministic global optimization” \3
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What is Complexity Theory?

Aims to establish absolute limits for how fast a problem can be
solved

Algorithm-independent
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What is Complexity Theory?

Aims to establish absolute limits for how fast a problem can be
solved

Algorithm-independent
Results are sometimes negative

> n X n chess/checkers/go cannot be solved in polynomial time
> Conjecture A implies that problem B is C-hard
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What is Complexity Theory?

Aims to establish absolute limits for how fast a problem can be
solved

Algorithm-independent
Results are sometimes negative

> n X n chess/checkers/go cannot be solved in polynomial time
> Conjecture A implies that problem B is C-hard

The terminology is well-suited for studying global optimization
(in the strict sense)

| will discuss some concepts in complexity theory and their
implications for our field

The NP class, approximation complexity, randomized algorithms
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Algorithm Analysis

First contact with runtimes
Big O notation

> f(n) = O(g(n)) if f is asymptotically bounded from above by a
constant times g
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Algorithm Analysis

First contact with runtimes

Big O notation
> f(n) = O(g(n)) if f is asymptotically bounded from above by a
constant times g
Also 2 (asymptotically from below) and © (asymptotically from
above and below)
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Algorithm Analysis

First contact with runtimes

Big O notation
> f(n) = O(g(n)) if f is asymptotically bounded from above by a
constant times g
Also 2 (asymptotically from below) and © (asymptotically from
above and below)
Sorting algorithms
> Naive sort: O(n?) operations
> Quicksort (1960): O(nlogn) operations on average
> Merge sort (1945): O(nlogn) operations in worst case
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Improved Runtimes

Asymptotic improvements may have practical significance

> Fast Fourier transform, O(nlogn)
> Matrix multiplication

Trivial bounds: O(n3), Q(n?)
Strassen algorithm (1969): O(n2-81)
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Improved Runtimes

Asymptotic improvements may have practical significance

> Fast Fourier transform, O(nlogn)
> Matrix multiplication

Trivial bounds: O(n3), Q(n?)

Strassen algorithm (1969): O(n2-81)
...or not

> Coppersmith-Winograd algorithm (1987), O(n2'38)
more efficient only for enormous matrices

N IR
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Algorithm Runtimes

Tractability

Polynomial runtime is sometimes considered synonymous with
“reasonable algorithm”

Define P

> the class of decision problems with a O(n*) algorithm
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Tractability

Polynomial runtime is sometimes considered synonymous with
“reasonable algorithm”

Define P
> the class of decision problems with a O(n*) algorithm
Objections:

> O(2") is ok for small n
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Tractability

Polynomial runtime is sometimes considered synonymous with
“reasonable algorithm”

Define P
> the class of decision problems with a O(n*) algorithm
Objections:

> O(2") is ok for small n

> 0(20-000001n) s petter than O(n190) for moderate n (artificial)

Anders Skjal: Complexity theory for the global optimizer \\\ PN T L



Algorithm Runtimes 6|26

Tractability

Polynomial runtime is sometimes considered synonymous with
“reasonable algorithm”

Define P

> the class of decision problems with a O(n*) algorithm
Objections:

> O(2") is ok for small n

> 0(20:000001ny is petter than O(n100) for moderate n (artificial)
Polynomial on what machine?

> Any classical computer
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Tractability

Polynomial runtime is sometimes considered synonymous with
“reasonable algorithm”

Define P
> the class of decision problems with a O(n*) algorithm
Objections:

> O(2") is ok for small n

> 0(20-000001n) s petter than O(n190) for moderate n (artificial)
Polynomial on what machine?

> Any classical computer

> Turing machines, random-access machines and other theoretical

machines can simulate each other with only polynomial slow-down
> Not true for quantum computers as far as we know
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Hard Problems 7|26

Example: Satisfiability

Does any truth assignment of the Boolean variables x, y, z satisfy the
expression:

(xVyVz)A(xVyVZ)A(xVYVZ)A(XVyVZ)
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Hard Problems 7|26

Example: Satisfiability

Does any truth assignment of the Boolean variables x, y, z satisfy the
expression:

(xVyVz)A(xVyVZ)A(xVYVZ)A(XVyVZ)

A satisfiability problem, 3-SAT
Naive algorithm: O(2")
Best known: O(1.439™)
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“Easy to verify”

Many difficult problems have this in common:

> A’yes’ answer can be verified quickly by checking a candidate
(proof/certificate/witness)

Define the class NP of problems for which any ‘yes’ instance has
a proof which can be checked in polynomial time

Anders Skjal: Complexity theory for the global optimizer \\\ PN T L
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“Easy to verify”

Many difficult problems have this in common:
> A’yes’ answer can be verified quickly by checking a candidate
(proof/certificate/witness)
Define the class NP of problems for which any ‘yes’ instance has
a proof which can be checked in polynomial time
> Formal definitions with a Turing machine (checking the proof) or a

non-deterministic Turing machine (guessing the proof)
> PCNP
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“Easy to verify”

Many difficult problems have this in common:
> A’yes’ answer can be verified quickly by checking a candidate
(proof/certificate/witness)

Define the class NP of problems for which any ‘yes’ instance has
a proof which can be checked in polynomial time

> Formal definitions with a Turing machine (checking the proof) or a
non-deterministic Turing machine (guessing the proof)
> PCNP

Examples
> Decision versions of many optimization problems, discrete and
continuous
> Is minyex f(x) < M? If itis, then a point xg € X, f(xg) < M is a proof
> Graph isomorphism, traveling salesman, quadratic assignment,
longest path, bin packing, knapsack, ...
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“Easy to verify”

Many difficult problems have this in common:
> A’yes’ answer can be verified quickly by checking a candidate
(proof/certificate/witness)

Define the class NP of problems for which any ‘yes’ instance has
a proof which can be checked in polynomial time

> Formal definitions with a Turing machine (checking the proof) or a
non-deterministic Turing machine (guessing the proof)
> PCNP

Examples
> Decision versions of many optimization problems, discrete and
continuous
> Is minyex f(x) < M? If itis, then a point xg € X, f(xg) < M is a proof
> Graph isomorphism, traveling salesman, quadratic assignment,
longest path, bin packing, knapsack, ...
> Games like Battleships, Mastermind, Minesweeper,
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Hard Problems 9|26

Complete Problems

Some problems in NP are as hard as any other NP problem

If one of these problems can be solved in polynomial time, then
so can any NP problem

Cook and Levin proved that any NP problem can be reduced to
(reformulated as) a satisfiability problem

Karp (1972) listed 21 problems with the property
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Complete Problems

Some problems in NP are as hard as any other NP problem

If one of these problems can be solved in polynomial time, then
so can any NP problem
Cook and Levin proved that any NP problem can be reduced to
(reformulated as) a satisfiability problem
Karp (1972) listed 21 problems with the property
Definition: C belongs to the class of NP-hard problems if

> every problem in NP can be reduced to C in polynomial time
Definition: C belongs to the class of NP-complete problems if

> C is NP-hard, and
> CeNP
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Hard Problems
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Proving NP-hardness

If B is NP-complete and B reduces to C (in polynomial time), then C is
NP-hard

Three common techniques: restriction, local replacement,
component design
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Proving NP-hardness

If B is NP-complete and B reduces to C (in polynomial time), then C is
NP-hard

Three common techniques: restriction, local replacement,
component design

Restriction: 0-1 Linear Programming is NP-complete
= MINLP is NP-hard
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10|26
Proving NP-hardness

If B is NP-complete and B reduces to C (in polynomial time), then C is
NP-hard

Three common techniques: restriction, local replacement,
component design

Restriction: 0-1 Linear Programming is NP-complete
= MINLP is NP-hard

Local replacement: Satisfiability to 3-SAT

> A local replacement of long clauses by clauses with three literals

X1 VX2V Xx3VXx4V X5
l
(VX2 Vy1) A1 VX3 Vy2) A(y2 Vxq V xs)
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A recreational example: Lemmings is NP-complete (Cormode 2004)

Figure 5: Lemmings level encoding the formula (03 V vy V 03) A (02 V 03 V vg) A (01 V 02 V 03) A (01 V 03 V 0y)



Hard Problems 12126

Is P = NP?
Maybe all problems in NP have an efficient algorithm?
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Hard Problems 12126
Is P = NP?

Maybe all problems in NP have an efficient algorithm?

Why didn’t we find one yet?
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Hard Problems 12126
Is P = NP?

Maybe all problems in NP have an efficient algorithm?

Why didn’t we find one yet?

Often stated as “P versus NP”, one of the Millennium Prize

problems
NP-Hard NP-Hard
NP-Complete
P=NP=
NP-Complete
g
g
P#NP P=NP
\
© Behnam Esfahbod / CC-BY-SA-3.0 %
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Optimization

13126
Decision Problems and Optimization

Optimization problem:

What is the minimum value of f(x), x € X?
Related decision problem:

Is there a solution x € X with f(x) < M?
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Optimization 13126

Decision Problems and Optimization

Optimization problem:
What is the minimum value of f(x), x € X?

Related decision problem:
Is there a solution x € X with f(x) < M?

The optimization version is at least as hard as the decision
version

In practice we rarely need the exact optimum
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Optimization

13126
Decision Problems and Optimization

Optimization problem:

What is the minimum value of f(x), x € X?
Related decision problem:

Is there a solution x € X with f(x) < M?

The optimization version is at least as hard as the decision
version

In practice we rarely need the exact optimum

Is approximation any easier?
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Optimization

Approximative Solutions

A solution x to a minimization problem is g-optimal if:

Example: Bin packing, first-fit

stuff3

f(x) < (1+¢€)f(x")

stuffq

stuffy

stuffs

stuffy

Anders Skjil: Complexity theory for the global optimizer
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Optimization

Approximative Solutions

A solution x to a minimization problem is g-optimal if:

Example: Bin packing, first-fit

The optimal number of bins N* > [)_stuff;]
The first-fit solution N < [2)_stuff;]

stuff3

f(x) < (1+¢€)f(x")

stuffq

stuffy

stuffs

stuffg
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Optimization 14126
Approximative Solutions

A solution x to a minimization problem is g-optimal if:
f(x) < (1+¢€)f(x")

Example: Bin packing, first-fit

stuffs stuffs

stuffy

stuffq stuffy

The optimal number of bins N* > [)_stuff;]
The first-fit solution N < [2)_stuff;]
Ner < 2N* (an improved analysis gives Npp < 1.7N* + 2)

Anders Skjil: Complexity theory for the global optimizer \\\@ @&\
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Approximation Complexity

By reducing approximation problems to NP-complete decision
problems they are shown to be hard
The gap technique
> Objective range C (0,a] U [b, +c0)
> If it is NP-hard to decide if the minimum belongs to (0,a]
> ... then approximation within ¢ = (b —a)/a is NP-hard
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Approximation

15126
Approximation Complexity

By reducing approximation problems to NP-complete decision
problems they are shown to be hard

The gap technique
> Objective range C (0,a] U [b, +c0)
> If it is NP-hard to decide if the minimum belongs to (0,a]
> ... then approximation within ¢ = (b —a)/a is NP-hard

A simple application shows that approximation of general
Traveling Salesperson problems is NP-hard for any constant ¢

Many hardness results followed on the PCP Theorem (Arora et
al. 1990)

> Probabilistically Checkable Proofs
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Approximation Complexity

By reducing approximation problems to NP-complete decision
problems they are shown to be hard
The gap technique
> Objective range C (0,a] U [b, +c0)
> If it is NP-hard to decide if the minimum belongs to (0,a]
> ... then approximation within ¢ = (b —a)/a is NP-hard
A simple application shows that approximation of general
Traveling Salesperson problems is NP-hard for any constant ¢

Many hardness results followed on the PCP Theorem (Arora et
al. 1990)

> Probabilistically Checkable Proofs
A hierarchy of complexity classes emerges: APX D PTAS D FPTAS

\

The classes are not equal unless P = NP
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Approximation
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APX - efficient approximation within constant ¢

Polynomial time approximation algorithms for some constant ¢
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APX - efficient approximation within constant ¢

Polynomial time approximation algorithms for some constant ¢

Metric Traveling Salesperson (symmetric distances, triangle
inequality)
> Christofides’ algorithm, ¢ = %, o(n3)

> Approximation with & < ﬁlg is NP-hard
(Papadimitriou and Vempala 2000)
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APX - efficient approximation within constant ¢

Polynomial time approximation algorithms for some constant ¢
Metric Traveling Salesperson (symmetric distances, triangle
inequality)
> Christofides’ algorithm, ¢ = %, o(n3)
> Approximation with & < ﬁlg is NP-hard
(Papadimitriou and Vempala 2000)

¢ APX: Linear Integer Programming, general TSP, and Quadratic
Assignment have no efficient approximation algorithms for any
constant ¢ (unless P = NP)

g =
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Polynomial Time Approximation Schemes

PTAS: problems with polynomial time approximation algorithms for
any &

Geometric Traveling Salesperson

> Euclidean distances or [p,p > 1 norm
> Dimension d
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Polynomial Time Approximation Schemes

PTAS: problems with polynomial time approximation algorithms for
any &

Geometric Traveling Salesperson

> Euclidean distances or [p,p > 1 norm
> Dimension d

o) (nd+l(log n)(o(‘ﬂ/f))d_1 ) (Arora 1998)

Two dimensions: O (n3(logn)o(1/‘9))
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Approximation 17126

Polynomial Time Approximation Schemes

PTAS: problems with polynomial time approximation algorithms for
any &

Geometric Traveling Salesperson

> Euclidean distances or [p,p > 1 norm
> Dimension d

O(n9+(1ogn)CVH™™) (Arora 1998)
Two dimensions: O(n3(logn)o(1/5))

Grows exponentially with 1/¢
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Fully Polynomial Time Approximation Schemes

FPTAS: problems with approximation schemes that are polynomial in
both n and 1/¢
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Fully Polynomial Time Approximation Schemes

FPTAS: problems with approximation schemes that are polynomial in
both n and 1/¢

Knapsack Problem (see Vazirani 2001)
> O(n3/¢)
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Approximation

18|26
Fully Polynomial Time Approximation Schemes

FPTAS: problems with approximation schemes that are polynomial in
both n and 1/¢

Knapsack Problem (see Vazirani 2001)
> O(n3/¢)
Quadratic Programming

> Compact polytope, t negative eigenvalues

> L = complexity of solving a convex QP of the same size
> (Vavasis 1992)

o([n(n+ 1)/\/E]tL)

> Fully polynomial if t is bounded



Interlude 19126

So which Problems are Hard?

Not always obvious for discrete problems
Plenty of references

> Garey & Johnson: Computers and Intractability (1979)
> Ausiello et al.: Complexity and Approximation (1999)
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Interlude 19126

So which Problems are Hard?

Not always obvious for discrete problems
Plenty of references

> Garey & Johnson: Computers and Intractability (1979)
> Ausiello et al.: Complexity and Approximation (1999)

Continuous problems: “convex easy, nonconvex hard”

> Polynomial-time interior-point methods for convex programming,
Nesterov (1988)
> Self-concordant barrier functions exist for all closed convex solids
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Interlude 19126

So which Problems are Hard?

Not always obvious for discrete problems
Plenty of references
> Garey & Johnson: Computers and Intractability (1979)
> Ausiello et al.: Complexity and Approximation (1999)
Continuous problems: “convex easy, nonconvex hard”

> Polynomial-time interior-point methods for convex programming,
Nesterov (1988)
> Self-concordant barrier functions exist for all closed convex solids
Some exceptions
> Geometric programming: posynomials fol -~-xﬁ”, c>0

> Linear fractional programming: (p x +a)/(q" x + )

> oL
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Randomized Algorithms

20126
Will Randomization Help?

Some tasks seem to benefit from using random numbers

Complexity theory provides frameworks for analysis

SON = §
Anders Skjil: Complexity theory for the global optimizer



Randomized Algorithms

20126
Will Randomization Help?

Some tasks seem to benefit from using random numbers
Complexity theory provides frameworks for analysis

Genuine randomness versus pseudorandomness
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Randomized Algorithms

20126
Will Randomization Help?

Some tasks seem to benefit from using random numbers
Complexity theory provides frameworks for analysis

Genuine randomness versus pseudorandomness
ZPP - zero-error probabilistic polynomial-time

> correct answers in polynomial time, but...
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Randomized Algorithms

20126
Will Randomization Help?

Some tasks seem to benefit from using random numbers
Complexity theory provides frameworks for analysis

Genuine randomness versus pseudorandomness
ZPP - zero-error probabilistic polynomial-time

> correct answers in polynomial time, but...
> returns no answer with probability < 1/2
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Will Randomization Help?

Some tasks seem to benefit from using random numbers
Complexity theory provides frameworks for analysis
Genuine randomness versus pseudorandomness

ZPP - zero-error probabilistic polynomial-time

> correct answers in polynomial time, but...
> returns no answer with probability < 1/2

BPP - bounded-error probabilistic polynomial-time
> wrong answer with probability < 1/3
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Will Randomization Help?

Some tasks seem to benefit from using random numbers
Complexity theory provides frameworks for analysis
Genuine randomness versus pseudorandomness

ZPP - zero-error probabilistic polynomial-time

> correct answers in polynomial time, but...
> returns no answer with probability < 1/2

BPP - bounded-error probabilistic polynomial-time
> wrong answer with probability < 1/3
RP - randomized polynomial-time

> outputs 'no’ if the correct answer is 'no’
> outputs 'no’ if the correct answer is 'yes’ with probability < 1/2
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Randomized Algorithms

Randomized Decision Classes

BPP

ZPP

NP

Anders Skjil: Complexity theory for the global optimizer
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Example: MAX-3-SAT

K
/\ (Xk1 \Y sz \ Xk3)
k=1

A clause (three different literals) is satisfied by a random
assignment with probability

() -4
2) ~8

The expected number of satisfied clauses is %K

Anders Skjal: Complexity theory for the global optimizer \\\ PN T L
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Example: MAX-3-SAT

K
/\ (Xk1 \Y sz \ ng)
k=1

A clause (three different literals) is satisfied by a random
assignment with probability

(3] =
2) 8
The expected number of satisfied clauses is %K

There is always an assignment satisfying > %K clauses
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Example: MAX-3-SAT

K
/\ (Xk1 \Y sz \ ng)
k=1

A clause (three different literals) is satisfied by a random
assignment with probability

-(3) ¢
2) 8
The expected number of satisfied clauses is %K
There is always an assignment satisfying > %K clauses

The fraction of such assignments is 2(1/K)
Approximation within € = 1/7 (r = 8/7 in CS texts) is in ZPP
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Example: MAX-3-SAT

K
/\ (Xk1 \Y sz \ ng)
k=1

A clause (three different literals) is satisfied by a random
assignment with probability

(3] -
2) 8
The expected number of satisfied clauses is %K
There is always an assignment satisfying > %K clauses
The fraction of such assignments is 2(1/K)

Approximation within € = 1/7 (r = 8/7 in CS texts) is in ZPP

Can be derandomized to give deterministic algorithm

=
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Randomized Algorithms
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Example: Primality Testing

Is n a prime number?
Let D = logn, the number of digits in n

Adleman-Pomerance-Rumely (Jacobi sums), O(D¢'°8'°gD)
> Deterministic, not polynomial-time
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Anders Skjil: Complexity theory for the global optimizer



Randomized Algorithms 23|26

Example: Primality Testing

Is n a prime number?
Let D = logn, the number of digits in n
Adleman-Pomerance-Rumely (Jacobi sums), O(D¢'°8'°gD)
> Deterministic, not polynomial-time
Miller-Rabin, O(D?log D loglog D) = O(D?)
> Wrong answer for composite numbers with probability < 1/4
> Primality testing € coRP
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Example: Primality Testing

Is n a prime number?
Let D = logn, the number of digits in n
Adleman-Pomerance-Rumely (Jacobi sums), O(D¢'°8'°gD)
> Deterministic, not polynomial-time
Miller-Rabin, O(D?log D loglog D) = O(D?)
> Wrong answer for composite numbers with probability < 1/4
> Primality testing € coRP

Elliptic Curve Primality Proving

> Expected runtime O(D%)
> Primality testing € ZPP
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Example: Primality Testing

Is n a prime number?
Let D = logn, the number of digits in n
Adleman-Pomerance-Rumely (Jacobi sums), O(D¢'°8'°gD)
> Deterministic, not polynomial-time
Miller-Rabin, O(D?log D loglog D) = O(D?)
> Wrong answer for composite numbers with probability < 1/4
> Primality testing € coRP

Elliptic Curve Primality Proving
> Expected runtime O(D%)
> Primality testing € ZPP
Agrawal-Kayal-Saxena (2002), O(D®)
> Deterministic
> Primality testing € P
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Primality testing was known to be in BPP, and now in P
It has been conjectured that P = BPP
Randomized algorithms might not be fundamentally stronger

But they may have advantages

> Lower degree runtimes
> Sometimes conceptually easier, faster to program

A probability of errors may be tolerable if it can be bounded
> Example: “industrial strength primes”
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Thank you for listening!
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Thank you for listening!

Questions?
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