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Convex functions

Problem (P1)

minimize  f(x)

subjectto g(x) <0,

where f and g are convex
functions.

2189
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Convex functions

Problem (P1) Problem (P2)
minimize  f(x) minimize  f(x)
subjectto g(x) <0, subjectto x€C,

where f and g are convex where f is a convex function,
functions. C ={x|g(x) <0}, and g are

convex/quasiconvex functions.

§
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Smooth or nonsmooth functions
Does the convergence properties of a considered

“convex MINLP” solver still hold true if the functions
are not differentiable but convex/quasiconvex?

convex quasiconvex

smooth twice differentiable (C?) ? ?
smooth once differentiable (C1) ? ?
nonsmooth continuous ? ?

? ?

locally Lipschitz continuous
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Nonsmooth functions in MINLP

Is it possible to only replace gradients with
subgradients in order to handle nonsmooth functions

rigourously in algorithms for differentiable convex problems?
Not for all convex MINLP algorithms!
Yes, e.g., for ECP

No, for certain versions of OA, e.g., the linear OAl:

Algorithm 1 (Linear Outer Approximation).
Initialization: y° is given; seti=0,T ~'=@,S~' =@ and UBD = e,
REPEAT

(1) Solve the subproblem NLP(y'), or the feasibility problem F(y') if NLP(y’) is
infeasible, and let the solution be x'.

(2) Linearize the objective and (active) constraint functions about (x', y). Set
Ti=T'""U{i} or '=5"""U (i} as appropriate.
(3) IF (NLP(y') is feasible and f | < UBD) THEN
update current best point by setting x* =x', y*=y/, UBD=f .
(4) Solve the current relaxation M’ of the master program M, giving a new integer

assignment y'* ! to be tested in the algorithm. Seti=i+1.
UNTIL(M' is infeasible).

S\
N\
B
1 Fletcher, R. and Leyffer, S., Solving mixed integer nonlinear programs by outer approximation, Mathematigal
Programming 66, pp. 327-349, 1994.

& @‘ﬁ
G A/A
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A convex nonsmooth example where the gradient is

replaced by a subgradient2

minimize 2x-y
subjectto g(x,y)<0 ()
y—-4x-1<0
0<x<2 yeY={01,2345}

where

3 7
g(xy)= max{—z—x+y, -3 +y+x}.

‘

c:

2Eronen V.-P.,, Mékeld, M. M. and Westerlund, T., On the generalization of ECP and OA methods to nons S
W, @

convex MINLP problems, Optimization, pp. 1-17, iFirst, available online, 2012.
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Solving with the linear outer approximation

Solve the subproblem NLP(y?) or the feasibility
problem F(y?) if NLP(y?) is infeasible, and let the solution be

0 N
xV.
%

g
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There are no feasible points in the problem NLP(yO), thus
the feasibility problem Fo will be solved:

minimize u

3 1
subject to max{— - X, —— —|—x} <y

2 2 (@@
2-4x<0
0<x<2

The solution of Fyo is x% = 1 with u=1/2.
Linearize g at the point (x%,y°) = (1, 3) for the next
relaxed MILP master problem MO.
Both the functions —-3/2 - x+y and —=7/2 + y + x have the

same value 1/2 at the point (x°,y?) and thus the
subdifferential is

9g(1,3) ={(a,1) e e [-1,1]}.
L EY,, o8|\ o
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5

47 |

3 - ° .
y

2 — T

17 |

Since we may select an abitrary subgradient we may
choose, e.g., £(x°,y%) = (1,1)". Thus the new linear
constraint is

1 7
§+(1,1)(X—1,y—3)7—§0 = X+y—§S0. %

J
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5

47 |

3 - ° .
y

2 — T

17 |

Update the current best point if NLP(y?) is feasible, but
since NLP(y®) was not feasible go to Step 4.

Create and solve the current relaxation M© of the
master program giving a new integer assignment yl. %

J
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minimize 2x-y

subjectto x+y-7/2<0
y—4x-1<0
0<x<2, yeY.

The solution point of (M©) is (1/2,3). Set i =
Until M’ is infeasible.

30|89

i+1,y! —3

(@/A
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5 [ T T

3 - ] .
y
2 — T

le -

0 0.5 1 1.5 2

Hence y! :yo and f,1 = Fjo. Thus LOA may generate an
infinite loop between points (1,3) and (1/2, 3).

Both of them are infeasible but the problem (E) has a
feasible point (0, 1) for example, where the objective
function 2x — y has the value —1.

|
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A new interior point based algorithm for solving convex
MINLP problems to global optimality is introduced.

Roots:

> Kelley’s cutting plane algorithm 19603
> The extended cutting plane (ECP) algorithm 19954

Cutting planes are replaced with supporting hyperplanes
using a line search procedure.

Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.

An interior point is required for the line search.

3Kelley Jr., J., The cutting-plane method for solving convex programs, Journal of the SIAM, vol. 8(4
703-712,1960.

4Westerlund T. and Pettersson, F., An extended cutting plane method for solving convex MINLP problem
Computers & Chemical Engineering 19, pp. 131-136, 1995.

f
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The MINLP problem

The algorithm finds the optimal solution x* to the following
convex MINLP problem:

x* = argmin c'x (P)
xeCNLNY

where x = [xl,xz,...,xN]T belongs to the compact set
X :{x |x; <x <%, i= 1,...,N}c R",

the feasible region is definedby CNLNY,

C = {x|lgm(x)<0, m=1,....M, xe X},
L = {x|Ax<a, Bx=b, xe X},
Y = [x|x€Z i€lz xeX}, &
Bp %
and C is a convex set. %é& N B
G A/A@ P
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Steps in the interior point

supporting hyperplane algorithm
If an interior point is not given, obtain a feasible, relaxed

interior point (satisfying C) by solving a NLP problem.

Solve simple LP problems (initially in X) and conduct a
line search procedure to obtain supporting hyperplanes
giving a first linear relaxation of the convex set C. Optional.

Continue with a corresponding procedure as in LP1 but
now also including the linear constraints in L. Optional.

Finally include the integer requirements and solve MILP
problems using a corresponding procedure to find the

optimal solution to (P). ™ %
&
G A/A%ﬁ’
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NLP-step

A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

Xnep = argmin F(x), (P-NLP)
xeX
where F(x):= max {gm(x)}.
m=l1,...,

F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

(P-NLP) may be nonsmooth (if M > 1) even if g, is smooth.

The point Xy p need not be optimal but then fulfill F(Xy.p) <O.

Can be solved, e.g., with the accelerated gradient method i in> :%

5Nestorov Y., Introductory lectures on convex optimization: A basic course, Kluwer Academic Publl@%&ﬂ@
7).
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LP1-step

Starting from k = 1, g = X, the problem

)"((_‘P — argmin ¢’ x (P-LP1)
Qk*l

is repeatedly solved, and supporting hyperplanes (SHs)
L= F(xX*) + Er(x*) T (x=x¥) <0

are generated and added to €2,. The point x¥ is obtained
by a line search for F(xK) = 0 between the internal point
XnLp and the solution point to (P-LP1) X XLP

= A;(NLP+(1 —/\);(LP, Ae [0, 1]

é Tis a gradient or subgradient of F at x*
FX g g
If not F(XLP) < € p1 or a maximum number of SHs have

been generated, then k is increased and (P-LP1) reso S
/ﬁ
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LP2-step

This step is otherwise identical to LP1, with the exception
that the linear constraints in L are now also included, i.e.,

)"q'_(P =argmin ¢’ x (P-LP2)
Qk_lﬂL

(P-LP2) is repeatedly solved until F(%) < e.py or a
maximum number of SHs have additionally been
generated.

| R
|\ \\@%A @ o
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MILP-step

Finally, in order to also fulfill the integer requirements of
problem (P), a MILP step is performed.

This step is otherwise identical to LP2, with the exception
that the integer requirements in Y are now additionally
considered, i.e.,

’N(ISIILP = argmin c’x. (P-MILP)

Q1nLnY

(P-MILP) is repeatedly solved until F(%%,p) < €miLp-

Intermediate (P-MILP) problems do not need to be solved to
optimality, but in order to guarantee an optimal solution of

(P), the final MILP solution must be optimal.
oYW, @& %



3. A new algorithm for solving convex MINLP problems

An example

4089

minimize ch:—xl—xz
subjectto  1/x7 +1/x2— x?'sxg'5 +4<0
0.15(x1 —8)° +0.1(x2 - 6)? + 0.025¢*1 5> -5 <0
2x1—3x2-2<0
1<x1 <20, 1<x2<20, x1€R, xxeZ
20 20
15 |- - 15 - —
2 10 |- e 2 10 |- e
5 | 5 - e
L y \ \ \
10 15 20 5 10 15

)
20 “&
. S
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An example

minimize ch:—xl—xz

subjectto  1/x7 +1/x2— x?sxg's +4<0

20

15

X2 10

0.15(x1 —8)° +0.1(x2 - 6)? + 0.025¢*1 5> -5 <0
2x1—3x2-2<0
1§X1§20, 1§X2§20, xleFR, X2€Z.

20

5 10 15 20 5 10 15 20
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An example

4089

minimize ch:—xl - X2

subjectto  1/x7 +1/x2 —x?'sxg'5 +4<0
0.15(x1 —8)° +0.1(x2 - 6)? + 0.025¢*1 5> -5 <0
2x1—3x2-2<0

1<x1<20, 1<x2<20, x1€R,

x2 €Z.

X1

x2

20

15

10

10

X1

15

20

&°
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An example

4089

minimize ch:—xl - X2

2x1—-3x2-2<0

subjectto  1/x7 +1/x2 —x?'sxg'5 +4<0
0.15(x1 —8)° +0.1(x2 - 6)? + 0.025¢*1 5> -5 <0

1<x1 <20, 1<x2<20, x1€R, xxeZ

20 | 20

15 15 |- §

X2 10 *2 10 |- —

5 5 - B

~\\
L&"A\-_ ! ! !
5 10 15 20 5 10 15

X1

X1
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NLP step - find an interior point

%NLp = argmin F(x1,x2),
(x1,x2)eX

where F(x1,x2) := max{g1 (x1,x2), g2(x1,x2)}.

20

» The problem can be found using a \
suitable NLP solver. 15

» Not required to be the optimal point 10

» The optimal point here is 5
(7.45,8.54) o

5 10 1‘51 ?0 @ §
\ \\@%Ef; @
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LP1 - lteration 1

» Assume initially that Q29 = X.

42|89

10 —

%
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LP1 - lteration 1

20
Assume initially that Qg = X. \
15 |
k=1,solve LPin (,
10 S
>"<|'_(P = argmin c'x.

Q1

%
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LP1 - lteration 1

» Assume initially that Q29 = X.
» k=1,solve LPin €,

>"<|'_<P = argmin c'x.

Q1

» Do line search
XK = Asep + (1= V)55,
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LP1 - lteration 1

Assume initially that Qg = X.
k=1,solve LPin (,

>"<|'_(P = argmin c'x.

Q1

Do line search
XK = Asep + (1= V)55,

Generate supporting hyperplane in x and add to Q.
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LP1 - lteration 2

» Q1 =1{x|l1(x) <0, xe X].

l1(x) = 3.26x7 + 0.313x, - 33.9

15 20

RO
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3. A new algorithm for solving convex MINLP problems

LP1 - lteration 2

» Q1 =1{x|l1(x) <0, xe X].

l1(x) = 3.26x7 + 0.313x, - 33.9

» k=2,solve LPin 2,

ok . T
X p=argming, , ¢ Xx.

43|89

15 20



3. A new algorithm for solving convex MINLP problems ———

LP1 - lteration 2

» Q1 =1{x|l1(x) <0, xe X].

l1(x) = 3.26x7 + 0.313x, - 33.9

» k=2,solve LPin 2,

ok . T
X p=argming, , ¢ Xx.

» Do line search xK = A%y p + (1 — A)%[5.

43|89

15 20
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LP1 - lteration 2

Q1 ={x|l1(x) <0, xe X}.

l1(x) = 3.26x7 + 0.313x, - 33.9

k =2, solve LPin 2,

~k . T 15 20
Xp= argmank_l C X.

Do line search x* = Axyp + (1 - A)%5.

Generate supporting hyperplane in x¥ and add to Q.

)

B %
\\\@%&%R
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LP1 - lteration 3

20

> QZ = {Xllj(X) < O; J S {112}; X € X}

l1(x) = 3.26x; +0.313x, — 33.9
I>(x) = 0.332x; + 1.30x, — 19.2

4489
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3. A new algorithm for solving convex MINLP problems

LP1 - lteration 3

> QZ = {Xllj(X) < O; J S {112}; X € X}

l1(x) = 3.26x; +0.313x, — 33.9
I>(x) = 0.332x; + 1.30x, — 19.2

» k =3,solve LPin (2,

ok . T
X p=argming, , ¢ Xx.

20

4489

15 20
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LP1 - lteration 3

20

Q, ={x|lj(x) <0, je{1,2}, xe X}

l1(x) = 3.26x; +0.313x, — 33.9
I>(x) = 0.332x; + 1.30x, — 19.2

15 20
k = 3, solve LPin Q2,

~k . T

Xp=argming, , ¢ x

Do line search, generate supporting hyperplane and add to 2.

)

¥
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LP1 - lteration 3

20

Q, ={x|lj(x) <0, je{1,2}, xe X}

l1(x) = 3.26x; +0.313x, — 33.9
I>(x) = 0.332x; + 1.30x, — 19.2

15 20
k = 3, solve LPin Q2,

~k . T

Xp=argming, , ¢ x

Do line search, generate supporting hyperplane and add to 2.

)

e
< -" ]!
\\\Kﬂ%g?’;§

Terminate LP1-step since F(X[) < € p1.
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LP2 — Iteration 4

20
Q3 ={x|l;(x) <0, je(1,2,3}, xe X}

15
l1(x) = 3.26x; +0.313x, — 33.9
I(x) = 0.332x; 4 1.30x, — 19.2
l3(x) = 1.66x; +0.951x, — 26.2

45|89
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3. A new algorithm for solving convex MINLP problems

LP2 — Iteration 4

20
Q3 ={x|l;(x) <0, je(1,2,3}, xe X}

15
l1(x) = 3.26x; +0.313x, — 33.9
I(x) = 0.332x; 4 1.30x, — 19.2
l3(x) = 1.66x; +0.951x, — 26.2

k =4,solve LPnowinQNL,

ok : T
Xp=argming, ;nL € X.

45|89

10 15 20
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LP2 — Iteration 4

20
Q3 = {xl(x) <0, j €{1,2,3), x€ X [

15 -
l1(x) = 3.26x7 + 0.313x, - 33.9
l>(x) = 0.332x; + 1.30x, — 19.2 \
l3(x) = 1.66x; +0.951x, — 26.2

k =4,solve LPnowinQNL,
)”(l'fp =argming, L c’x.

Do line search, generate supporting hyperplane and add to 2.

o

e
B
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LP2 — Iteration 4

20
Q3 = {xl(x) <0, j €{1,2,3), x€ X [

15 |- .
l1(x) = 3.26x; +0.313x, — 33.9
lz(X) 20332X1+130X2—192 |
I5(x) = 1.66x; +0.951x, — 26.2

5 10 15 20
k =4,solve LPnowinQNL,
ok . T
X'p=argming, .~ C'X.

Do line search, generate supporting hyperplane and add to 2.

\

§

) ‘ v’/ %
\\\@%ﬁ%ﬁ

Terminate LP2-step since F()”(I'_‘P) < €Lpo.
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MILP step
MILP k = 5 MILP k = 6
20 N 20 T
15 L s 15 | =
10 AN ~ 10 [\ —
5 S 5 | |
N S Ll N
5 10 15 20 5 10 15 20

In this step the integer requirements in Y are also
considered, i.e., initially k =5, Q2 =Q,_1NLNY.

The MILP steps are required to guarantee an %
integer-feasible solution. &

’ \%G‘
\ \\@%A K
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Solution and comparisons to other solvers

Solving the MINLP problem with the supporting hyperplane
algorithm gives the following solution

Type | lteration | Obj. funct. X1 X2 F(x1,x2)
LP1 1 —40.0000 20.0000  20.0000 30359
LP1 2 -28.4720 8.47199  20.0000 14.9321
LP1 3 -21.6378 9.19722 12.4406 0.957382
LP2 4 -21.1639 8.56022 12.6037 0.229455
MILP 5 —20.9065 8.90647 12 0.00442134
MILP 6 -20.9036 8.90362 12 4.22619-10°°

Solution times compared to some other MINLP solvers:

Solver ‘ Iterations ‘ Time (s) ‘ Implementation

New algorithm 6 0.7 Prototype in Mathematica + CBC
ECP 21 1.5 GAMS 24.2 + CPLEX

DICOPT 11 1.5

GAMS 24.2 + CONOPT + CPLEX 4 f‘
(=2 @f\f’\



4. Aspects on frameworks for nonconvex
MINLP problems
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Convex relaxation: branching vs reformulation

=] =505
M e ] e e

Branching: n convex subproblems (the subproblems with
the green domains are solved using a branching strategy)

[ ]
NN [ 1]
=
H

Reformulation: the entire nonconvex MINLP problem is
reformulated to a convex relaxed MINLP problem solved

sequentially. 8 ;ﬁg
) |
RISNA/N %ﬁ’
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Convex envelopes of functions or sets

for tight convex relaxations

Does a convex envelope c(x) = conv g(x) of a nonconvex
function g in an inequality constraint g(x) < 0 give the
tightest convex relaxation of g(x) < 0 when replacing it
with c(x) <0?
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Convex relaxations and envelopes in literature

Tuy 1998

“A nonconvex inequality constraint g(x) < 0, x € X, where X is
a convex set in R", can often be handled by replacing it with a
convex inequality constraint c(x) < 0 where c(x) is a convex
minorant of g(x) on X. The latter inequality is then called a
convex relaxation of the former.

G A/A%ﬁ’
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Let’s see...

Could it be possible to find some function g, other than
c(x) = conv g(x), with the property:

NcC,cC,
where

N = {xlg(x) < 0}
C, = Ixla(x) <0}
C. = {x|c(x) <0}

for all x € X such that Cq would still be a convex set?

S\
\\

QB p) @%f‘
|\ \\@% @ o
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The convex envelope of a function
Consider the function
g(x) = 0.00506x% +0.09553x> — 1.2774x% + 2.8821x + 1.5.

The convex envelope of the nonconvex function g(x) on the interval
[0,7] is given by

-0.488764x+ 1.5 if0<x<4.8312,
conv g(x) = )
g(x) if 48312 <x<7.
4
2
X — g(x)
0 i — conv g(x
1{ 5 o~ g(x) G
-2

QB p) @%f‘
|\ \\@% @ o
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The aBB underestimator, Floudas (2000)

Convex underestimator for twice-differentiable
functions

A function g(x) € C? has the convex underestimator

80 =g0)+)_alx;—x)(%—x)

for x; € [x;,X;] Vi if and only if the parameter « fulfills

a> max{O,—% min )\,-}
1

where the A;’s are the eigenvalues of the Hessian of g(x) on
the interval [x;, X;]. '
Different methods for calculating the a-values are available, ) \“%

e.g., the scaled Gerschgorin method. RN
L NONY 72, 5o\ s
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The aBB underestimatoy, illustration

For example for the function
g(x) = 0.00506x% 4+ 0.09553x3 - 1.2774x° + 2.8821x + 1.5,
where 0 < x <7, the aBB underestimator becomes

&(x)=g(x)+1.2774(0 — x)(7 — x).

2 4 6
— &)
> —— conv g(x)
&(x)
10 |

~15 + fp %
G A/A@ P
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Convex envelope of the level set

Observe that the convex envelope of a function g(x) is the
tightest convex relaxation of the function in question, but does
not generally give the tightest convex relaxation of a level set
L ={x|g(x) < a} (in this case a = 0).

S o—=

The tightest convex relaxation of L is conv L, i.e., the convex
hull of L.

The convex envelope of the set L is given by the border of its QE f
convex hull. gg& ‘ﬁ\
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Convex relaxations of the level set L = {x|g(x) < 0}

2 4~—"6 — ()

The level sets L = {x|g(x) < a} are:

a O_[46]

QB p) @%f‘
|\ \\@% @ o
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Convex relaxations of the level set L = {x|g(x) < 0}

— conv g(x)

The level sets L = {x|g(x) < a} are:

L ,=1[46] L2 % =[3.0696]

%

\ \\@%ﬁ@g >

Do
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Convex relaxations of the level set L = {x|g(x) < 0}

— g(x)
—— conv g(x)

&(x)

The level sets L = {x|g(x) < a} are:

LS 0_[4 6] L0 % =[3.0696]
LS ,=[0.248,6.713]

e

,/rﬂ
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Convex relaxations of the level set L = {x|g(x) < 0}

— &)

—— conv g(x)
&(x)

- ()

The level sets L = {x|g(x) < a} are:
L ,=1[46] L2 & =[3.0696]
18 =[0.248,6.713] LS, =[4,6]

a=

A possible tight convex relaxation: c1(x) = 3(x —4)(x - 6). %@ ‘ f
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Convex relaxations of the level set L = {x|g(x) < 0}

—— conv g(x)
&(x)

- al)
ca(x)

The level sets L = {x|g(x) < a} are:
L8 ,=[46] L2 20%=[3.0696]
Ly O_[02486713] Lilo=L20=1[46]

Another tight convex relaxation: \S

co(x) = max{—%(x—4), %(x—6)}. iz éB ,,
\\\@%@ o
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A nonconvex size constraint in two dimensions

» Consider the inequality constraint
g(x) <0,
where

g(x)=50-x1-x5, 0.5<x3, x> <10.

» The contour plot of the constraint function g is

%
&

Ty
\ \\@@&
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McCormick convex relaxation

The convex envelope of the negative bilinear term —x; x5 is
max{—X1xz = XpX1 +X1X5, —X1X2 —X2x1 + X1 X2}
where the bounds of the variables are x; < x; <X;.

If 0.5 < x1, x> <10, we then obtain

conv g(x) =50-max{-10-x; —0.5-x>+5,
-0.5-x;-10-x>+ 5}

&

\ \\@%A R
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The level sets for the McCormick relaxation

conv g

. g i .
Left: The level set L_. Right: The levelset L,

» Observe that, although L?_, is a convex set, replacing g(x) <0
with conv g(x) < 0 does not give the tightest convex relaxation
of L% .

a=0
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A convex reformulation

By reformulating
g(x) =50~ x; - x;

at g(x) = 0 we can, in this case, obtain the following convex
constraints exactly defining the border of the level set Lf:():

50 50
C]_(X) = g—Xl and C2(X) = Z—Xz.

Since c;(x) and c(x) exactly define the border of L2 _, it
follows that

C1 —_ — 18
Ly-o=Lio=L, ¢
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The level sets for the convex reformulation

N~ O

N A OO
T

[ R [

[
2 4 6 8 10 2 4 6 8 10

conv g

Upper left: The level set L 0 Upper right: The level set L  —

Lower left: The level set L —o- Lower right: The level set La O ‘@
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3D illustration of the relaxations

Illustration of g(x)

6389
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3D illustration of the relaxations

Illustration of g(x) and c1(x)

6389



4. Aspects on frameworks for nonconvex MINLP problems

3D illustration of the relaxations

6389



5. A reformulation algorithm for solving C?
MINLP problems
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Introduction

A framework for reformulating nonconvex
(twice-differentiable — C2) mixed integer nonlinear
programming (MINLP) problems to convex form is
presented.

> The framework is an extension to a previously introduced
reformulation technique for signomial problems.

> For CZ—constraints, convex reformulations are made in an
extended variable-space using variants of the aBB
quadratic convex underestimator.

> With the framework, a nonconvex problem can be
reformulated to a larger convex MINLP problem solved in
one step or to a sequence of smaller relaxed MINLP

problems solved iteratively. %
N\

W

5 .\s
G A/A@ P
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The considered problem-type

Nonconvex problem f(x) is a convex function

q(x) are convex functions

min.  f(x) h(x) are nonconvex
st q(x)+h(x)<0 twice-differentiable (CZ) functions
XSX<X the variables in x are reals, binaries
or integers

Nonconvex twice-differentiable functions (incl. signomials) can
be convexified using an aBB-type reformulation.

&

\ \\@%A R
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Convex underestimation of C2-functions

A convex underestimator for twice-differentiable functions in a
box-domain from, e.g., Floudas (2000).
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Convex underestimation of C2-functions

A convex underestimator for twice-differentiable functions in a
box-domain from, e.g., Floudas (2000).

Theorem

A function g(x) € C? has the convex underestimator

8(x) = g(x) + Za(z; —x)(Xi = %)

for x; € [x;,x;] Vi if and only if the parameter « fulfills

a> max{O,—% min /\i}
1

where the A;’s are the eigenvalues of the Hessian matrix of g(x) on
the interval [x;,X;]. %

Several methods for calculating the a-values are availa| W, R\TNS
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Gerschgorin’s circle theorem

Theorem

Let A € C™" with entries a; and define R; = }_

j=ilajl Every
eigenvalue of A lies within at least one of the Gerschgorin disks

D(aj, Ri) = {x: Ix—a;| < R;}.
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Gerschgorin’s circle theorem

Theorem

Let A € C™" with entries a; and define R; = }_;.;|a;|. Every
eigenvalue of A lies within at least one of the Gerschgorin disks

D(aj, Ri) = {x: Ix—a;| < R;}.

Example Im
3
2+i 2 -1
A=
1 -1 -1 1 Re
+ t e
-3 -1 1 3 5 7
-1
K
-3 P
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Gerschgorin’s circle theorem

Theorem

Let A € C™" with entries a; and define R; = }_;.;|a;|. Every
eigenvalue of A lies within at least one of the Gerschgorin disks

D(aj, Ri) = {x: Ix—a;| < R;}.

Example Im
3
24i 2 -1
A=
1 -1 -1 i Re
* — t — >
-3 -1 1 3 5 7
-1
&
-3 IS
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Gerschgorin’s circle theorem

Theorem
Let A € C™" with entries a; and define R; = }_;.;|a;|. Every
eigenvalue of A lies within at least one of the Gerschgorin disks

D(aj, Ri) = {x: Ix—a;| < R;}.

Example Im

3

2+i 2 -1
A=
1 -1 -1 . Re
o f —<—p
-8 -1 1 3 5 /4

-1
-3 B
\\\(@%A@
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Extending Gerschgorin’s circle theorem to interval matrices

The circle theorem can be extended to interval matrices by
considering the worst case.

Positive-semidefiniteness is wanted, therefore “worst case”
should be interpreted as lowest eigenvalue.

Example 44 1m

25 13 0 24
H=

0 [-1,0] [-2,-1]
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Diagonal aBB using the Gerschgorin Method

The function is underestimated by adding the perturbation
=Y ai(Xi—x)(x = x;)-

To guarantee positive-semidefiniteness we set the constraints
hii_Ri +20,’, ZO, i= 1,2,...,n.

44|m
[25]  [-13] 0
‘[—1,3] [56] [-1,0] l
0 [-1,0] [-2,-1] o4
’ — Re
+ 0 ] > E A .
0
_2 1B
[25]  [-1,3] 0
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Diagonal aBB using the Gerschgorin Method

The function is underestimated by adding the perturbation
=Y ai(Xi—x)(x = x;)-

To guarantee positive-semidefiniteness we set the constraints
hii_Ri +20,’, ZO, i= 1,2,...,n.

4 4 Im
[2,5] [-1,3] 0
‘ [-1,3] [56] [-1,0] l
0 [-1,0] [-2,-1] 21
1 ‘ | Re
+ 0 } -2 2 4 6
3
_2 +
[3.6] [-1,3] 0
_[ 0 [-1,0] [1,4] ] -4+ X
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Diagonal and off-diagonal a«BB

The function can also be underestimated by adding

=Yiei(Xi = xi)(xi —x;) + L Ljsi Bijxix; as in Skjél et al. (2012).

To guarantee positive-semidefiniteness we can then manipulate the diagonal
and off-diagonal elements of the resulting Hessian matrix: the radius and
midpoint of each Gerschgorin circle will be altered in the constraints

7 7’ [—
hii + 20~ Y jui |h,j +ﬁ,j| >0 i, hy € [hy, ).

4 Im
25 [-1,3] 0
[-1,3] [56] [-1,0]
0 [-1,0] [-2,-1] 2
Re
0 0 O —_— >
+ 0o 0 o} -2 2 4 6
0 0 0
-2
[2,5] [-1,3] 0
[ o [0 [—2,—11] -4
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Diagonal and off-diagonal a«BB

The function can also be underestimated by adding

=Yiei(Xi = xi)(xi —x;) + L Ljsi Bijxix; as in Skjél et al. (2012).

To guarantee positive-semidefiniteness we can then manipulate the diagonal
and off-diagonal elements of the resulting Hessian matrix: the radius and
midpoint of each Gerschgorin circle will be altered in the constraints

7 7’ [—
hii + 20~ Y jui |h,j +ﬁ,j| >0 i, hy € [hy, ).

4 Im
[2,5] [-1,3] 0
-1,3] [56] [-1,0]
0 [-1,0] [-2,-1] 2
0o 1 o0 ‘ R
+ 0 -2 2 4 6
0 1/2 5/2 ]
-2
[2,5] [-2,2] 0
[ 0 [-1/2,1/2] [1/2,3/2]] —4
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Branching vs reformulation

NN
=] =505
Ml b

Slifsi

Branching: n convex subproblems (the subproblems with
the green domains are solved using a branching strategy)

Reformulation: a sequence of convex MINLP problems are
solved (the whole domain is considered in each iteration)

(@/ﬁ%ﬁ
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Including aBB in the reformulation framework

To be able to reformulate the problem in subdomains
without branching, a convex quadratic function ax? is
added to and a variable W subtracted from the nonconvex
c? constraint, i.e.,

h(x) <0.
|
convex
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Including aBB in the reformulation framework

To be able to reformulate the problem in subdomains
without branching, a convex quadratic function ax? is
added to and a variable W subtracted from the nonconvex
c? constraint, i.e.,

h(x) <0.
|
convex

If a is large enough, then the reformulated constraint will
be convex.

g
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Including aBB in the reformulation framework

To be able to reformulate the problem in subdomains
without branching, a convex quadratic function ax? is
added to and a variable W subtracted from the nonconvex
c? constraint, i.e.,

h(x) <0.
|
convex

If a is large enough, then the reformulated constraint will
be convex.

If ax? — w <0, then the reformulated constraint
underestimates the original one. %

g
\ \\(@%A E
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74189

The convex reformulation in subdomains

h(x

+ax

2

<0

A

N A

\ \\@%A
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The convex reformulation in subdomains

h(x) + ax’-W <0

If & in ax? is large enough then h(x) + ax? - W will be
convex.

If W is given by a PLF of ax? then h(x) is also
underestimated in each subdomain since ax? - W <0. QE

%@‘f
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The convex reformulation in subdomains

74189
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The spline aBB underestimator

The spline aBB-underestimator is a smooth convex piecewise
polynomial expression

0(1X2+ﬁ1X—|—7/1 if x € [0)1,0)2]

arx% + Bax+ > if x € [wy, w3]
S(x) = .

ak-1x? + Br-1x+ k-1 if x € [wi_1, wil,

The ay’s ensure convexity. The B, and yy for k € {2,...,K -1}
ensure smoothness and continuity, and 1, ¥; gives
S(w1) = S(wk) =0.

— 1 1 1 —

aq w>




5. A reformulation algorithm for solving C2 MINLP problems — 76| 89

An illustrative example
5

Consider the function

h(x) = x-sinx 4 x/10.
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An illustrative example
5

Consider the function

h(x) = x-sinx 4 x/10.
— h(x)

The convex underestimators are then

h1(x) = x - sinx 4+ x/10
for the reformulated BB understimator using constant «

and
h>(x) = x-sinx + x/10

for the reformulated spline BB underestimator, where w
is the PLF of W = ax? and S is the PLF of the spline

§
function S(x). 5 %‘f
RISNA/N P
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An illustrative example

ZOT —
— ) 2 46
20\ 2 4 6/8 00 -20
—40 { \ / 100 —40
-60 x -60
2 46 8
—h(x) —hy(x) -~ - ha(x) —WwW—w —S—5S

hy(x) :x-sinx+x/10+ a=4.10293
hy(x) = x-sinx +x/10 +| S(x) -

W is the PLF of W = ax? and S is the PLF of S(x)
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5. A reformulation algorithm for solving C2 MINLP problems

An illustrative example

20 1
X B —— ,'h‘ 2
204\ 2 4 6/,’8 00
—40 + \, / 100
-60 \\\_’// X
2 46 8
—h()——hy(x) - ha(x) —W—W

———— 77189

W(x)=4.1x>  S(x)=4.1x>-32.8x,0<x<8
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An illustrative example

10 —»—o—o—x
T 1 1 /» 200 -20 Ké‘yg
2 6/8
~10 \ / 100 —40
\_ // X —60
-20
2 4 6 8
—h(x) ——hy(x) -~ ha(x) —W—Ww —S—5

1.6x2 —17.8x 0<x<4
4.1x%2-37.8x+40.0 4<x<8

%
B
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G A/A

W(x) = 4.1x2 S(x)= {
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An illustrative example
10 , X,
T%A 200 0| R4 678
2 ARk 8
~10 100 -40
x —-60
-20
2 46 8
— h(x) —hy(x) -~ ha(x) —W—Ww —S—5
1.6x%-11.7x 0<x<4
W(x)=41x>  S(x)={1.1x-256 4<x<6

4.1x%2-481x+122.1 6<x<8
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An illustrative example
10 , X,
Twé 200 _20 \"\_4 6/3
2R 8 40
-10 100
x —-60
-20
2 46 8
— h(x) —hy(x) -~ ha(x) —W—Ww —S—5
1.3x% - 10.7x 0<x<?2
1.6x°-11.8x+ 1.1 2<x<4
W(x) = 4.1x° S(x) =
1.1x—24.5 4<x<6

4.1x°-482x+123.2 6<x<8 \&
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Generalization to N dimensions

The formulation can easily be extended from one to N
dimensions by using the underestimators

(cr,-xi2 - W,) <0, x=(x1,x2,...,Xn), OF

(S (x;) - )<0 X =(X1,X2,.-, XN )-

when using the reformulated versions of the original aBB
and spline BB underestimators respectively.

gzzsﬁf‘
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Generalization to N dimensions

The formulation can easily be extended from one to N
dimensions by using the underestimators

(cr,-xi2 - W,) <0, x=(x1,x2,...,Xn), OF

(S (x;) - )<0 X =(X1,X2,.-, XN )-

when using the reformulated versions of the original aBB
and spline BB underestimators respectively.

Here W is the PLF of W; = ¢; x and S is the PLF of S;.

gzasﬁ
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Reformulation or implementation in a global optimization

algorithm

The underestimator can be used for reformulation or
directly implemented in a global optimization algorithm,
e.g., aGO, for solving nonconvex MINLP problems with
C?-constraints, c.f, Lundell et al. (2013).

A sequence of overestimated convex MINLP problems is
solved (see Eronen et al. (2012) for convex MINLP
methods) until the solution fulfills the constraints in the
original nonconvex problem.

The feasible region of the overestimated convexified
problem is reduced in each iteration by improving the PLFs \'

of W = a;x? or S(x).
e /ﬁ@& %
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80|89
The original nonconvex MINLP problem

minimize  f(x1,x2) = (2x1 — 4)% + (x2 — 13/2)?
subjectto  x7 cos? x> + x2 sin? x1—3/x2+x1/2-5/2<0,

| ——

q(x1)
x1 €R, xz€Z

h (XerZ)

2<x1<4, 2<x2<8,
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The original nonconvex MINLP problem

minimize  f(x1,x2) = (2x1 — 4)% + (x2 — 13/2)?

subjectto  x7 cos? x> + x2 sin? x1—3/x2+x1/2-5/2<0,
————
h(x1,x2) q(x1)

2<x1<4, 2<x2<8, x1€R, xxeZ

X2
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The reformulated MINLP problem

minimize f(Xl,Xz):(2X1—4)2+(X2—13/2)2

subjectto x1 cos? X2 + x2 sin? x1 —3/x2 +x1/2-5/2

2<x1<4, 2<x2<8 x1€R, xxeZ
and are sets including the variables
and breakpoints in PLF; of S;(x1)

This reformulated problem is convex in the extended
variable space consisting of the original variables x; and
x>, as well as, those needed for the PLFs in V; and V5.

%
S Ba %
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aGO iteration 1
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aGO iteration 2
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aGO iteration 2
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aGO iteration 3
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aGO iteration 4

X1
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2 25 3 35 4
X1

aGO iteration 5 and 6

2
2 25 3 35 4
X1

Iter. | Regions | f(x1,x2) | x1 xp | h(x1,x2)+q(x)
1 1 0.2500 2.0 7 4.9959
2 4 0.2500 2.0 6 4.9959
3 9 0.2500 2.0 7 4.9959
4 16 3.3630 2.52749 5 0.0273
5 20 3.3767 2.53074 5 0.0139
6 24 3.3848 2.53263 5 0.0061
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Summary

Introduction — a short background to MINLP

Some aspects on convex MINLP algorithms

> Convex functions and convex sets
> Smooth and nonsmooth functions

A new algorithm for solving convex MINLP problems
Aspects on solving nonconvex MINLP problems

> Convex relaxations in BB and relaxation frameworks
> Convex envelopes of functions or level sets

A reformulation algorithm for solving C? MINLP problems W

G /ﬁ%ﬁ%
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The end of the presentation
Thank you for listening!

The presentation including relevant references will be
available at www.abo.fi/ose
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