OSE SEMINAR 2011

On the construction of finite Blaschke products with prescribed critical points

Ray Pörn and Christer Glader

CENTER OF EXCELLENCE IN OPTIMIZATION AND SYSTEMS ENGINEERING ÅBO AKADEMI UNIVERSITY

ÅBO, DECEMBER 8 2011

Talk outline

- Motivation and problem description
- Examples of interpolation and construction of polynomials with prescribed critical points
- Blaschke products
- Formal problem statement
- Solution approach and problem formulation
- Illustrations and experiments
- A global optimization formulation
- Conclusions

- Given n distinct points z₁, z₂,..., z_n in the open complex unit disc
 D. Find a Blaschke product (a special rational complex function)
 B(z) that has zero derivative exactly at those points:
 B'(z_i) = 0, i = 1,...,n.
- Daniella Kraus and Oliver Roth in a survey paper from august 2011 ask: "Is there any computationally efficient method for the construction of finite Blaschke products with prescribed critical points?"

- Given n distinct points z₁, z₂,..., z_n in the open complex unit disc
 D. Find a Blaschke product (a special rational complex function)
 B(z) that has zero derivative exactly at those points:
 B'(z_i) = 0, i = 1,...,n.
- Daniella Kraus and Oliver Roth in a survey paper from august 2011 ask: "Is there any computationally efficient method for the construction of finite Blaschke products with prescribed critical points?" ANSWER: Now there is!

- Given n distinct points z₁, z₂,..., z_n in the open complex unit disc
 D. Find a Blaschke product (a special rational complex function)
 B(z) that has zero derivative exactly at those points:
 B'(z_i) = 0, i = 1,...,n.
- Daniella Kraus and Oliver Roth in a survey paper from august 2011 ask: "Is there any computationally efficient method for the construction of finite Blaschke products with prescribed critical points?" ANSWER: Now there is!
- This problem has close connection to certain problems in differential geometry (Berger-Nirenberg problem) and for describing the zero sets of functions in Bergman spaces [2] [3].
- A method, based on circle packing and discrete analytic functions, exists for the construction of discrete finite Blaschke products [5]. NO method exists in the general case.

Definition

A rational function of the form

$$B(z) = \lambda \prod_{j=1}^{n} \frac{(z - \alpha_j)}{(1 - \bar{\alpha}_j z)}$$
(1)

where $\lambda, \alpha_j \in \mathbb{C}$, $|\lambda| = 1$ and $|\alpha_j| < 1$ for j = 1, ..., n is called a *Blaschke product* of degree *n*.

Definition

The function

$$\tilde{B}(z) = \frac{a_0 + a_1 z + \dots + a_n z^n}{\bar{a}_n + \bar{a}_{n-1} z + \dots + \bar{a}_0 z^n}$$
(2)

where $a_j \in \mathbb{C}$, j = 1, ..., n is a Blaschke product iff all zeros of $\tilde{B}(z)$ are in \mathbb{D} . If $\tilde{B}(z)$ has at least one pole in \mathbb{D} it is called a *Blaschke form*.

Notation:
$$B(z) = \frac{p(z)}{q(z)}$$
.

Example: Rational interpolation.

$$B(z_j) = c_j \quad \Leftrightarrow \quad \frac{a_0 + a_1 z_j + \dots + a_n z_j^n}{\bar{a}_n + \bar{a}_{n-1} z_j + \dots + \bar{a}_0 z_j^n} = c_j \quad j = 1, \dots, n$$

Interpolation leads to a (conjugate) linear system $p(z_j) - c_j q(z_j) = 0$ in coefficients $a_0, ..., a_n$.

The left interpolant has no poles in (-1,1) and the right interpolant has two poles in (-1,1).

Example: Finding rational functions with prescribed critical points

$$B'(z_j) = 0 \quad \Leftrightarrow \quad p'(z_j)q(z_j) - p(z_j)q'(z_j) = 0 \quad j = 1, ..., n$$
(3)

Prescribed critical points leads to a (conjugate) quadratic system in coefficients $a_0, ..., a_n$.

The left function has no poles in (-1,1) and the right has two poles in (-1,1).

Theoretical fact: Given *n* distinct critical points $z_1, ..., z_n$ in \mathbb{D} . There exists a unique (up to postcomposition with a conformal automorphism of \mathbb{D}) Blaschke product of degree n+1 with $B'(z_j) = 0$ for j = 1, ..., n.

Theoretical results in [1] (theorem 29.1) and [7] (with normalization B(0) = 0 and B(1) = 1.)

Theoretical fact: Given *n* distinct critical points $z_1, ..., z_n$ in \mathbb{D} . There exists a unique (up to postcomposition with a conformal automorphism of \mathbb{D}) Blaschke product of degree n+1 with $B'(z_j) = 0$ for j = 1, ..., n.

Theoretical results in [1] (theorem 29.1) and [7] (with normalization B(0) = 0 and B(1) = 1.)

For Blaschke products and forms it holds that $B'(z_j) = 0 \Rightarrow B'(1/\overline{z}_j) = 0$. Vector of 2n critical points: $[z_1,...,z_n, 1/\overline{z}_1,..., 1/\overline{z}_n]^T$. Normalization: B(0) = 0 and $a_{n+1} = 1$.

Theoretical fact: Given *n* distinct critical points $z_1, ..., z_n$ in \mathbb{D} . There exists a unique (up to postcomposition with a conformal automorphism of \mathbb{D}) Blaschke product of degree n+1 with $B'(z_j) = 0$ for j = 1, ..., n.

Theoretical results in [1] (theorem 29.1) and [7] (with normalization B(0) = 0 and B(1) = 1.)

For Blaschke products and forms it holds that $B'(z_j) = 0 \Rightarrow B'(1/\overline{z}_j) = 0$. Vector of 2*n* critical points: $[z_1,...,z_n, 1/\overline{z}_1,..., 1/\overline{z}_n]^T$. Normalization: B(0) = 0 and $a_{n+1} = 1$.

Ansatz:

$$B(z) = \frac{a_1 z + \dots + a_n z^n + z^{n+1}}{1 + \bar{a}_n z + \dots + \bar{a}_1 z^n}$$

Critical points of $B(z) \iff B'(z_k) = p'(z_k)q(z_k) - p(z_k)q'(z_k) = 0 \iff$

$$\sum_{i=1}^{n+1} \sum_{j=1}^{n} (i-j)a_i \bar{a}_{n-j+1} z_k^{i+j-1} + \sum_{i=1}^{n} ia_i z_k^{i-1} + (n+1)z_k^n = 0 \quad \Leftrightarrow \quad Ax = b$$

quadratic in a

linear in *a*

where *A* is a matrix of size $2n \times (n^2 + n)$, $b = -(n + 1)[z_1^n, ..., z_{2n}^n]^T$ and x = x(a) is a vector of variables with **quadratic structure**.

Example

Analytical solution for n = 1.

Critical points: $z = [z_1, \ 1/\bar{z}_1]^T (|z_1| < 1).$

Ansatz:

$$B(z) = \frac{a_1 z + z^2}{1 + \bar{a}_1 z}$$

Example

Analytical solution for n = 1.

Critical points: $z = [z_1, \ 1/\bar{z}_1]^T (|z_1| < 1).$

Ansatz:

$$B(z) = \frac{a_1 z + z^2}{1 + \bar{a}_1 z}$$

$$B'(z_1) = 0 \quad \Leftrightarrow \quad \bar{a}_1 z_1^2 + 2z_1 + a_1 = 0 \quad \Leftrightarrow \quad [1 \ z_1^2] \cdot \begin{bmatrix} a_1 \\ \bar{a}_1 \end{bmatrix} = -2z_1$$

$$\Leftrightarrow \quad a_1 = \frac{-2z_1}{1+|z_1|^2} \quad \Rightarrow \quad B(z) = \frac{\frac{-2z_1}{1+|z_1|^2}z + z^2}{1+\frac{-2\overline{z}_1}{1+|z_1|^2}z}$$

Example

Analytical solution for n = 1.

Critical points: $z = [z_1, 1/\overline{z}_1]^T (|z_1| < 1).$

Ansatz:

$$B(z) = \frac{a_1 z + z^2}{1 + \bar{a}_1 z}$$

$$B'(z_1) = 0 \quad \Leftrightarrow \quad \bar{a}_1 z_1^2 + 2z_1 + a_1 = 0 \quad \Leftrightarrow \quad \begin{bmatrix} 1 & z_1^2 \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ \bar{a}_1 \end{bmatrix} = -2z_1$$

$$\Leftrightarrow \quad a_1 = \frac{-2z_1}{1+|z_1|^2} \quad \Rightarrow \quad B(z) = \frac{\frac{-2z_1}{1+|z_1|^2}z + z^2}{1+\frac{-2\overline{z}_1}{1+|z_1|^2}z}$$

This is a Blaschke product since its zeros are z = 0 and $z = \frac{2z_1}{1+|z_1|^2}$ and both lie in \mathbb{D} .

Example

Problem formulation for n = 3: $B(z) = \frac{a_1z + ... + a_3z^3 + z^4}{1 + \overline{a}_3z + ... + \overline{a}_1z^3}$. System Ax = b looks like:

This system is ill-conditioned. (Critical points: 0.1i, 0.2 - 0.7i, $-0.8 \Rightarrow cond(A) = 10^6$)

Ray Pörn and Christer Glader: On the construction of finite Blaschke products with prescribed critical points Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

9|23

Example

Problem formulation for n = 3: $B(z) = \frac{a_1z + \dots + a_3z^3 + z^4}{1 + \overline{a}_3z + \dots + \overline{a}_1z^3}$. System Ax = b looks like:

This system is ill-conditioned. (Critical points: 0.1i, 0.2 - 0.7i, $-0.8 \Rightarrow \text{cond}(A) = 10^6$)

Crude solution approach:

- 1. Write $x = \alpha + d_1v_1 + ... + d_tv_p$ where α is a particular solution to Ax = b and $v_1, ..., v_p$ is a basis for the null space of A.
- 2. Impose necessary structural constraints on solution vector x(a).

Ray Pörn and Christer Glader: On the construction of finite Blaschke products with prescribed critical points Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University 9|23

Example

	1	0.1130 + 0.0323 <i>i</i>		0	0	0	0	0	0.1130 + 0.0323i
$x = \alpha + Bd$ with	α=	-0.0472 + 0.4804i	B =	0	0	0	0	0	-0.0472 + 0.4804i
		0.5713 + 0.6221 <i>i</i>		1	0	0	0	0	0.4674 + 0.5090i
		0		3	1	0	0	0	-0.1558 - 0.1697 <i>i</i>
		0		0	1	0	0	0	0.1558 + 0.1697i
		0		0	0	1	0	0	-1
		0		0	0	1	0	0	1
		0		0	0	0	1	0	0.1558 – 0.1697i
		0		0	0	0	1	3	-0.1558 + 0.1697i
		0.5713–0.6221 <i>i</i>		0	0	0	0	1	0.4674 – 0.5090 <i>i</i>
		-0.0472 - 0.4804i		0	0	0	0	0	-0.0472-0.4804i
		0.1130 – 0.0323i		0	0	0	0	0	0.1130 - 0.0323i

Ray Pörn and Christer Glader: On the construction of finite Blaschke products with prescribed critical points Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University 10 | 23

Example

This system is now well-conditioned. Symmetry in α and $B \Rightarrow$ only half of $x = \alpha + Bd$ is necessary.

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_1 a_1 \\ a_2 a_3 \\ a_1 a_1 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_1 \\ a_1 a_2 \\ a_1 a_1 \\ a_1 a_1 \\ a_2 a_3 \\ a_1 a_1 a_1 \\ a_1 a_1 \\ a_2 a_3 \\ a_1 a_1 a_1 \\ a_1 a_1 \\ a_2 a_3 \\ a_1 a_1 a_1 \\ a_1 a_1 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_1 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_3 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_2 \\ a_1 a_1 \\ a_1 a_2 \\ a_2 a_2 \\ a_1 a_2 \\ a$$

$$\begin{aligned} & x_4 = x_1 \bar{x}_2 \quad x_5 = x_2 \bar{x}_3 \\ & x_6 = |x_1|^2 \quad x_7 = |x_3|^2 \\ & x_1, ..., x_7, d_1, ..., d_4 \in \mathbb{C} \end{aligned}$$

A quadratic model (QBP) for finding a Blaschke product/form with prescribed critical points.

$$x = \alpha + Bd$$
(QBP)

$$x_{k} = x_{i}\bar{x}_{j} \quad (i, j, k) \in \mathcal{T}$$

$$x_{m} = |x_{l}|^{2} \quad (l, m) \in \mathcal{S}$$

$$x \in \mathbb{C}^{n_{x}}$$

$$d \in \mathbb{C}^{n_{d}}$$

$$n_x = (n^2 + 2n - n \mod 2)/2, \quad n_d = (n^2 - n \mod 2)/2$$

- The number of complex constraints is $n^2 + 2n n \mod 2$.
- The system is square, i.e. the number of variables is equal to the number of constraints.
- Total number of real variables is $2n^2 + 2n$.

Detailed solution approach: Given n critical points in \mathbb{D} .

- 1. Compute a particular solution α to the system Ax = b.
- 2. Generate p 1 data independent (null space) vectors from the structure of A: $(v_1, ..., v_{p-1})$.
- 3. Compute the last nullspace vector v_p .
- 4. Store all vectors in matrix B.
- 5. Construct problem (QBP).
- 6. Solve system (QBP) using $x_0 = \alpha$ as initial point.

Remarks:

Detailed solution approach: Given n critical points in \mathbb{D} .

- 1. Compute a particular solution α to the system Ax = b.
- 2. Generate p 1 data independent (null space) vectors from the structure of A: $(v_1, ..., v_{p-1})$.
- 3. Compute the last nullspace vector v_p .
- 4. Store all vectors in matrix B.
- 5. Construct problem (QBP).
- 6. Solve system (QBP) using $x_0 = \alpha$ as initial point.

Remarks:

1) There is a particular solution of form $\alpha = (a_1, a_2, a_3, 0, 0, a_4, 0, ..., \bar{a}_4, 0, 0, \bar{a}_3, \bar{a}_2, \bar{a}_1)$. This solution can be computed in $\mathcal{O}(n \log n)$ time using the Fast Fourier Transform with proper normalization.

2) $p = n^2 - n$.

3) The last vector v_p is data dependent and can also be computed using FFT with another normalization.

Properties of the linear system:

- The matrix $B = \begin{bmatrix} v_1 & v_2 \dots & v_{p-1} & v_p \end{bmatrix}$ is very sparse.
- The set of linear equations x = α + Bd is sparse, i.e. each x_i depends on only a few d_i:s.

Ray Pörn and Christer Glader: On the construction of finite Blaschke products with prescribed critical points Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

Sparsity pattern of B

Example with 20 critical points in \mathbb{D} . (Matlab code for phase plot from [6])

black circle \circ - prescribed critical point black asterix * - computed critical point white circle - zero of B(z)

Example with 20 critical points in \mathbb{D} . (Matlab code for phase plot from [6])

black circle \circ - prescribed critical point black asterix * - computed critical point white circle - zero of B(z)

14 | 23

All problems are solved using fsolve method (trust-region dogleg) in matlab 2007b on a Dell laptop 2.26 GHz with 3.5 GB RAM running Windows XP SP2.

Many solutions exist. One Blaschke product and many meromorphic Blaschke forms. n = 10: one Blashke product; two Blaschke forms with one zero outside of D; one Blaschke form with two zeros outside of D.

15 | 23

Many solutions exist. One Blaschke product and many meromorphic Blaschke forms. n = 10: one Blashke product; two Blaschke forms with one zero outside of D; one Blaschke form with two zeros outside of D.

15 | 23

Many solutions exist. One Blaschke product and many meromorphic Blaschke forms. n = 10: one Blashke product; two Blaschke forms with one zero outside of D; one Blaschke form with two zeros outside of D.

15 | 23

Many solutions exist. One Blaschke product and many meromorphic Blaschke forms. n = 10: one Blashke product; two Blaschke forms with one zero outside of D; one Blaschke form with two zeros outside of D.

n=50, iters=123, fvals=6820, maxerr= $1.2 \cdot 10^{-4}$

Experiments with 200 instances of size n = 20 (840 real vars).

Starting point is set to $x_0 = \alpha$.

Experiments with 200 instances of size n = 20 (840 real vars).

Starting point is set to $x_0 = \alpha$.

Experiments with 200 instances of size n = 20 (840 real vars).

Starting point is set to $x_0 = \alpha$.

- median of iterations = 46
- median of cpu time = 1.7s
- most instances are solved quickly
- a few instances are hard (slow convergence)
- > all 200 solutions are Blaschke products! (starting point $x_0 = a$)

Fast convergence (20 iters)

Medium convergence (1500 iters)

Slow convergence (>5000 iters)

No obvious geometric reason for different rates of convergence.

× 10⁻¹¹ × 10⁻⁰ Error on 80 Error in critical points 1.4 0.8 0.6 20 0.8 24 0.6 -m-m 0.4 0.4 0.2 0.2 0 8∈ (0,2±) number x 10⁻⁶ Error on 80 Error in critical points 10 20 0.8 24 0.6 3 3 2 0.4 0.2 망 4 θ∈ (0,2±) number

Hypothesis: Among all meromorphic solutions to (QBP) the Blaschke product corresponds to the solution with smallest value of $|a_1|$.

This leads to a global optimization model (*QBP*) for finding **the unique normalized Blaschke product** with prescribed critical points.

minimize
$$|x_1|$$

 $x = \alpha + Bd$
 $x_k = x_i \bar{x}_j \quad (i, j, k) \in T$
 $x_m = |x_l|^2 \quad (l, m) \in S$
 $x \in \mathbb{C}^{n_x}$
 $d \in \mathbb{C}^{n_d}$

Total number of real variables are $2n^2 + 2n$.

r

The first efficient numerical method for the construction of finite Blaschke products was developed.

- The first efficient numerical method for the construction of finite Blaschke products was developed.
- From the Wronskian condition p'(z_i)q(z_i) − p(z_i)q'(z_i) = 0 a well-conditioned square quadratic system (QBP) is derived.

- The first efficient numerical method for the construction of finite Blaschke products was developed.
- From the Wronskian condition p'(z_i)q(z_i) − p(z_i)q'(z_i) = 0 a well-conditioned square quadratic system (QBP) is derived.
- Sparsity is explored and the FFT is used in a crucial way to construct the particular solution *α* and the data dependent null space vector v_p.

- The first efficient numerical method for the construction of finite Blaschke products was developed.
- From the Wronskian condition p'(z_i)q(z_i) − p(z_i)q'(z_i) = 0 a well-conditioned square quadratic system (QBP) is derived.
- Sparsity is explored and the FFT is used in a crucial way to construct the particular solution α and the data dependent null space vector v_p.
- A Blaschke product is (almost) always obtained if the particular solution *α* is used as starting point.

- The first efficient numerical method for the construction of finite Blaschke products was developed.
- From the Wronskian condition p'(z_i)q(z_i) − p(z_i)q'(z_i) = 0 a well-conditioned square quadratic system (QBP) is derived.
- Sparsity is explored and the FFT is used in a crucial way to construct the particular solution α and the data dependent null space vector v_p.
- ► A Blaschke product is (almost) always obtained if the particular solution *a* is used as starting point.
- Reliable solution of small to medium sized instances (about n < 30) (1860 real variables).</p>

- The first efficient numerical method for the construction of finite Blaschke products was developed.
- From the Wronskian condition p'(z_i)q(z_i) − p(z_i)q'(z_i) = 0 a well-conditioned square quadratic system (QBP) is derived.
- Sparsity is explored and the FFT is used in a crucial way to construct the particular solution α and the data dependent null space vector v_p.
- ► A Blaschke product is (almost) always obtained if the particular solution *a* is used as starting point.
- Reliable solution of small to medium sized instances (about n < 30) (1860 real variables).</p>
- ▶ Large basin of attraction for the Blaschke product.

- The first efficient numerical method for the construction of finite Blaschke products was developed.
- From the Wronskian condition p'(z_i)q(z_i) − p(z_i)q'(z_i) = 0 a well-conditioned square quadratic system (QBP) is derived.
- Sparsity is explored and the FFT is used in a crucial way to construct the particular solution α and the data dependent null space vector v_p.
- ► A Blaschke product is (almost) always obtained if the particular solution *a* is used as starting point.
- Reliable solution of small to medium sized instances (about n < 30) (1860 real variables).</p>
- Large basin of attraction for the Blaschke product.
- Very small basin of attraction for some of the Blaschke forms.

Some references

M. Heins

On a class of conformal metrics. *Nagoya Mathematical Journal*, 21:1–60, 1962.

D. Kraus and Roth O.

Critical points of inner functions, nonlinear partial differential equations and an extension of liouville's theorem.

J. London Math. Soc., 77(2):183-202, 2008.

D. Kraus and Roth O.

Critical points, the gauss curvature equation and blaschke products. *submitted*, 2011.

I. Scherbak.

Rational functions with prescribed critical points. *Geometric and Functional Analysis*, 12:1365–1380, 2002.

K. Stephenson.

Introduction to Circle Packing: the Theory of Discrete Analytic Functions. Cambridge University Press, 2005.

E. Wegert and G. Semmler.

Phase plots of complex functions: A journey in illustration. *Notices of the AMS*, 58(6):768–780, 2011.

S. Zakeri.

On critical points of proper holomorhic maps on the unit disk. *Bull. London Math. Soc.*, 30:62–66, 1996.

Thank you for listening!

Questions?

