

Relaxations for Convex Nonlinear Generalized Disjunctive Programs and their Application to Nonconvex Problems

Ignacio Grossmann Sangbum Lee, Juan Pablo Ruiz, Nick Sawaya

Center for Advanced Process Decision-making Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA 15213, U.S.A

> OSE, Abo Akademi, Turku December 8, 2011

Basic question: How can we obtain strong relaxations for MINLP/GDP problems?

Outline

- 1. Overview of major relaxations for nonlinear GDP problems (big-M and hull relaxation)
- 2. Convex nonlinear GDP: hierarchy of relaxations Concept of basic steps Equivalent NLP formulation
- **3.** Application to global Optimization of nonconvex GDP *Bilinear, concave and linear fractional functions*

Global Optimization of MINLP

- Global optimization techniques find the global optimum by sequentially approximating the non-convex problem with a convex relaxation

- **Tighter formulations** lead to more efficient algorithms

Finding strong relaxations is a key element in 1. Global Optimization 2. Efficient solution of convex MINLP problems

Mixed-Integer Nonlinear Programming

 $\min Z = f(x, y)$ Objective Function s.t. $g(x, y) \le 0$ Inequality Constraints $x \in X, y \in Y$ $X = \{x \mid x \in \mathbb{R}^n, x^{\perp} \le x \le x^{\vee}, Bx \le b\}$ $Y = \{y \mid y \in \{0,1\}^m, Ay \le a\}$

- f(x,y) and g(x,y) assumed to be convex and bounded over X.
- f(x,y) and g(x,y) commonly linear in y

Mixed-integer Nonlinear Programming

Algorithms Branch and Bound (BB) Ravindran and Gupta (1985), Stubbs, Mehrotra (1999), Leyffer (2001) Generalized Benders Decomposition (GBD) Geoffrion (1972) Outer-Approximation (OA) Duran and Grossmann (1986), Fletcher and Leyffer (1994) LP/NLP based Branch and Bound Quesada, Grossmann (1994) Bonami et al. (2008) Extended Cutting Plane(ECP) Westerlund and Pettersson (1992)

Continuous MINLP Relaxation

• Nonlinear Programming Problem

$$\min Z^{L} = f(x, y)$$
s.t. $g(x, y) \le 0$
 $x \in X, y \in Y$

$$X = \{x \mid x \in \mathbb{R}^{n}, x^{L} \le x \le x^{U}, Bx \le b\}$$
 $Y = \{y \mid 0 \le y \le 1, Ay \le a\}$

 Z^{L} = Lower bound to optimal MINLP solution

Can we develop tighter lower bounds?

Generalized Disjunctive Programming (GDP)

- Raman and Grossmann (1994) (Extension Balas, 1979)
- Motivation: Facilitate modeling discrete/continuous problems

$$\min Z = \sum_{k} c_{k} + f(x) \qquad \text{Objective Function}$$

$$s.t. \quad t(x) \leq 0 \qquad \text{Common Constraints}$$

$$\bigcap_{j \in J_{k}} \begin{bmatrix} Y_{jk} \\ g_{jk}(x) \leq 0 \\ c_{k} = \gamma_{jk} \end{bmatrix} \quad k \in K \qquad \text{Constraints}$$

$$\widehat{\Omega(Y)} = true \qquad \text{Logic Propositions}$$

$$x \in R^{n}, c_{k} \in R^{1} \qquad \text{Continuous Variables}$$

$$Y_{jk} \in \{true, false\} \qquad \text{Boolean Variables}$$

Properties: a) Every GDP can be transformed into an MINLPb) Every bounded MINLP can be transformed into GDP

Process Network with fixed charges

GDP model

 $r \perp r$

 $Min \ Z = c_1 + c_2 + c_3 + d^T x$

$$x_{1} - x_{2} + x_{4}$$

$$x_{6} = x_{3} + x_{5}$$

$$\begin{bmatrix} Y_{11} \\ x_{3} = p_{1}x_{2} \\ c_{1} = \gamma_{1} \end{bmatrix} \lor \begin{bmatrix} Y_{21} \\ x_{3} = x_{2} = 0 \\ c_{1} = 0 \end{bmatrix}$$

$$\begin{bmatrix} Y_{12} \\ x_{5} = p_{2}x_{4} \\ c_{2} = \gamma_{2} \end{bmatrix} \lor \begin{bmatrix} Y_{22} \\ x_{5} = x_{4} = 0 \\ c_{2} = 0 \end{bmatrix}$$

$$\begin{bmatrix} Y_{13} \\ x_{7} = p_{3}x_{6} \\ c_{3} = \gamma_{3} \end{bmatrix} \lor \begin{bmatrix} Y_{23} \\ x_{7} = x_{6} = 0 \\ c_{3} = 0 \end{bmatrix}$$

$$\begin{array}{l} Y_{11} & \searrow & Y_{21} \\ Y_{12} & \searrow & Y_{22} \\ Y_{13} & \searrow & Y_{23} \\ Y_{11} & \lor & Y_{12} \Longrightarrow & Y_{13} \\ Y_{13} & \Rightarrow & Y_{11} \lor & Y_{12} \\ Y_{21} & \searrow & Y_{22} \\ 0 & \leq x & \leq x^{U} \\ Y_{11}, Y_{21}, Y_{12}, Y_{22}, Y_{13}, Y_{23} \in \{True, False\} \\ c_{1}, c_{2}, c_{3} \in \mathbf{R}^{1} \end{array}$$

nical

Generalized Disjunctive Programming (GDP)

• Raman and Grossmann (1994)

 $\min \ Z = \sum_{k} c_k + f(x)$ s.t. $r(x) \leq 0$ $\bigvee_{\substack{j \in J_k \\ c_k = \gamma_{ik}}} \begin{vmatrix} Y_{jk} \\ g_{jk}(x) \le 0 \\ c_k = \gamma_{ik} \end{vmatrix} \quad k \in K$ $\Omega(Y) = true$ $x \in \mathbb{R}^n, c_k \in \mathbb{R}^1$ $Y_{ik} \in \{ true, false \}$

Relaxation of GDP?

Common Constraints Disjunction

Objective Function

Constraints

Fixed Charges

Logic Propositions Continuous Variables

Boolean Variables

Big-M MINLP (BM)

• MINLP reformulation of GDP

$$\min Z = \sum_{k \in K} \sum_{j \in J_k} \gamma_{jk} \lambda_{jk} + f(x)$$

s.t. $r(x) \leq 0$
 $g_{jk}(x) \leq M_{jk}(1 - \lambda_{jk}) \quad j \in J_k, k \in K$
 $\sum_{j \in J_k} \lambda_{jk} = 1, \ k \in K$
 $A\lambda \leq a$
 $x \geq 0, \lambda_{jk} \in \{0, 1\}$
Big-M Parameter
Logic constraints
Williams (1990)

NLP Relaxation $0 \le \lambda_{jk} \le 1 \implies$ Lower bound to optimum of GDP

Hull Relaxation Formulation

• Consider **Disjunction** $k \in K$

$$\bigvee_{j \in J_{k}} \begin{bmatrix} Y_{jk} \\ g_{jk}(x) \leq 0 \\ c = \gamma_{jk} \end{bmatrix}$$

- <u>Theorem</u>: Convex Hull of Disjunction k (Lee, Grossmann, 2000)
 - Disaggregated variables v^{jk}

$$\{(x,c) \mid x = \sum_{j \in J_k} v^{jk}, \quad c = \sum_{j \in J} \lambda_{jk} \gamma_{jk}, \\ 0 \le v^{jk} \le \lambda_{jk} U^k_{jk}, \quad j \in J_k \\ \sum_{j \in J_k} \lambda_{jk} = 1, \quad 0 \le \lambda_{jk} \le 1, \\ \lambda_{jk} g_{jk} (v^{jk} / \lambda_{jk}) \le 0, \quad j \in J_k \}$$

λ_j - weights for linear combination

- Generalization of Balas (1979)
- Stubbs and Mehrotra (1999)

Hull relaxation: intersection of convex hull of each disjunction 11

Remarks

1. Perspective function $h(v, \lambda) = \lambda g(v / \lambda)$ If g(x) is a bounded convex function, $h(v, \lambda)$ is a bounded convex function h(v, 0) = 0 for bounded g(x)

Hiriart-Urruty and Lemaréchal (1993)

2. Replace
$$\lambda_{jk} g_{jk} (v_{jk} / \lambda_{jk}) \le 0$$
 where $0 \le v_{jk} \le U \lambda_{jk}$ by:
 $((1-\varepsilon)\lambda_{jk} + \varepsilon)(g_{jk} (v_{jk} / ((1-\varepsilon)\lambda_{jk} + \varepsilon))) - \varepsilon g_{jk} (0)(1-\lambda_{jk}) \le 0$

Furman, Sawaya & Grossmann (2009)

- a. Exact approximation of the original constraints as $\varepsilon \to 0$.
- b. The <u>constraints are exact at $\lambda_{jk} = 0$ and at $\lambda_{jk} = 1$ regardless of value of ε . if $\lambda_{jk} = 0$, $\Rightarrow (\varepsilon)(g_{jk}(0)) - \varepsilon g_{jk}(0) = 0 \le 0$ if $\lambda_{jk} = 1 \Rightarrow ((1)(\alpha_{jk})/(1)) = \varepsilon \alpha_{jk}(0)(0) = (1) \alpha_{jk}/(1)) \le 0$ </u>
- $if \lambda_{jk} = 1, \implies ((1)(g_{jk}(v_{jk} / (1)) \varepsilon g_{jk}(0)(0) = (1)g_{jk}(v_{jk} / (1)) \le 0$

c. The LHS of the new constraint is **convex**.

Hull Relaxation Problem (HRP)

HRP: $\min Z = \sum_{k \in K} \sum_{i \in I} \gamma_{jk} \lambda_{jk} + f(x)$ s.t. $r(x) \leq 0$ $x = \sum_{i \in L} v^{ik}, k \in K$ $0 \leq v^{jk} \leq \lambda_{jk} U_{jk}, j \in J_k, k \in K$ **Convex Hull** each disjunction $\sum_{i \in I} \lambda_{ik} = 1$, $k \in K$ $\lambda_{ik} g_{ik} (v^{jk} / \lambda_{ik}) \leq 0, \quad j \in J_k, k \in K$ $A\lambda \leq a$ **Logic constraints** $x, v^{jk} \geq 0, \ 0 \leq \lambda_{jk} \leq 1, \ j \in J_k, k \in K$

<u>Property</u>: The NLP (HRP) yields a <u>lower bound</u> to optimum of (GDP).

Strength Lower Bounds

• <u>Theorem</u>: *The relaxation of (HRP) yields a <u>lower bound that is greater than or</u> <u>equal to the lower bound</u> that is obtained from the relaxation of problem (BM Grossmann, Lee (2003)*

Convex Hull of a set of disjunctions is smallest convex set that includes set of disjunctions. Projected relaxation of (CH) onto the space of (BM) is as tight or tighter than that of (BM)

$$\min Z = (x_1 - 3)^2 + (x_2 - 2)^2 + c$$

s.t.

$$\begin{bmatrix} Y_1 \\ (x_1)^2 + (x_2)^2 - 1 \le 0 \\ c = 2 \end{bmatrix} \lor \begin{bmatrix} Y_2 \\ (x_1 - 4)^2 + (x_2 - 1)^2 - 1 \le 0 \\ c = 1 \end{bmatrix} \lor \begin{bmatrix} (x_1 - 2)^2 + (x_2 - 4)^2 - 1 \le 0 \\ c = 3 \end{bmatrix}$$

 $Y_1 \underline{\lor} Y_2 \underline{\lor} Y_3 = True$

 $0 \le x_1, x_2 \le 8, c \ge 0, \quad Y_j \in \{true, false\}, j = 1, 2, 3.$

GDP Example

• Find $x \ge 0$, $(x \in S_1) \lor (x \in S_2) \lor (x \in S_3)$

to minimize $Z = (x_1 - 3)^2 + (x_2 - 2)^2 + c$

Example : convex hull

Example: CRP solution

Example : branch and bound

Example : branch and bound

Example: Search Tree

- **Branching Rule:** λ_i the "weight" of disjunction
 - Fix Y_j as true: fix λ_j as 1.

Process Network with Fixed Charges

- Türkay and Grossmann (1997)
- 8 Boolean variables, 25 continuous, 31 constraints (8 disjunctions, 5 nonlinear)

Optimal solution

Minimum Cost: \$ 68.01M/year

5 nodes vs. 17 nodes of Big-M (lower bound = 15.08)

Carnegie Mellon

CENTER

Can we obtain stronger relaxations than with Hull-Relaxation?

Extend Disjunctive Programming Theory to Nonlinear Convex Sets DP: Linear programming with disjunctions Balas (1974, 1979, 1985, 1988)

Equivalence between GDP and DP

Sawaya (2007)

The integrality of λ is guaranteed

Proposition:

Discrete/continuous GDP and continuous DP have equivalent solutions.

Regular Form: Form represented by the intersection of the union of convex sets

$$F = \bigcap_{k \in K} S_k, k \in K, S_k = \bigcup_{i \in D_k} P_i$$

$$P_i \text{ a convex set for } i \in D_k$$

$$F \text{ is in regular form}$$

Theorem 2.1. Let F be a disjunctive set in regular form. Then F can be brought to DNF by |K| - 1 recursive applications of the following basic step which preserves regularity: For some $r, s \in K$, bring $S_r \cap S_s$ to DNF by replacing it with: $S_{rs} = \bigcup_{i \in D_r, j \in D_s} (P_i \cap P_j)$ Balas (1985)

Illustrative Example: Basic Steps

$$S_1 = (P_{11} \cup P_{21})$$
 $S_2 = (P_{12} \cup P_{22})$ $S_3 = (P_{13} \cup P_{23})$

Then F can be brought to DNF through <u>2 basic steps</u>.

Apply Basic Step to:

 $F = S_1 \cap S_2 \cap S_3$

$$S_{1} \cap S_{2} = (P_{11} \cup P_{21}) \cap (P_{12} \cup P_{22})$$
$$S_{12} = (P_{11} \cap P_{12}) \cup (P_{11} \cap P_{22}) \cup (P_{21} \cap P_{12}) \cup (P_{21} \cap P_{22})$$

We can then rewrite

 $F = S_1 \cap S_2 \cap S_3 \quad \text{as } F = S_{12} \cap S_3$

Apply Basic Step to:

 $S_{12} \cap S_3 = ((P_{11} \cap P_{12}) \cup (P_{11} \cap P_{22}) \cup (P_{21} \cap P_{12}) \cup (P_{21} \cap P_{22})) \cap (P_{13} \cup P_{23})$ $S_{123} = \begin{pmatrix} (P_{11} \cap P_{12} \cap P_{13}) \cup (P_{11} \cap P_{22} \cap P_{13}) \cup (P_{21} \cap P_{12} \cap P_{13}) \cup (P_{21} \cap P_{22} \cap P_{13}) \\ \cup (P_{11} \cap P_{12} \cap P_{23}) \cup (P_{11} \cap P_{22} \cap P_{23}) \cup (P_{21} \cap P_{12} \cap P_{23}) \cup (P_{21} \cap P_{22} \cap P_{23}) \end{pmatrix}$

We can then rewrite

$$F = S_{12} \cap S_3$$
 as $F = S_{123}$ which is its equivalent DNF

Theorem 2.4. For i = 1, 2, ..., k let $F_i = \bigcap_{k \in K} S_k$ be a sequence of regular forms of a disjunctive set such that F_i is obtained from F_{i-1} by the application of a basic step, then:

h-rel $(F_i) \subseteq h$ -rel (F_{i-1})

Theorem 2.4. For i = 1, 2, ..., k let $F_i = \bigcap_{k \in K} S_k$ be a sequence of regular forms of a disjunctive set such that F_i is obtained from F_{i-1} by the application of a basic step, then:

Theorem 2.4. For i = 1, 2, ..., k let $F_i = \bigcap_{k \in K} S_k$ be a sequence of regular forms of a disjunctive set such that F_i is obtained from F_{i-1} by the application of a basic step, then:

Theorem 2.4. For i = 1, 2, ..., k let $F_i = \bigcap_{k \in K} S_k$ be a sequence of regular forms of a disjunctive set such that F_i is obtained from F_{i-1} by the application of a basic step, then:

Theorem 2.4. For i = 1, 2, ..., k let $F_i = \bigcap_{k \in K} S_k$ be a sequence of regular forms of a disjunctive set such that F_i is obtained from F_{i-1} by the application of a basic step, then:

Convex nonlinear program equivalent to a convex disjunctive program

Theorem 2.8. Let $Z = \min\{f(x)|x \in S\}$ be a convex disjunctive program where S is a convex disjunctive set in DNF such that $S = \bigcup_{i \in D} P_i$ and $P_i = \{x \in \mathbb{R}^n, g_i(x) \leq 0\}$ where $P_i \neq \emptyset$ and that x and f(x) are bounded below and above by a large number L. Then, the following <u>nonlinear program</u> has at least one solution that is also solution of the disjunctive program:

The solution of the NLP relaxation leads to the solution of the DP!

Generalizes convexification results of MILPs

Lovacz & Schrijver (1989), Sherali & Adams (1990), Balas, Ceria, Cornuejols (1993)

Convex nonlinear program equivalent to a convex disjunctive program

Illustrative Example

Disjunctive Program

$$\min_{\substack{s.t.\\ s.t.\\ [x_1^2 + x_2^2 \le 1]}} Z = (x_1 - 3)^2 + (x_2 - 2)^2 + 1 \\ [x_1^2 + x_2^2 \le 1] \lor [(x_1 - 4)^2 + (x_2 - 1)^2 \le 1] \\ \lor [(x_1 - 2)^2 + (x_2 - 4)^2 \le 1] \\ |x_i| \le 5 \quad i \in 1, 2$$

Solution of the relaxed program is different from solution of the disjunctive program

Disjunctive Program

Place objective as constraint and intersect with disjunction

Solution of the hull relaxation of DNF is the <u>same</u> as the solution of the disjunctive program (Theorem 2.8)

Summary of "practical" rules to apply basic steps

- Apply basic steps **between** those **disjunctions** with at least one **variable in common**.
- The more variables in common two disjunctions have the more the tightening expected.
- A basic step between a half space and a disjunctions with two disjuncts one of which is a point contained in the facet of the half space will not tighten the relaxation.
- A smaller increase in the size of the formulation is expected when basic steps are applied between improper disjunctions and proper disjunctions.

MINLP formulation of convex disjunctive program after several basic steps

Process Network Revisited

Illustrative Example

We can obtain a tighter relaxation by applying basic steps between the improper disjunctions and the proper disjunctions

Optimal Solution $Z^{rel} = 68.0097$ obtained from Hull Relaxation with basic steps

Solves as an NLP!

Sizes of Convex GDP Formulations

Bin	100		HR Approach				open ut	hhi ouru
	Con	Const	Bin	Con	Const	Bin	Con	Const
3	8	12	3	16	20	3	20	27
36	39	38	36	111	112	36	147	184
36	40	38	36	148	149	36	184	221
8	42	97	8	98	152	8	444	843
10	51	98	10	124	158	10	638	1181
12	57	114	12	137	184	12	805	1462
4	15	12	4	47	52	4	55	80
12	27	25	12	123	145	12	195	334
24	43	43	24	235	283	24	511	865
18	31	55	15	88	130	15	160	316
21	34	67	21	100	424	21	268	571
32	53	91	32	165	235	32	641	1503
	3 36 36 8 10 12 4 12 24 18 21 32	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 8 12 3 16 36 39 38 36 111 36 40 38 36 148 8 42 97 8 98 10 51 98 10 124 12 57 114 12 137 4 15 12 4 47 12 27 25 12 123 24 43 43 24 235 18 31 55 15 88 21 24 67 21 109 32 53 91 32 165	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Numerical Results

All problems were solved using NLP branch-and-bound SBB/CONOPT 3.14 (GAMS)

Table: Performance using different reformulation strategies

	BM Approach			
Example	Opt.	LB	Nds	T(s)
Circles2D3	1.17	0.00	4	1.0
Circles2D36	2.25	0.00	70	7.8
Circles3D36	15.77	0.44	70	7.3
Proc8	68.01	-829.0	34	4.6
Proc10	-73.51	-1,108.88	197	21.7
Proc12	-69.51	-1,108.88	234	27.7
Flay02	37.95	28.28	6	1.0
Flay03	48.99	30.98	104	10.7
Flay04	54.40	30.98	2,415	234.0
Clay0203	41,573.30	0.00	323	32.7
Clay0303	26,670.00	0.00	380	42.0
Clay0204	6,545.00	0.00	2,265	229.0

Poor lower bounds

Numerical Results

All problems were solved using NLP branch-and-bound SBB/CONOPT 3.14 (GAMS)

Table: Performance using different reformulation strategies

		BM Approach			HF	Approa	ch
Example	Opt.	LB	Nds	T(s)	LB	Nds	T(s)
Circles2D3	1.17	0.00	4	1.0	1.15	4	1.04
Circles2D36	2.25	0.00	70	7.8	0.00	70	15.40
Circles3D36	15.77	0.44	70	7.3	12.04	70	18.50
Proc8	68.01	-829.0	34	4.6	67.12	2	1.0
Proc10	-73.51	-1,108.88	197	21.7	-78.81	4	1.0
Proc12	-69.51	-1,108.88	234	27.7	-74.81	8	1.0
Flay02	37.95	28.28	6	1.0	28.28	6	1.7
Flay03	48.99	30.98	104	10.7	30.98	108	12.1
Flay04	54.40	30.98	2,415	234.0	30.98	2,887	288.0
Clay0203	41,573.30	0.00	323	32.7	0.00	216	22.0
Clay0303	26,670.00	0.00	380	42.0	0.00	879	99.0
Clay0204	6,545.00	0.00	2,265	229.0	0.00	2,835	507.0

Improved lower bounds 50%probs

Numerical Results

All problems were solved using NLP branch-and-bound SBB/CONOPT 3.14 (GAMS)

Table: Performance using different reformulation strategies

8		BM Approach		HR Approach			Proposed Approach			
Example	Opt.	LB	Nds	T(s)	LB	Nds	T(s)	LB	Nds	T(s)
Circles2D3	1.17	0.00	4	1.0	1.15	4	1.04	1.17	0	0.7
Circles2D36	2.25	0.00	70	7.8	0.00	70	15.40	2.24	29	4.9
Circles3D36	15.77	0.44	70	7.3	12.04	70	18.50	15.72	34	10.8
Proc8	68.01	-829.0	34	4.6	67.12	2	1.0	68.01	0	1.7
Proc10	-73.51	-1,108.88	197	21.7	-78.81	4	1.0	-73.56	2	1.9
Proc12	-69.51	-1,108.88	234	27.7	-74.81	8	1.0	-69.51	2	2.9
Flay02	37.95	28.28	6	1.0	28.28	6	1.7	37.95	3	1.0
Flay03	48.99	30.98	104	10.7	30.98	108	12.1	41.94	30	9.0
Flay04	54.40	30.98	2,415	234.0	30.98	2,887	288.0	41.69	52	48.0
Clay0203	41,573.30	0.00	323	32.7	0.00	216	22.0	3,010.00	206	28.7
Clay0303	26,670.00	0.00	380	42.0	0.00	879	99.0	3,103.00	331	69.0
Clay0204	6,545.00	0.00	2,265	229.0	0.00	2,835	507.0	4,760.00	546	157.0

Improved lower bounds 100%probs

Proposed vs BM: faster 10 out of 12 Proposed vs HR: faster 8 out of 12

Relaxation Under/over estimating functions

Convex envelopes

Strengthen relaxation Apply basic steps

Remarks

- 1. Since transformation to DNF impractical *special rules* are applied to identify *promising basic steps*
- 2. Stronger relaxation can also be used to infer *tighter bounds for variables*

Illustrative Example: Optimal reactor selection I

Illustrative Example: Optimal reactor selection I Lee & Grossmann (2003) Relaxation

Illustrative Example: Optimal reactor selection I Proposed Relaxation

Illustrative Example: Optimal reactor selection I Comparison of Relaxations

The application of **basic step** prior to the discrete relaxation leads to a <u>tighter</u> relaxed feasible region = > stronger lower bounds

Dimensions of Test Problems Bilinear/Concave

	Bilinear Terms	Concave Functions	Discrete Variables	Continuous Variables
Example 1	1	0	2	3
Example 2	0	2	2	5
Example 3	4	9	9	8
Example 4	36	0	9	114
Example 5	24	0	9	76

Examples

- 1- Optimal Reactor selection I
- 2- Optimal Reactor selection II
- 3- HEN with investment cost multiple size Regions (Turkay & Grossmann, 1996)
- 4- Water Treatment Network Design problem (Galan & Grossmann, 1998)
- 5- Pooling Network Design problem (Lee & Grossmann, 2003)

Strong linear relaxations exist for bilinear and concave functions

Dimension of Case Studies Linear Fractional, Posynomial, Exponential

	Cont. Vars.	Boolean Vars.	Logic Const.	Disj. Const.	Global Const.
PROC1	5	2	1	1	3
PROC2	5	2	1	1	3
RXN1	4	2	1	1	6
RXN2	4	2	1	1	6
HEN1	18	2	2	2	21

Reference

PROC1, PROC2 :	Optimal Process Network Problem
RXN1, RXN2 :	Optimal Reactor Network Problem
<i>HEN1</i> :	Optimal Heat Exchanger Network Problem

Strong nonlinear relaxations exist for linear fractional and posynomial functions

Heat Exchanger Network Problem

Heat Exchanger Network

Linear Fractional Terms in constraints

Generalized Disjunctive Program

min
$$Z = c_1 A_1 + c_1 A_1 + c_1 A_1 + c_1 A_1 + C_3 + C_4$$

$$\begin{split} &Q_1 = FCP_{H1}(T_1 - T_{H1,out}), Q_2 = FCP_{H2}(T_2 - T_{H2,out}) \\ &Q_3 = FCP_{C2}(T_3 - T_{C2,in}), Q_3 = FCP_{H1}(T_{H1,in} - T_1) \\ &Q_4 = FCP_{C3}(T_4 - T_{C3,in}), Q_4 = FCP_{H2}(T_{H2,in} - T_2) \end{split}$$

$$\begin{split} T_1 &\geq T_{C1,in} + EMAT, \ T_2 &\geq T_{C1,in} + EMAT \\ Q_1 + Q_2 &= Q_{total} \end{split}$$

$$\Delta T_{1} = \frac{(T_{1} - T_{C1,out}) + (T_{H1,out} - T_{C1,in})}{2}, \Delta T_{2} = \frac{(T_{2} - T_{C1,out}) + (T_{H2,out} - T_{C1,in})}{2}$$
$$\Delta T_{3} = \frac{(T_{1} - T_{C2,in}) + (T_{H1,in} - T_{3})}{2}, \Delta T_{4} = \frac{(T_{2} - T_{C3,in}) + (T_{H2,in} - T_{4})}{2}$$

$$\begin{split} T_{H1,out} &\leq T_1 \leq T_{H1,in}, T_{H2,out} \leq T_4 \leq T_{H2,in} \\ T_{C2,in} &\leq T_3 \ , \ T_{C3,in} \leq T_4 \end{split}$$

 $Q_i \ge 0, \Delta T_i \ge EMAT I = 1,...,4$

Prediction of Lower Bounds Global Optimum

		Global Optimum	Lower Bound Hull Relaxation	
	React 1	-1.01	-1.28	
Bilinear	React 2	6.31	5.65	
Concave	HEN	114384.78	91671.18	
	Water	1214.87	400.66	
	Pool	-4640	-5515	
	Process 1	18.61	11.85	
Linear Fractional	Process 2	19.48	12.38	
Fractional, Posynomial, Exponential	RXN 1	42.89	-337.5	
	RXN 2	76.47	22.5	
	HEN 1	48531	38729.3	

Lower bounds improved in all cases Ave. increase 22%

8 out of 10 achieved theoretically best lower bound (DNF)! Carnegie Mellon

Global Optimization Methodology

Computational Performance- *Bilinear/Concave*

		Global Optimization Technique using Hull Relaxation			
	Global Optimum	Nodes	Bound contract. (% Avg)	CPU Time (sec)	
Example 1	-1.01	5	35	2.1	
Example 2	6.31	1	33	1.0	
Example 3	114384.78	13	85	11.0	
Example 4	1214.87	450	8	217	
Example 5	-4640	502	1	268	

Remarks

-Proposed relaxation led to a significant bound contraction at the root node.

- 44% reduction number of nodes, 23% reduction CPU time tighter relaxation but increased size of proposed relaxation

	Size of the L (Hull Re	P Relaxation	Size of the LP Relaxation (Proposed)		
	Constraints	Variables	Constraints	Variables	
Example 1	23	15	28	15	
Example 2	24	14	31	18	
Example 3	87	52	206	106	
Example 4	544	346	3424	1210	
Example 5	3336	1777	4237	1777	

Computational Performance- Nonlinear

		Global Optimization Technique using Lee & Grossmann Relaxation			
	Global Optimum	Nodes	Bound contract. (% Avg)	CPU Time (sec)	
PROCN1	18.61	3	51.3	6	
PROCN2	19.48	2	40.5	4	
RXN1	42.89	2	51.0	7	
RXN2	76.46	2	51.0	6	
HEN1	48531	3	13.8	15	

Remarks

- -Proposed relaxation led to a significant bound contraction at the root node.
- -The reduced number of nodes is a further indication of tighter relaxation
- Modest savings compared to bilinear/concve due to small size

-Proposed an extension of disjunctive programming theory to nonlinear convex sets that yields hierarchy of relaxations (concept basic steps)

- -Tightest of these relaxations allows in theory the solution of the DP as an NLP
- Applied the proposed framework to several instance obtaining significant improvements in the performance (tighter lower bounds)
- Proposed framework can be applied to nonconvex GDP problems yielding tighter lower bounds on global optimum (bilinear, concave, linear fractional) and can be extended to nonlinear convex envelopes