OSE SEMINAR 2011

A generalization of classical $\alpha \mathrm{BB}$ underestimation to include bilinear terms

Anders Skjäl

CENTER OF EXCELLENCE IN
OPTIMIZATION AND SYSTEMS ENGINEERING ÅBO AKADEMI UNIVERSITY

ÅBO, DECEMBER 82011

The Big Picture

\min	$f_{0}(x)$	
s.t.	$f_{m}(x) \leq 0$,	$m \in\{1,2, \ldots, M\}$
	$x_{i}^{L} \leq x_{i} \leq x_{i}^{U}$,	$i \in\{1,2, \ldots, n\}$

The Big Picture

$$
\begin{array}{llr}
\min & f_{0}(x) & \\
\text { s.t. } & f_{m}(x) \leq 0, & m \in\{1,2, \ldots, M\} \\
& x_{i}^{L} \leq x_{i} \leq x_{i}^{U}, & i \in\{1,2, \ldots, n\}
\end{array}
$$

- The variables can be real and/or discrete
- To get a lower bound we replace the functions f_{i} with convex underestimators and solve the resulting convex problem.
$\Rightarrow \alpha \mathrm{BB}$ is a well-known convexification method and this work generalizes that method

The Big Picture

\min	$f_{0}(x)$	
s.t.	$f_{m}(x) \leq 0$,	$m \in\{1,2, \ldots, M\}$
	$x_{i}^{L} \leq x_{i} \leq x_{i}^{U}$,	$i \in\{1,2, \ldots, n\}$

- The variables can be real and/or discrete
- To get a lower bound we replace the functions f_{i} with convex underestimators and solve the resulting convex problem.
$\Rightarrow \alpha \mathrm{BB}$ is a well-known convexification method and this work generalizes that method
- A joint work with Ruth Misener (PrincetonU), Prof. Christodoulos A. Floudas (PrincetonU), and Prof. Tapio westerlund (ÅAU)

Gerschgorin's Circle Theorem

Theorem

Let $A \in \mathbb{C}^{n \times n}$ with entries $a_{i j}$ and define $R_{i}=\sum_{j \neq i}\left|a_{i j}\right|$. Every eigenvalue of A lies within at least one of the Gerschgorin disks

$$
D\left(a_{i i}, R_{i}\right)=\left\{x:\left|x-a_{i i}\right| \leq R_{i}\right\} .
$$

Gerschgorin's Circle Theorem

Theorem

Let $A \in \mathbb{C}^{n \times n}$ with entries $a_{i j}$ and define $R_{i}=\sum_{j \neq i}\left|a_{i j}\right|$. Every eigenvalue of A lies within at least one of the Gerschgorin disks

$$
D\left(a_{i i}, R_{i}\right)=\left\{x:\left|x-a_{i i}\right| \leq R_{i}\right\} .
$$

Example
$A=\left[\begin{array}{ccc}2+i & 2 & -1 \\ 1 & 5 & i \\ 1 & -1 & -1\end{array}\right]$

Anders Skjäl: A generalization of classical $\alpha \mathrm{BB} \ldots$
Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

Gerschgorin's Circle Theorem

Theorem

Let $A \in \mathbb{C}^{n \times n}$ with entries $a_{i j}$ and define $R_{i}=\sum_{j \neq i}\left|a_{i j}\right|$. Every eigenvalue of A lies within at least one of the Gerschgorin disks

$$
D\left(a_{i i}, R_{i}\right)=\left\{x:\left|x-a_{i i}\right| \leq R_{i}\right\} .
$$

Example
$A=\left[\begin{array}{ccc}2+i & 2 & -1 \\ 1 & 5 & i \\ 1 & -1 & -1\end{array}\right]$

Anders Skjäl: A generalization of classical $\alpha \mathrm{BB} \ldots$
Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

Gerschgorin's Circle Theorem

Theorem

Let $A \in \mathbb{C}^{n \times n}$ with entries $a_{i j}$ and define $R_{i}=\sum_{j \neq i}\left|a_{i j}\right|$. Every eigenvalue of A lies within at least one of the Gerschgorin disks

$$
D\left(a_{i i}, R_{i}\right)=\left\{x:\left|x-a_{i i}\right| \leq R_{i}\right\} .
$$

Example
$A=\left[\begin{array}{ccc}2+i & 2 & -1 \\ 1 & 5 & i \\ 1 & -1 & -1\end{array}\right]$

Anders Skjäl: A generalization of classical $\alpha \mathrm{BB} \ldots$
Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

Gerschgorin's Circle Theorem

- The circle theorem can be extended to interval matrices by considering the worst case
- We want positive-semidefiniteness, therefore "worst case" should be interpreted as lowest eigenvalue
Example

$$
H=\left[\begin{array}{ccc}
{[2,5]} & {[-1,3]} & 0 \\
{[-1,3]} & {[5,6]} & {[-1,0]} \\
0 & {[-1,0]} & {[-2,-1]}
\end{array}\right]
$$

Anders Skjäl: A generalization of classical $\alpha \mathrm{BB} . .$.
Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

Gerschgorin's Circle Theorem

- The circle theorem can be extended to interval matrices by considering the worst case
- We want positive-semidefiniteness, therefore "worst case" should be interpreted as lowest eigenvalue
Example

$$
H=\left[\begin{array}{ccc}
{[2,5]} & {[-1,3]} & 0 \\
{[-1,3]} & {[5,6]} & {[-1,0]} \\
0 & {[-1,0]} & {[-2,-1]}
\end{array}\right]
$$

Original α BB

\Rightarrow The function f is underestimated by adding the perturbation

$$
-\sum_{i} \alpha_{i}\left(x_{i}^{U}-x_{i}\right)\left(x_{i}-x_{i}^{L}\right)
$$

\Rightarrow To guarantee positive-semidefiniteness we set the constraints

$$
\underline{h_{i i}}+2 \alpha_{i}-\sum_{j \neq i} \max \left(\underline{\left|h_{i j}\right|}\left|,\left|\overline{h_{i j}}\right|\right) \geq 0, \quad i=1,2, \ldots, n\right.
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
{[2,5]} & {[-1,3]} & 0 \\
{[-1,3]} & {[5,6]} & {[-1,0]} \\
0 & {[-1,0]} & {[-2,-1]}
\end{array}\right]} \\
& \quad+\left[\begin{array}{ccc}
1 & & \\
& 0 & 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
{[3,6]} & {[-1,3]} & 0 \\
{[-1,3]} & {[5,6]} & {[-1,0]} \\
0 & {[-1,0]} & {[1,4]}
\end{array}\right]
\end{aligned}
$$

Original α BB

\Rightarrow The function f is underestimated by adding the perturbation

$$
-\sum_{i} \alpha_{i}\left(x_{i}^{U}-x_{i}\right)\left(x_{i}-x_{i}^{L}\right)
$$

\Rightarrow To guarantee positive-semidefiniteness we set the constraints

$$
\underline{h_{i i}}+2 \alpha_{i}-\sum_{j \neq i} \max \left(\underline{\left|h_{i j}\right|}\left|,\left|\overline{h_{i j}}\right|\right) \geq 0, \quad i=1,2, \ldots, n\right.
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
{[2,5]} & {[-1,3]} & 0 \\
{[-1,3]} & {[5,6]} & {[-1,0]} \\
0 & {[-1,0]} & {[-2,-1]}
\end{array}\right]} \\
& \quad+\left[\begin{array}{ccc}
1 & & \\
& 0 & 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
{[3,6]} & {[-1,3]} & 0 \\
{[-1,3]} & {[5,6]} & {[-1,0]} \\
0 & {[-1,0]} & {[1,4]}
\end{array}\right]
\end{aligned}
$$

Extended α BB

- From a Hessian perspective the bilinear extension is intuitive
- To guarantee positive-semidefiniteness we set the constraints

$$
\underline{h_{i i}}+2 \alpha_{i}-\sum_{j \neq i} \max \left(\underline{h_{i j}}+\beta_{i j}\left|,\left|\overline{h_{i j}}+\beta_{i j}\right|\right) \geq 0, \quad i=1,2, \ldots, n\right.
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
{[2,5]} & {[-1,3]} & 0 \\
{[-1,3]} & {[5,6]} & {[-1,0]} \\
0 & {[-1,0]} & {[-2,-1]}
\end{array}\right]} \\
& \quad+\left[\begin{array}{ccc}
-1 & -1 & 0.5 \\
& 0.5 & 2.5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
{[2,5]} & {[-2,2]} & 0 \\
{[-2,2]} & {[5,6]} & {[-0.5,0.5]} \\
0 & {[-0.5,0.5]} & {[0.5,1.5]}
\end{array}\right]
\end{aligned}
$$

Extended α BB

- From a Hessian perspective the bilinear extension is intuitive
- To guarantee positive-semidefiniteness we set the constraints

$$
\underline{h_{i i}}+2 \alpha_{i}-\sum_{j \neq i} \max \left(\underline{h_{i j}}+\beta_{i j}\left|,\left|\overline{h_{i j}}+\beta_{i j}\right|\right) \geq 0, \quad i=1,2, \ldots, n\right.
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
{[2,5]} & {[-1,3]} & 0 \\
{[-1,3]} & {[5,6]} & {[-1,0]} \\
0 & {[-1,0]} & {[-2,-1]}
\end{array}\right]} \\
& \quad+\left[\begin{array}{ccc}
& -1 & \\
-1 & & 0.5 \\
& 0.5 & 2.5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
{[2,5]} & {[-2,2]} & 0 \\
{[-2,2]} & {[5,6]} & {[-0.5,0.5]} \\
0 & {[-0.5,0.5]} & {[0.5,1.5]}
\end{array}\right]
\end{aligned}
$$

Extended α BB

- From a Hessian perspective the bilinear extension is intuitive
- To guarantee positive-semidefiniteness we set the constraints

$$
\underline{h_{i i}}+2 \alpha_{i}-\sum_{j \neq i} \max \left(\underline{h_{i j}}+\beta_{i j}\left|,\left|\overline{h_{i j}}+\beta_{i j}\right|\right) \geq 0, \quad i=1,2, \ldots, n\right.
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
{[2,5]} & {[-1,3]} & 0 \\
{[-1,3]} & {[5,6]} & {[-1,0]} \\
0 & {[-1,0]} & {[-2,-1]}
\end{array}\right]} \\
& \quad+\left[\begin{array}{ccc}
-1 & -1 & \\
-1 & 0.5 & 2.5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
{[2,5]} & {[-2,2]} & 0 \\
{[-2,2]} & {[5,6]} & {[-0.5,0.5]} \\
0 & {[-0.5,0.5]} & {[0.5,1.5]}
\end{array}\right]
\end{aligned}
$$

Bilinear Perturbation Terms

$$
\left[\begin{array}{ccc}
{[2,5]} & {[-1,3]} & 0 \\
{[-1,3]} & {[5,6]} & {[-1,0]} \\
0 & {[-1,0]} & {[-2,-1]}
\end{array}\right]+\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0.5 \\
0 & 0.5 & 2.5
\end{array}\right]=\left[\begin{array}{ccc}
{[2,5]} & {[-2,2]} & 0 \\
{[-2,2]} & {[5,6]} & {[-0.5,0.5]} \\
0 & {[-0.5,0.5]} & {[0.5,1.5]}
\end{array}\right]
$$

Two questions must be answered

- How can we interpret the off-diagonal adjustments of the Hessian as perturbation terms?
- Is the new underestimator an improvement?

Realizing the Perturbations

Let the perturbation Hessian be

$$
H_{P}=\left[\begin{array}{cccc}
2 \alpha_{1} & \beta_{1,2} & \cdots & \beta_{1, n} \\
\beta_{2,1} & \ddots & & \vdots \\
\vdots & & \ddots & \beta_{n-1, n} \\
\beta_{n, 1} & \cdots & \beta_{n, n-1} & 2 \alpha_{n}
\end{array}\right]
$$

Realizing the Perturbations

Let the perturbation Hessian be

$$
H_{P}=\left[\begin{array}{cccc}
2 \alpha_{1} & \beta_{1,2} & \cdots & \beta_{1, n} \\
\beta_{2,1} & \ddots & & \vdots \\
\vdots & & \ddots & \beta_{n-1, n} \\
\beta_{n, 1} & \cdots & \beta_{n, n-1} & 2 \alpha_{n}
\end{array}\right]
$$

\Rightarrow The intuitive realization of $\beta_{i j}$ is $\beta_{i j} x_{i} x_{j}$

- By adding linear and constant terms we get a symmetric perturbation, $\beta_{i j}\left(x_{i}-x_{i}^{M}\right)\left(x_{j}-x_{j}^{M}\right)$, where $x_{i}^{M}=\frac{x_{i}^{L}+x_{i}^{U}}{2}$

Perturbations
 Realizing the Perturbations

Anders Skjäl: A generalization of classical $\alpha \mathrm{BB} \ldots$
Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

Realizing the Perturbations

- We can subtract a positive constant to ensure underestimation
- This works but restricts the potential of the new underestimator

Realizing the Perturbations

\Rightarrow How else can we adjust $\beta_{i j} x_{i} x_{j}$ to ensure the underestimation property?

- We can utilize the well-known concave envelope of a bilinear function (McCormick 1976)

Realizing the Perturbations

\Rightarrow How else can we adjust $\beta_{i j} x_{i} x_{j}$ to ensure the underestimation property?

- We can utilize the well-known concave envelope of a bilinear function (McCormick 1976)
\downarrow The suggested perturbation corresponding to $\beta_{i j}$ is

$$
\beta_{i j} x_{i} x_{j}-\widehat{\beta_{i j} x_{i} x_{j}}
$$

where ${ }^{\text {d }}$ denotes the concave envelope

Realizing the Perturbations

\Rightarrow How else can we adjust $\beta_{i j} x_{i} x_{j}$ to ensure the underestimation property?

- We can utilize the well-known concave envelope of a bilinear function (McCormick 1976)
- The suggested perturbation corresponding to $\beta_{i j}$ is

$$
\beta_{i j} x_{i} x_{j}-\widehat{\beta_{i j} x_{i} x_{j}}
$$

where - denotes the concave envelope

Is the New Underestimator Tighter?

- We measure tightness as the largest underestimation error
- The largest error obtained in the hyper-rectangular domain is

$$
\sum_{i} \alpha_{i}\left(\frac{x_{i}^{U}-x_{i}^{L}}{2}\right)^{2}+\sum_{i} \sum_{j>i}\left|\beta_{i j}\right| \frac{\left(x_{i}^{U}-x_{i}^{L}\right)\left(x_{j}^{U}-x_{j}^{L}\right)}{4}
$$

Is the New Underestimator Tighter?

- We measure tightness as the largest underestimation error
- The largest error obtained in the hyper-rectangular domain is

$$
\sum_{i} \alpha_{i}\left(\frac{x_{i}^{U}-x_{i}^{L}}{2}\right)^{2}+\sum_{i} \sum_{j>i}\left|\beta_{i j}\right| \frac{\left(x_{i}^{U}-x_{i}^{L}\right)\left(x_{j}^{U}-x_{j}^{L}\right)}{4}
$$

\Rightarrow We can optimize (α, β), minimizing the maximum error under the convexification constraints \rightarrow a convex NLP

Is the New Underestimator Tighter?

- We measure tightness as the largest underestimation error
- The largest error obtained in the hyper-rectangular domain is

$$
\sum_{i} \alpha_{i}\left(\frac{x_{i}^{U}-x_{i}^{L}}{2}\right)^{2}+\sum_{i} \sum_{j>i}\left|\beta_{i j}\right| \frac{\left(x_{i}^{U}-x_{i}^{L}\right)\left(x_{j}^{U}-x_{j}^{L}\right)}{4}
$$

\Rightarrow We can optimize (α, β), minimizing the maximum error under the convexification constraints \rightarrow a convex NLP

- The minimization can be reformulated as a linear program

Choosing the Parameters

$$
\begin{array}{lll}
& J_{i}^{+}:=\left\{j: j \neq i, \underline{h_{i j}}+\overline{h_{i j}} \geq 0\right\}, \quad J_{i}^{-}:=\left\{j: j \neq i, \underline{h_{i j}}+\overline{h_{i j}}<0\right\} \\
\min _{\alpha, \beta} \sum_{i} \frac{\alpha_{i}}{4}\left(x_{i}^{U}-x_{i}^{L}\right)^{2}-\sum_{i} \sum_{\substack{j>i \\
j \in J_{i}^{+}}} \frac{\beta_{i j}}{4}\left(x_{i}^{U}-x_{i}^{L}\right)\left(x_{j}^{U}-x_{j}^{L}\right) & \\
& +\sum_{i} \sum_{\substack{j>i \\
j \in J_{i}^{-}}} \frac{\beta_{i j}}{4}\left(x_{i}^{U}-x_{i}^{L}\right)\left(x_{j}^{U}-x_{j}^{L}\right) & \\
\text { s.t. } \quad \underline{h_{i i}}+2 \alpha_{i}-\sum_{j \in J_{i}^{+}}\left(\overline{h_{i j}}+\beta_{i j}\right)+\sum_{j \in J_{i}^{-}}\left(\underline{h_{i j}}+\beta_{i j}\right) \geq 0, & \forall i \\
& \begin{array}{l}
\alpha_{i} \geq 0, \\
\\
\\
\beta_{i j}=\beta_{j i}, \\
\min \left(0,-\left(\underline{h_{i j}}+\overline{h_{i j}}\right) / 2\right) \leq \beta_{i j} \leq \max \left(0,-\left(\underline{h_{i j}}+\overline{h_{i j}}\right) / 2\right),
\end{array} \quad \forall i, j: j \neq i
\end{array}
$$

Example

$$
\begin{gathered}
f(x)=\left(1+x_{1}-e^{x_{2}}\right)^{2}, \\
H(x)=\left[\begin{array}{cc}
2 & -2 e^{x_{2}} \\
-2 e^{x_{2}} & -2 e^{x_{2}}\left(1-2 e^{x_{2}}+x_{1}\right)
\end{array}\right] \in\left[\begin{array}{cc}
2 & {[-14.8,-2] \times[0,2]} \\
{[-14.8,-2]} & {[-12.8,203.6]}
\end{array}\right]
\end{gathered}
$$

Example

$$
\left.\begin{array}{c}
f(x)=\left(1+x_{1}-e^{x_{2}}\right)^{2}, \\
H(x)=\left[\begin{array}{cc}
2 & -2 e^{x_{2}} \\
-2 e^{x_{2}} & -2 e^{x_{2}}\left(1-2 e^{x_{2}}+x_{1}\right)
\end{array}\right] \in[0,1] \times[0,2] \\
{[-14.8,-2]}
\end{array}\right][-12.8,203.6]\left[\begin{array}{cc}
2
\end{array}\right]
$$

Original $\alpha \mathrm{BB}$

$\check{f}(x)=f(x)-\frac{12.8}{2}\left(1-x_{1}\right) x_{1}-\frac{27.6}{2}\left(2-x_{2}\right) x_{2}$
maximum error: 15.4

Example

$$
\left.\begin{array}{c}
f(x)=\left(1+x_{1}-e^{x_{2}}\right)^{2}, \\
H(x)=\left[\begin{array}{cc}
2 & -2 e^{x_{2}} \\
-2 e^{x_{2}} & -2 e^{x_{2}}\left(1-2 e^{x_{2}}+x_{1}\right)
\end{array}\right] \in[0,1] \times[0,2] \\
2 \\
{[-14.8,-2]}
\end{array}\right][-12.8,203]\left[\begin{array}{cc}
{[-12.6]}
\end{array}\right] .
$$

Original α BB

$\check{f}(x)=f(x)-\frac{12.8}{2}\left(1-x_{1}\right) x_{1}-\frac{27.6}{2}\left(2-x_{2}\right) x_{2}$
maximum error: 15.4

Extended $\alpha \mathrm{BB}$

$$
\begin{aligned}
\check{f}(x)= & f(x)-\frac{4.4}{2}\left(1-x_{1}\right) x_{1}-\frac{19.2}{2}\left(2-x_{2}\right) x_{2} \\
& +8.4 x_{1} x_{2}-8 . \widehat{4 x_{1}} x_{2}
\end{aligned}
$$

maximum error: 14.35

Example

$$
\begin{gathered}
f(x)=\left(1+x_{1}-e^{x_{2}}\right)^{2}, \quad x \in[0,1] \times[0,2] \\
H(x)=\left[\begin{array}{cc}
2 & -2 e^{x_{2}} \\
-2 e^{x_{2}} & -2 e^{x_{2}}\left(1-2 e^{x_{2}}+x_{1}\right)
\end{array}\right] \in\left[\begin{array}{cc}
2 & {[-14.8,-2]} \\
{[-14.8,-2]} & {[-12.8,203.6]}
\end{array}\right]
\end{gathered}
$$

Original α BB

$\check{f}(x)=f(x)-\frac{12.8}{2}\left(1-x_{1}\right) x_{1}-\frac{27.6}{2}\left(2-x_{2}\right) x_{2}$
maximum error: 15.4

Extended $\alpha \mathrm{BB}$

$$
\begin{aligned}
\check{f}(x)= & f(x)-\frac{4.4}{2}\left(1-x_{1}\right) x_{1}-\frac{19.2}{2}\left(2-x_{2}\right) x_{2} \\
& +8.4 x_{1} x_{2}-8 . \widehat{4 x_{1}} x_{2}
\end{aligned}
$$

maximum error: 14.35

Anders Skjäl: A generalization of classical $\alpha \mathrm{BB} .$.
Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

Tightness

References

C.S. Adjiman, S. Dallwig, C.A. Floudas, and A. Neumaier.

A global optimization method, $\alpha \mathrm{BB}$, for general twice-differentiable constrained NLPs - I. theoretical advances.
Computers \& Chemical Engineering, 22(9):1137 - 1158, 1998.

A. Skjäl, R. Misener, T. Westerlund, and C.A. Floudas.

A generalization of classical $\alpha \mathrm{BB}$ underestimation to include bilinear terms.
In Proceedings of the 22nd European Symposium on Computer Aided Process Engineering, 2012.
submitted for review.
A. Skjäl, T. Westerlund, R. Misener, and C.A. Floudas.

A generalization of the classical $\alpha \mathrm{BB}$ convex underestimation via diagonal and non-diagonal quadratic terms.
2011.
submitted for review.

Thank you for listening!

Thank you for listening!

Questions?

