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I Given n distinct points z1,z2, ...,zn in the open complex unit disc
�. Find a Blaschke product (a special rational complex function)
B(z) that has zero derivative exactly at those points:
B ′(zi ) = 0, i = 1, ...,n .

I Daniella Kraus and Oliver Roth in a survey paper from august
2011 ask: ”Is there any computationally efficient method for the
construction of finite Blaschke products with prescribed critical
points?”

ANSWER: Now there is!

I This problem has close connection to certain problems in
differential geometry (Berger-Nirenberg problem) and for
describing the zero sets of functions in Bergman spaces [2] [3].

I A method, based on circle packing and discrete analytic
functions, exists for the construction of discrete finite Blaschke
products [5]. NO method exists in the general case.
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Definition

A rational function of the form

B(z) = Ý
n½

j=1

(z −Ój )
(1− Ó̄jz)

(1)

where Ý,Ój ∈�, |Ý|= 1 and |Ój | < 1 for j = 1, ...,n is called a Blaschke product
of degree n .

Definition

The function

B̃(z) =
a0 +a1z + ...+anzn

ān + ān−1z + ...+ ā0zn
(2)

where aj ∈�, j = 1, ...,n is a Blaschke product iff all zeros of B̃(z) are in �. If
B̃(z) has at least one pole in � it is called a Blaschke form.

Notation: B(z) =
p(z)
q(z)

.
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Example: Rational interpolation.

B(zj ) = cj ⇔
a0 +a1zj + ...+anz

n
j

ān + ān−1zj + ...+ ā0z
n
j

= cj j = 1, ...,n

Interpolation leads to a (conjugate) linear system p(zj )− cjq(zj ) = 0
in coefficients a0, ...,an .

The left interpolant has no poles in (-1,1) and the right interpolant
has two poles in (-1,1).
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Example: Finding rational functions with prescribed critical points

B ′(zj ) = 0 ⇔ p ′(zj )q(zj )− p(zj )q
′(zj ) = 0 j = 1, ...,n (3)

Prescribed critical points leads to a (conjugate) quadratic system in
coefficients a0, ...,an .

The left function has no poles in (-1,1) and the right has two poles in
(-1,1).
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Theoretical fact: Given n distinct critical points z1, ...,zn in �. There exists a
unique (up to postcomposition with a conformal automorphism of �)
Blaschke product of degree n+1 with B ′(zj ) = 0 for j = 1, ...,n .

Theoretical results in [1] (theorem 29.1) and [7] (with normalization B(0) = 0 and B(1) = 1.)

For Blaschke products and forms it holds that B ′(zj ) = 0 ⇒ B ′(1/ z̄j ) = 0.
Vector of 2n critical points: [z1, ...,zn ,1/ z̄1, ...,1/ z̄n ]T .
Normalization: B(0) = 0 and an+1 = 1.

Ansatz:

B(z) =
a1z + ...+anzn + zn+1

1 + ānz + ...+ ā1zn

Critical points of B(z) ⇔ B ′(zk ) = p ′(zk )q(zk )− p(zk )q ′(zk ) = 0 ⇔
n+1¼
i=1

n¼
j=1

(i − j)ai ān−j+1z
i+j−1
k︸                                  ︷︷                                  ︸

quadratic in a

+
n¼

i=1

iai z
i−1
k︸       ︷︷       ︸

linear in a

+(n + 1)znk︸      ︷︷      ︸
constant

= 0 ⇔ Ax = b

where A is a matrix of size 2n × (n2 +n), b = −(n + 1)[zn1 , ...,zn2n ]T and x = x(a) is a vector of

variables with quadratic structure.
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Example

Analytical solution for n = 1.

Critical points: z = [z1, 1/ z̄1]T (|z1| < 1).

Ansatz:

B(z) =
a1z + z2

1 + ā1z

B ′(z1) = 0 ⇔ ā1z
2
1 + 2z1 +a1 = 0 ⇔ [1 z2

1 ] ·
[
a1
ā1

]
= −2z1

⇔ a1 =
−2z1

1 + |z1|2
⇒ B(z) =

−2z1
1+|z1 |2

z + z2

1 + −2z̄1
1+|z1 |2

z

This is a Blaschke product since its zeros are z = 0 and z = 2z1
1+|z1 |2

and both

lie in �.
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Example

Problem formulation for n = 3: B(z) =
a1z+...+a3z3+z4

1+ā3z+...+ā1z3 .

System Ax = b looks like:


1 2z1 3z2

1 −z2
1 z2

1 −2z3
1 2z3

1 z4
1 −z4

1 3z4
1 2z5

1 z6
1

.

.

.
.
.
.

.

.

.

1 2z6 3z2
6 −z2

6 z2
6 −2z3

6 2z3
6 z4

6 −z4
6 3z4

6 2z5
6 z6

6

·



a1
a2
a3

a1ā2
a2ā3
a1ā1
a3ā3
ā2a3
ā1a2
ā3
ā2
ā1


= −4·



z3
1
z3

2
z3

3
z3

4
z3

5
z3

6



This system is ill-conditioned. (Critical points: 0.1i , 0.2−0.7i , −0.8 ⇒ cond(A) = 106)

Crude solution approach:

1. Write x = Ó+d1v1 + ...+dtvp where Ó is a particular solution to Ax = b
and v1, ...,vp is a basis for the null space of A .

2. Impose necessary structural constraints on solution vector x(a).
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ā2a3
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Example

x = Ó+Bd with Ó=



0.1130 + 0.0323i
−0.0472 + 0.4804i
0.5713 + 0.6221i

0
0
0
0
0
0

0.5713−0.6221i
−0.0472−0.4804i
0.1130−0.0323i


B =



0 0 0 0 0 0.1130 + 0.0323i
0 0 0 0 0 −0.0472 + 0.4804i
1 0 0 0 0 0.4674 + 0.5090i
3 1 0 0 0 −0.1558−0.1697i
0 1 0 0 0 0.1558 + 0.1697i
0 0 1 0 0 −1
0 0 1 0 0 1
0 0 0 1 0 0.1558−0.1697i
0 0 0 1 3 −0.1558 + 0.1697i
0 0 0 0 1 0.4674−0.5090i
0 0 0 0 0 −0.0472−0.4804i
0 0 0 0 0 0.1130−0.0323i



This system is now well-conditioned. Symmetry in Ó and B ⇒ only half of x = Ó+Bd is necessary.



a1
a2
a3

a1ā2
a2ā3
|a1 |2

|a3 |2


=



x1
x2
x3
x4
x5
x6
x7


=



0.1130 + 0.0323i
−0.0472 + 0.4804i
0.5713 + 0.6221i

0
0
0
0


+



0 0 0 0.1130 + 0.0323i
0 0 0 −0.0472 + 0.4804i
1 0 0 0.4674 + 0.5090i
3 1 0 −0.1558−0.1697i
0 1 0 0.1558 + 0.1697i
0 0 1 −1
0 0 1 1


·


d1
d2
d3
d4



x4 = x1 x̄2 x5 = x2 x̄3

x6 = |x1 |
2 x7 = |x3 |

2

x1 , ...,x7 ,d1 , ...,d4 ∈�
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0 1 0 0 0 0.1558 + 0.1697i
0 0 1 0 0 −1
0 0 1 0 0 1
0 0 0 1 0 0.1558−0.1697i
0 0 0 1 3 −0.1558 + 0.1697i
0 0 0 0 1 0.4674−0.5090i
0 0 0 0 0 −0.0472−0.4804i
0 0 0 0 0 0.1130−0.0323i


This system is now well-conditioned. Symmetry in Ó and B ⇒ only half of x = Ó+Bd is necessary.



a1
a2
a3

a1ā2
a2ā3
|a1 |2

|a3 |2


=



x1
x2
x3
x4
x5
x6
x7


=



0.1130 + 0.0323i
−0.0472 + 0.4804i
0.5713 + 0.6221i

0
0
0
0


+



0 0 0 0.1130 + 0.0323i
0 0 0 −0.0472 + 0.4804i
1 0 0 0.4674 + 0.5090i
3 1 0 −0.1558−0.1697i
0 1 0 0.1558 + 0.1697i
0 0 1 −1
0 0 1 1


·


d1
d2
d3
d4



x4 = x1 x̄2 x5 = x2 x̄3

x6 = |x1 |
2 x7 = |x3 |

2

x1 , ...,x7 ,d1 , ...,d4 ∈�
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Problem formulation 11 | 23

A quadratic model (QBP) for finding a Blaschke product/form with
prescribed critical points.

x = Ó+Bd (QBP)

xk = xi x̄j (i , j ,k) ∈ T
xm = |xl |2 (l ,m) ∈ S

x ∈�nx

d ∈�nd

nx = (n2 + 2n −n mod 2)/2, nd = (n2 −n mod 2)/2

I The number of complex constraints is n2 + 2n −n mod 2.

I The system is square, i.e. the number of variables is equal to the
number of constraints.

I Total number of real variables is 2n2 + 2n .
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Problem formulation 12 | 23

Detailed solution approach: Given n critical points in �.

1. Compute a particular solution Ó to the system Ax = b .

2. Generate p −1 data independent (null space) vectors from the
structure of A : (v1, ...,vp−1).

3. Compute the last nullspace vector vp .

4. Store all vectors in matrix B .

5. Construct problem (QBP).

6. Solve system (QBP) using x0 = Ó as initial point.

Remarks:

1) There is a particular solution of form Ó = (a1,a2,a3,0,0,a4,0, ...., ā4,0,0, ā3, ā2, ā1). This solution
can be computed in O(n logn) time using the Fast Fourier Transform with proper normalization.

2) p = n2 −n.

3) The last vector vp is data dependent and can also be computed using FFT with another

normalization.
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Properties of the linear system:

I The matrix B =
[
v1 v2 . . .vp−1 vp

]
is very sparse.

I The set of linear equations x = Ó+Bd is sparse, i.e. each xi
depends on only a few dj :s.
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Problem formulation 14 | 23

Example with 20 critical points in �. (Matlab code for phase plot from [6])

black circle ◦ - prescribed critical point
black asterix ∗ - computed critical point
white circle - zero of B(z)

All problems are solved using fsolve method (trust-region dogleg) in matlab 2007b on a Dell laptop

2.26 GHz with 3.5 GB RAM running Windows XP SP2.
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Problem formulation 15 | 23
Many solutions exist. One Blaschke product and many meromorphic Blaschke forms.
n = 10: one Blashke product; two Blaschke forms with one zero outside of �; one Blaschke form
with two zeros outside of �.
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Problem formulation 16 | 23

n=50, iters=123, fvals=6820, maxerr=1.2 ·10−4
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Problem formulation 17 | 23

Experiments with 200 instances of size n = 20 (840 real vars).

Starting point is set to x0 = Ó.

I median of iterations = 46

I median of cpu time = 1.7s

I most instances are solved quickly

I a few instances are hard (slow convergence)

I all 200 solutions are Blaschke products! (starting point x0 = Ó)
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Problem formulation 18 | 23

Fast convergence (20 iters) Medium convergence (1500 iters) Slow convergence (>5000 iters)

No obvious geometric reason for different rates of convergence.
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A Global Optimization Model 20 | 23

Hypothesis: Among all meromorphic solutions to (QBP) the Blaschke
product corresponds to the solution with smallest value of |a1|.

This leads to a global optimization model (QBP) for finding the

unique normalized Blaschke product with prescribed critical points.

minimize |x1|
x = Ó+Bd

xk = xi x̄j (i , j ,k) ∈ T
xm = |xl |2 (l ,m) ∈ S

x ∈�nx

d ∈�nd

Total number of real variables are 2n2 + 2n .
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Conclusions:

I The first efficient numerical method for the construction of finite
Blaschke products was developed.

I From the Wronskian condition p ′(zi )q(zi )− p(zi )q ′(zi ) = 0 a
well-conditioned square quadratic system (QBP) is derived.

I Sparsity is explored and the FFT is used in a crucial way to
construct the particular solution Ó and the data dependent null
space vector vp .

I A Blaschke product is (almost) always obtained if the particular
solution Ó is used as starting point.

I Reliable solution of small to medium sized instances (about
n < 30) (1860 real variables).

I Large basin of attraction for the Blaschke product.

I Very small basin of attraction for some of the Blaschke forms.
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Thank you for listening!

Questions?
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