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The Big Picture

min f0(x)

s.t. fm(x) ≤ 0, m ∈ {1,2, . . . ,M }
xL

i ≤ xi ≤ xU
i , i ∈ {1,2, . . . ,n}

I The variables can be real and/or discrete

I To get a lower bound we replace the functions fi with convex
underestimators and solve the resulting convex problem.

I ÓBB is a well-known convexification method and this work
generalizes that method

I A joint work with Ruth Misener (PrincetonU), Prof. Christodoulos
A. Floudas (PrincetonU), and Prof. Tapio westerlund (ÅAU)
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Gerschgorin’s Circle Theorem

Theorem

Let A ∈�n×n with entries aij and define Ri =
´

j,i |aij |. Every eigenvalue of A
lies within at least one of the Gerschgorin disks

D(aii ,Ri ) = {x : |x −aii | ≤ Ri }.

Example

A =

 2 + i 2 −1
1 5 i
1 −1 −1
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Gerschgorin’s Circle Theorem

I The circle theorem can be extended to interval matrices by
considering the worst case

I We want positive-semidefiniteness, therefore ”worst case“
should be interpreted as lowest eigenvalue

Example

H =

 [2,5] [−1,3] 0
[−1,3] [5,6] [−1,0]

0 [−1,0] [−2,−1]


−2 2 4 6

−4

−2

2

4
Im

Re
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Original ÓBB

I The function f is underestimated by adding the perturbation
−
´

i Ói (x
U
i − xi )(xi − xL

i )
I To guarantee positive-semidefiniteness we set the constraints

hii +2Ói −
¼
j,i

max(|hij |, |hij |) ≥ 0, i = 1,2, . . . ,n

 [2,5] [−1,3] 0
[−1,3] [5,6] [−1,0]

0 [−1,0] [−2,−1]


+

 1
0

3


=

 [3,6] [−1,3] 0
[−1,3] [5,6] [−1,0]

0 [−1,0] [1,4]


−2 2 4 6

−4

−2

2

4
Im

Re
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Extended ÓBB

I From a Hessian perspective the bilinear extension is intuitive
I To guarantee positive-semidefiniteness we set the constraints

hii +2Ói −
¼
j,i

max(|hij + Ôij |, |hij + Ôij |) ≥ 0, i = 1,2, . . . ,n

 [2,5] [−1,3] 0
[−1,3] [5,6] [−1,0]

0 [−1,0] [−2,−1]


+

 −1
−1 0.5

0.5 2.5


=

 [2,5] [−2,2] 0
[−2,2] [5,6] [−0.5,0.5]

0 [−0.5,0.5] [0.5,1.5]


−2 2 4 6

−4

−2

2

4
Im

Re
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Bilinear Perturbation Terms

 [2,5] [−1,3] 0
[−1,3] [5,6] [−1,0]

0 [−1,0] [−2,−1]

+

 0 −1 0
−1 0 0.5
0 0.5 2.5

 =

 [2,5] [−2,2] 0
[−2,2] [5,6] [−0.5,0.5]

0 [−0.5,0.5] [0.5,1.5]


Two questions must be answered

I How can we interpret the off-diagonal adjustments of the
Hessian as perturbation terms?

I Is the new underestimator an improvement?
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Realizing the Perturbations

Let the perturbation Hessian be

HP =


2Ó1 Ô1,2 · · · Ô1,n

Ô2,1
. . .

...
...

. . . Ôn−1,n
Ôn ,1 · · · Ôn ,n−1 2Ón



I The intuitive realization of Ôij is Ôij xi xj

I By adding linear and constant terms we get a symmetric

perturbation, Ôij (xi − xM
i )(xj − xM

j ), where xM
i =

xL
i +xU

i
2
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Realizing the Perturbations

0

Ôij (xi − xM
i )(xj − xM

j )

0

Ôij (xi − xM
i )(xj − xM

j )−
xL
i +xU

i
2 ·

xL
j +xU

j
2

I We can subtract a positive
constant to ensure
underestimation

I This works but restricts the
potential of the new
underestimator
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Realizing the Perturbations

I How else can we adjust Ôij xi xj to ensure the underestimation
property?

I We can utilize the well-known concave envelope of a bilinear
function (McCormick 1976)

I The suggested perturbation corresponding to Ôij is

Ôij xi xj − Ô̂ij xi xj

where ̂ denotes the concave envelope

0
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Is the New Underestimator Tighter?

I We measure tightness as the largest underestimation error

I The largest error obtained in the hyper-rectangular domain is

¼
i

Ói

(
xU

i − xL
i

2

)2

+
¼

i

¼
j>i

|Ôij |
(xU

i − xL
i )(x

U
j − xL

j )

4

I We can optimize (Ó,Ô), minimizing the maximum error under the
convexification constraints→ a convex NLP

I The minimization can be reformulated as a linear program
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Choosing the Parameters

J +
i :=

{
j : j , i , hij +hij ≥ 0

}
, J−i :=

{
j : j , i , hij +hij < 0

}
min
Ó,Ô

¼
i

Ói

4
(xU

i − xL
i )

2 −
¼

i

¼
j>i

j∈J +
i

Ôij

4
(xU

i − xL
i )(x

U
j − xL

j )

+
¼

i

¼
j>i

j∈J−i

Ôij

4
(xU

i − xL
i )(x

U
j − xL

j )

s.t. hii +2Ói −
´

j∈J +
i

(hij + Ôij )+
´

j∈J−i

(hij + Ôij ) ≥ 0, ∀ i

Ói ≥ 0, ∀ i
Ôij = Ôji , ∀ i , j : j > i
min

(
0,−(hij +hij )/2

)
≤ Ôij ≤max

(
0,−(hij +hij )/2

)
, ∀ i , j : j , i
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Example

f(x) = (1 + x1 − ex2 )2, x ∈ [0,1]× [0,2]

H(x) =

[
2 −2ex2

−2ex2 −2ex2 (1−2ex2 + x1)

]
∈

[
2 [−14.8,−2]

[−14.8,−2] [−12.8,203.6]

]

Original ÓBB

f̌(x) = f(x)−12.8
2

(1−x1)x1−
27.6

2
(2−x2)x2

maximum error: 15.4

Extended ÓBB

f̌(x) = f(x)− 4.4
2

(1− x1)x1 −
19.2

2
(2− x2)x2

+ 8.4x1x2 − ̂8.4x1x2

maximum error: 14.35

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0
-4

-3

-2

-1

0

-4

0
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Thank you for listening!

Questions?
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