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1.   Overview of major relaxations for nonlinear 
      GDP problems (big-M and hull relaxation) 

2. Convex nonlinear GDP: hierarchy of relaxations 
             Concept of basic steps 
             Equivalent NLP formulation 

3. Application to global Optimization of nonconvex GDP 
             Bilinear, concave and linear fractional functions 

Outline 

Basic question:  
How can we obtain strong relaxations for MINLP/GDP problems? 
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- Global optimization techniques find 
the global optimum by sequentially 
approximating the non-convex problem 
with a convex relaxation  

Global  
Optimum 

- Tighter formulations lead to more 
efficient algorithms 

Convex 
Relaxation 

Tighter 
Relaxation Finding strong relaxations  

is a key element in  
1. Global Optimization 
2. Efficient solution 
of convex MINLP problems 

Lower 
Bound 

Global Optimization of MINLP 
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MINLP 

 

 f(x,y) and g(x,y) - assumed to be convex and bounded over X.  
 f(x,y) and g(x,y) commonly linear in y 
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• Mixed-Integer Nonlinear Programming  

Objective Function 

Inequality Constraints 
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Algorithms 

Branch and Bound (BB) Ravindran and Gupta (1985), 

  Stubbs, Mehrotra (1999), Leyffer (2001)  
Generalized Benders Decomposition (GBD) Geoffrion (1972) 

Outer-Approximation (OA) Duran and Grossmann (1986), 

                                                          Fletcher and Leyffer (1994) 

LP/NLP based Branch and Bound Quesada, Grossmann (1994) 

                                                                             Bonami et al. (2008) 

Extended Cutting Plane(ECP) Westerlund and Pettersson (1992) 

  

Codes: 

SBB GAMS simple B&B 

MINLP-BB (AMPL)Fletcher and Leyffer (1999) 
 

Bonmin (COIN-OR) Bonami et al (2006) 

FilMINT Linderoth and Leyffer (2006) 

KNITRO Nocedal (2009) 
 

DICOPT (GAMS) Viswanathan and Grossman (1990) 

AOA (AIMSS) 
 

ECP Westerlund and Peterssson (1996) 

MINOPT Schweiger and Floudas (1998) 

 

BARON Sahinidis et al. (1998) 

Couenne Belotti, Margot (2008) 

Mixed-integer Nonlinear Programming 
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Continuous MINLP Relaxation 
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• Nonlinear Programming Problem 

ZL = Lower bound to optimal MINLP solution   

Can we develop tighter lower bounds? 
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Generalized Disjunctive Programming (GDP) 
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• Raman and Grossmann (1994)   (Extension Balas, 1979) 

• Motivation: Facilitate modeling discrete/continuous problems 

 

 

 

 

 

 

 

 

Objective Function 

Common Constraints 

Continuous Variables 

Boolean Variables 

Logic Propositions 

OR operator 

Disjunction 

Fixed Charges 

Constraints 

Properties: a) Every GDP can be transformed into an MINLP 
                    b) Every bounded MINLP can be transformed into GDP 
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Generalized Disjunctive Programming (GDP) 
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• Raman and Grossmann (1994) 

 

 

 

 

 

 

 

Objective Function 

Common Constraints 

Disjunction 

Fixed Charges 

Continuous Variables 

Boolean Variables 

Logic Propositions 

Constraints 

Relaxation of GDP? 
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Big-M MINLP (BM)  

• MINLP reformulation of GDP 
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Logic constraints 
Williams (1990) 

NLP Relaxation 0 1jk  =>  Lower bound to optimum of GDP 
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Hull Relaxation Formulation 

• Consider Disjunction k  K 
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Hull relaxation: intersection of convex hull of each disjunction 

 Theorem: Convex Hull of Disjunction k  (Lee, Grossmann, 2000) 
 Disaggregated variables  jk 

 
 
 
 
 
 
 
 
 

 j - weights for linear combination 
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)/(),(  vgvh 

Remarks 

 
  If g(x) is a bounded convex function,  

           is a bounded convex function  Hiriart-Urruty and Lemaréchal (1993) ),( vh

  1. Perspective function 

0)0,( h for bounded g(x) 

0, ( )( (0)) (0) 0 0jk jk jkif g g      

1, ((1)( ( / (1)) (0)(0) (1) ( / (1)) 0jk jk jk jk jk jkif g g g       

a. Exact approximation of the original constraints as ε → 0. 

c. The LHS of the new constraint is convex. 

b. The constraints are exact at jk = 0 and at jk = 1 regardless of value of ε. 

2. Replace  by: ( / ) 0jk jk jk jkg    0 jk jkU  where 

((1 ) )( ( / ((1 ) ))) (0)(1 ) 0jk jk jk jk jk jkg g              

Furman, Sawaya & Grossmann (2009) 
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Hull Relaxation Problem (HRP)  

 Property: The NLP (HRP) yields a lower bound to optimum of (GDP). 
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Strength Lower Bounds  
 Theorem: The relaxation of (HRP) yields a lower bound that is greater than or 

equal to the lower bound that is obtained from the relaxation of problem (BM 
 
 
 
 
 
 
 
 
 
 

 
Grossmann, Lee (2003) 

Big-M relaxation Convex hull relaxation 

Convex Hull of a set of disjunctions is smallest convex set that includes set of  disjunctions.  
Projected relaxation of (CH) onto the space of  (BM) is as tight or tighter than that of (BM) 
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Logic based methods 

Branch and bound 
(Lee & Grossmann, 2000) 

Decomposition 
Outer-Approximation 
Generalized Benders 

(Turkay & Grossmann, 1997)  

Methods Generalized Disjunctive Programming 

Hull  
relaxation 

Big-M 
  

Reformulation MINLP 
Branch and Bound 

Outer-Approximation 
Generalized Benders 

Extended Cutting Plane  

GDP 
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GDP Example 

Global Optimum 
(3.293,1.707) 

Z* = 1.172 

Contour of f (x) 

Local solutions 

x1 

x2
  

(0,0) 

S3 

S2 S1 

 Find x  0, (x  S1)(x  S2)(x  S3)  

     to minimize  Z = (x1 - 3)2 + (x2 - 2)2 + c 
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x1 

x2
  

Convex hull = conv(USj) 

Example : convex hull  

S3 

S2 

S1 
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x1 

x2
  

(0,0)                   Convex hull 
optimum, ZL = 1.154 Lower Bound 

xL = (3.159,1.797) 

S3 

S2 

S1 

Convex combination 
of zj 

Convex hull = conv(USj) 

zj = vj/j 

1= 0.016 
2= 0.955 
3= 0.029 

Local solution  
point 

Example: CRP solution 

x* 

Infeasible for GDP 
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Example : branch and bound 
First Node: S2  

Optimal solution: ZU = 1.172 

x1 

x2
  

(0,0) 

S3 

S1 

Optimal Solution 
(3.293,1.707) 
Z* = 1.172 

S2 
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Example : branch and bound 
Second Node: conv(S1 U S3) 
Optimal solution: ZL = 3.327 

x1 

x2
  

(0,0) 

S3 

S2 S1 

Upper Bound 
ZU = 1.172 

Lower Bound 
ZL = 3.327 
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• Branching Rule: j - the “weight” of disjunction  
 Fix Yj as true: fix j as 1. 

 
 
 
 
 
 
 
 

 
 

Y2
  

Root Node 
Convex hull of all Si 

Z = 1.154 
  = [0.016,0.955,0.029] 

First Node 
Fix 2 = 1, Z = 1.172 

 [x1 ,x2] = [3.293,1.707] 
 = [0,1,0] 

Second Node 
Convex hull of S1 and S3  

Z = 3.327 
 = [ 0.337,0,0.623] 

¬ Y2 
  

ZU = 1.172 
Backtrack 

ZL = 1.154 
Branch on Y2 

ZL = 3.327 > ZU 
Stop 

Example: Search Tree 
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Process Network with Fixed Charges 
• Türkay and Grossmann (1997) 
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5 8 

x1 

x4 

x6 

x21 

x19 

x13 

x14 

x11 

x7 

x8 

x12 

x15 

x9 

x16 x17 

x25 

x18 

x10 

x20 

x23 x22 x24 x5 

x3 x2 

A 

B 

: Unit j 

Y1  Y2 

Y6  Y7 

Y4  Y5 

C 

D 

F 

E 

Yi  Yj 

Specifications 

8 Boolean variables,  25  continuous,  31  constraints ( 8 disjunctions,5 nonlinear) 
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 Minimum Cost: $ 68.01M/year 
 

2 

6 

4 

8 

x1 

x4 

x19 

x13 

x14 

x11 

x12 

x18 

x20 

x23 x24 x5 
A 

B 

: Unit j 

D 

F 

E 

Raw 

Material Products Reactor Reactor 

Optimal solution  

x7 

x6 

x10 

x17 

x25 

x8 
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MINLP- Branch and Bound Method 
ZL = 62.48 

 = [0.31,0.69,0.03,1.0,1,0,1] 

ZU = 68.01 = Z* 
 = [0,1,0,0,1.0,1,0,1] 

Optimal Solution 

ZU = 71.79 
 = [0,1,1,1.0,1,0,1] 

Feasible Solution 

ZL = 75.01 > ZU 
 = [1,0,0.022,1.0,1,0,1] 

ZL = 65.92 
 = [0,1,0.022,1.0,1,0,1] 

0 

3 2 

4 1 

Fix 2 = 1 

Fix 3 = 1 Fix 3 = 0 

Fix 2 = 0 

Stop 

 5 nodes vs. 17 nodes of Big-M (lower bound = 15.08) 

Hull-Rel 

0 

ZL = 15.08 Big-M 

1 2 

4 3 

14 13 5 6 

8 12 11 16 15 7 

10* 9 

Y4 = 0 Y4 = 1 

Y6 = 0 Y6 = 1 

Y8 = 0 
Y8 = 1 

Y1 = 0 Y1 = 1 

Y8 = 0 Y8 = 1 

Y2 = 0 Y2 = 1 Y1 = 1 

Y3 = 0 Y3 = 1 
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Can we obtain stronger relaxations than  
with Hull-Relaxation? 

Question 

Extend Disjunctive Programming Theory 
to Nonlinear Convex Sets 

DP: Linear programming with disjunctions 

 Balas (1974, 1979, 1985, 1988) 
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Equivalence between GDP and DP 

GDP    DP 

The integrality of  is guaranteed 

Proposition:  
Discrete/continuous GDP and continuous DP have equivalent solutions. 

Sawaya (2007) 

 0    
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Equivalent Convex Disjunctive Programs 

Regular Form: Form represented by the intersection of the union of 
                           convex sets 

F is in regular form 

Balas (1985) 
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Illustrative Example: Basic Steps 
1 2 3F S S S  

1 11 21( )S P P  2 12 22( )S P P  3 13 23( )S P P 

12 11 12 11 22 21 12 21 22( ) ( ) ( ) ( )S P P P P P P P P       

11 12 13 11 22 13 21 12 13 21 22 13
123

11 12 23 11 22 23 21 12 23 21 22 23

   ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
P P P P P P P P P P P P

S
P P P P P P P P P P P P

           
  

            

Then F can be brought to DNF through 2 basic steps. 

which is its equivalent DNF  

1 2 3F S S S  

We can then rewrite  
12 3as F S S 

1 2 11 21 12 22( ) ( )S S P P P P    

Apply Basic Step to: 

12 3 11 12 11 22 21 12 21 22 13 23(( ) ( ) ( ) ( )) ( )S S P P P P P P P P P P          

Apply Basic Step to: 

12 3F S S  123as F S

We can then rewrite 
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P11 

P12 

P22 

Hierarchy of Relaxations for  
Convex Disjunctive Programs 

)()( 222112110 PPPPF Illustration: 

P21 
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P11 

P12 

P22 

Hierarchy of Relaxations for  
Convex Disjunctive Programs 

)()( 222112110 PPPPF Illustration: 

P21 

)( 2221 PPclconv 

)( 1211 PPclconv 
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Hierarchy of Relaxations for  
Convex Disjunctive Programs 

)()( 222112110 PPPPF Illustration: 

P11 

P12 

P21 

P22 

No Basic Step Applied => HR 

)( 0Frelh 
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Hierarchy of Relaxations for  
Convex Disjunctive Programs 

No Basic Step Applied => HR     Basic Step Applied 

)PP()PP()PP()PP(F 22122112221121111 )()( 222112110 PPPPF Illustration: 

P11 

P12 

P21 

P22 

)( 0Fclconv

P11 

P12 

P21 

P22 
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P11 

P12 

P21 

P22 

Hierarchy of Relaxations for  
Convex Disjunctive Programs 

    Basic Step Applied => CH 

Tighter relaxation! 

)()()()( 22212112221121111 PPPPPPPPF 

No Basic Step Applied => HR 

)()( 222112110 PPPPF Illustration: 

P11 

P12 

P21 

P22 

)( 0Fclconv
)( 1Frelh 
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Convex nonlinear program equivalent to a 
convex disjunctive program 

  The solution of the 
NLP relaxation leads 
 to the solution of 
     the DP!  

NLPDP: 

Objective as 
constraint 

Generalizes convexification results of MILPs 
Lovacz & Schrijver (1989), Sherali & Adams (1990), Balas, Ceria, Cornuejols (1993) 
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Convex nonlinear program equivalent to a 
convex disjunctive program 

Illustrative Example 

Disjunctive Program 
Solution of the  
   relaxation 

Solution of the  
          DP 

Solution of the relaxed program is different from  
solution of the disjunctive program 
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Convex nonlinear program equivalent to a 
convex disjunctive program 

Illustrative Example 
Disjunctive Program 

Solution of the hull relaxation of DNF is the same as the 
      solution of the disjunctive program (Theorem 2.8) 

Solution of the program  
and its relaxation 

Place objective as constraint 
and intersect with disjunction 

Z = 1.172 
(3.293,1.707) 
 

x1 

x2 
DNF! 
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Summary of “practical” rules to apply basic steps  

• Apply basic steps between those disjunctions with at least one 
variable in common.  
 

• The more variables in common two disjunctions have the more the 
tightening expected. 
 

• A basic step between a half space and a disjunctions with two disjuncts 
one of which is a point contained in the facet of the half space will not 
tighten the relaxation. 
 

• A smaller increase in the size of the formulation is expected when 
basic steps are applied between improper disjunctions and proper 
disjunctions.  
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No new binary 
variables are created 

(Balas, 1985) 

MINLP formulation of convex disjunctive 
program after several basic steps 

Set of disjunctions 
 after basic steps 

Set of disjunctions 
 before basic steps 

Constraints 
after basic steps 

No additional 0-1 variables are required! 
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1

2

6

7

4

3

5 8

x1

x4

x6

x21

x19

x13

x14

x11

x7

x8

x12

x15

x9

x16 x17

x25
x18

x10

x20

x23x22 x24x5

x3x2

A

B

: Unitj

Y1  Y2

Y6  Y7

Y4  Y5

C

D

F

E

Yi  Yj

Specifications

1

2

6

7

4

3

5 8

x1

x4

x6

x21

x19

x13

x14

x11

x7

x8

x12

x15

x9

x16 x17

x25
x18

x10

x20

x23x22 x24x5

x3x2

A

B

: Unitj

Y1  Y2

Y6  Y7

Y4  Y5

C

D

F

E

Yi  Yj

Specifications

We can obtain a tighter relaxation by applying basic steps 
between the improper disjunctions and the proper disjunctions  

Optimal Solution Zrel = 68.0097 obtained from Hull Relaxation with basic steps 

Solves as an NLP! 

Process Network Revisited 
                Illustrative Example 
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Sizes of Convex GDP Formulations 
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Numerical Results 

Table: Performance using different reformulation strategies 

Poor lower bounds 

All problems were solved using NLP branch-and-bound SBB/CONOPT 3.14 (GAMS) 
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Numerical Results 

Table: Performance using different reformulation strategies 

Improved lower  
bounds 50%probs 

All problems were solved using NLP branch-and-bound SBB/CONOPT 3.14 (GAMS) 
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Numerical Results 

Table: Performance using different reformulation strategies 

Improved lower  
bounds 100%probs 

All problems were solved using NLP branch-and-bound SBB/CONOPT 3.14 (GAMS) 

Proposed vs BM: faster 10 out of 12 
Proposed vs HR: faster 8 out of 12 
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Nonconvex GDP 

Relaxation 
Under/over estimating functions 

Convex envelopes 

Strengthen relaxation 
Apply basic steps 

Phase 1 Phase 2 

Extension to Nonconvex GDP 

  

Remarks 
1. Since transformation to DNF impractical special 
      rules are applied to identify promising basic steps 
 

2. Stronger relaxation can also be used to infer tighter 
      bounds for variables 
 

 Convex GDP Tight Convex GDP 

Basic idea: strengthen lower bound of global optimum 

Initial lower bound Stronger lower bound 
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Y11, ,Y21   {True, False} 

FX ≤ d 
 

Y11  Y21 = True 
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

s.t. 
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II Conversion 

Feasible  
Region 

F: Flow 
X: Conversion 

Demand 
constraint 

Selection Reactor 

Objective 
Function 
(- Profit) 

Illustrative Example: Optimal reactor selection I 

GDP Formulation 

8 

Optimum Z* = -1.01 

A B 
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P ≤ d 
 

 Max Z =   qP - gF – CP  
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Y11, ,Y21   {True, False} 

FX ≤ d 
 

Y11  Y21 = True 

 R 

s.t. 

P ≤ F.XLO + FUP.X - FUP.XLO  
P ≤ F.XUP + FLO.X – FLO.XUP 

P ≥ F.XLO + FLO.X – FLO.XLO 
P ≥ F.XUP + FUP.X – FUP.XUP 

s.t. 

    Relaxation 
(No Basic Steps) 

I 

II 

Bilinear Terms 

      Convex  
    Envelopes 

        Convex 
    Hull Relaxation 

Illustrative Example: Optimal reactor selection I 
Lee & Grossmann (2003) Relaxation 

Lower bound Z* = -1.28 < -1.01 
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Bilinear Terms 

      Convex  

    Envelopes 
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Illustrative Example: Optimal reactor selection I 
Proposed Relaxation 

Lower bound Z* = -1.1 < -1.01 and tighter than -1.28! 
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F 

X 

8 

0 0 1 

Actual 
Feasible  
Region 

      Relaxation  
(No Basic Steps) 

  Relaxation 
(Basic Steps)  

The application of basic step prior to the discrete relaxation 
leads to a tighter relaxed feasible region = > stronger lower bounds  

Illustrative Example: Optimal reactor selection I 
Comparison of Relaxations 
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Dimensions of Test Problems 
Bilinear/Concave 

  Bilinear Terms Concave Functions Discrete Variables Continuous Variables 

Example 1 1 0 2 3 

Example 2 0 2 2 5 

Example 3 4 9 9 8 

Example 4 36 0 9 114 

Example 5 24 0 9 76 

1- Optimal Reactor selection  I 
2- Optimal Reactor selection II 
3- HEN with investment cost - multiple size Regions (Turkay & Grossmann, 1996) 
4- Water Treatment Network Design problem (Galan & Grossmann, 1998) 
5- Pooling Network Design problem (Lee & Grossmann, 2003) 

Examples 

Strong linear relaxations exist for bilinear and concave functions  
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Dimension of Case Studies 
Linear Fractional, Posynomial, Exponential 

  Cont. Vars. Boolean Vars. Logic Const. Disj. Const. Global Const. 

   PROC1 5 2 1 1 3 

   PROC2 5 2 1 1 3 

   RXN1 4 2 1 1 6 

   RXN2 4 2 1 1 6 

   HEN1 18 2 2 2 21 

PROC1, PROC2 :   Optimal Process Network Problem 
RXN1, RXN2 :   Optimal Reactor Network Problem 
HEN1 :   Optimal Heat Exchanger Network Problem 

Reference 

Strong nonlinear relaxations exist for linear fractional and  
                           posynomial functions  
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Heat Exchanger Network Generalized Disjunctive Program 

Heat Exchanger Network Problem 

Linear Fractional Terms  
in constraints 
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Global 
Optimum 

Lower Bound 
Hull Relaxation 

Lower Bound 
Basic Steps 

DNF 
Lower 
Bound 

React 1 -1.01 -1.28 -1.10 -1.10 

React 2 6.31 5.65 6.08 6.08 

HEN 114384.78 91671.18 94925.77 97858.86 

Water 1214.87 400.66 431.90 431.90 

Pool -4640 -5515 -5468 -5241 

Process 1 18.61 11.85 16.01 16.01 

Process 2 19.48 12.38 17.07 17.07 

RXN 1  42.89 -337.5 -320.0 -320.0 

RXN 2 76.47 22.5 40.0 40.0 

HEN 1 48531 38729.3 48230 48531 

Prediction of Lower Bounds Global Optimum 

Bilinear 
Concave 

Linear  
Fractional, 
Posynomial, 
Exponential 

Lower bounds improved in all cases    Ave. increase  22% 

8 out of 10 achieved theoretically best lower bound (DNF)! 
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Global Optimization Methodology  

GDP reformulation 
Apply basic steps following 

the rules presented 

Bound Contraction 
(Zamora & Grossmann, 1999) 

Spatial Branch and Bound 
(Lee & Grossmann, 2001) 

Yj Yj 

Disjunctive B&B 

  

Spatial B&B 

Feasible discrete 
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Computational Performance- Bilinear/Concave 

Remarks 
-Proposed relaxation led to a significant bound contraction at the root node. 
- 44% reduction number of nodes, 23% reduction CPU time  
   tighter relaxation but increased size of proposed relaxation 

Global Optimization Technique 

using Hull Relaxation 

Global Optimization Technique 

using Proposed Relaxation 

Global 

Optimum Nodes  

Bound 

contract. (% 

Avg) 

CPU Time 

(sec) Nodes  

Bound 

contract. (% 

Avg) 

CPU Time 

(sec) 

Example 1 -1.01 5 35 2.1 1 38 1.4 

Example 2 6.31 1 33 1.0 1 33 1.0 

Example 3 114384.78 13 85 11.0 1 99 6.0 

Example 4 1214.87 450 8 217 227 16 139 

Example 5 -4640 502 1 268 497 1 285 

Size of the LP Relaxation  

(Hull Relaxation) 

Size of the LP Relaxation  

(Proposed) 

Constraints Variables Constraints Variables 

Example 1 23 15 28 15 

Example 2 24 14 31 18 

Example 3 87 52 206 106 

Example 4 544 346 3424 1210 

Example 5 3336 1777 4237 1777 



56 

Remarks 

-Proposed relaxation led to a significant bound contraction at the root node. 

-The reduced number of nodes is a further indication of tighter relaxation 

Global Optimization Technique 

using Lee & Grossmann Relaxation 

Global Optimization Technique 

using Proposed Relaxation 

Global 

Optimum Nodes  

Bound 

contract. (% 

Avg) 

CPU Time 

(sec) Nodes  

Bound 

contract. (% 

Avg) 

CPU Time 

(sec) 

PROCN1 18.61 3 51.3 6 2 67.0 4 

PROCN2 19.48 2 40.5 4 2 47.2 4 

RXN1 42.89 2 51.0 7 2 66.0 7 

RXN2 76.46 2 51.0 6 2 66.0 6 

HEN1 48531 3 13.8 15 1 35.0 14 

Computational Performance- Nonlinear 

- Modest savings compared to bilinear/concve due to small size 



57 

Conclusions 

-Proposed an extension of  disjunctive programming theory to nonlinear 
 convex sets that yields hierarchy of relaxations (concept basic steps) 

-Tightest of these relaxations allows in theory the solution of the DP 
  as an NLP 

- Applied the proposed framework to several instance obtaining  
 significant improvements in the performance (tighter lower bounds) 

- Proposed framework can be applied to nonconvex GDP problems 
  yielding tighter lower bounds on global optimum (bilinear, concave,  
  linear fractional) and can be extended to nonlinear convex envelopes 


