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Convex functions or convex sets

Problem (P1)

minimize f(x)

subject to g(x) ≤ 0,

where f and g are convex
functions.

Problem (P2)

minimize f(x)

subject to x ∈ C ,

where f is a convex function,
C = {x |g(x) ≤ 0}, and g are

convex/quasiconvex functions.
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Smooth or nonsmooth functions

I Does the convergence properties of a considered
“convex MINLP” solver still hold true if the functions
are not differentiable but convex/quasiconvex?

convex quasiconvex

smooth twice differentiable (C 2) ? ?
smooth once differentiable (C 1) ? ?
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locally Lipschitz continuous ? ?
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Nonsmooth functions in MINLP

Question: Is it possible to only replace gradients with
subgradients in order to handle nonsmooth functions
rigourously in algorithms for differentiable convex problems?

Answer: Not for all convex MINLP algorithms!

I Yes, e.g., for ECP
I No, for certain versions of OA, e.g., the linear OA1:

1Fletcher, R. and Leyffer, S., Solving mixed integer nonlinear programs by outer approximation, Mathematical
Programming 66, pp. 327–349, 1994.
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A convex nonsmooth example where the gradient is

replaced by a subgradient2

minimize 2x − y

subject to g(x ,y) ≤ 0

y −4x −1 ≤ 0

0 ≤ x ≤ 2, y ∈ Y = {0,1,2,3,4,5},

(E )

where

g(x ,y) = max
{
−3

2
− x + y , −7

2
+ y + x

}
.

2Eronen, V.-P., Mäkelä, M. M. and Westerlund, T., On the generalization of ECP and OA methods to nonsmooth
convex MINLP problems, Optimization, pp. 1–17, iFirst, available online, 2012.
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Solving with the linear outer approximation

0 0.5 1 1.5 2

1
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0 2
x

y

Initialization: y0 = 3

Step 1: Solve the subproblem NLP(y0) or the feasibility
problem F(y0) if NLP(y0) is infeasible, and let the solution be
x0.
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I There are no feasible points in the problem NLP(y0), thus
the feasibility problem Fy0 will be solved:

minimize Þ

subject to max
{3

2
− x , −1

2
+ x

}
≤ Þ

2−4x ≤ 0

0 ≤ x ≤ 2.

(Fy0)

I The solution of Fy0 is x0 = 1 with Þ= 1/2.

Step 2: Linearize g at the point (x0,y0) = (1,3) for the next
relaxed MILP master problem M 0.

I Both the functions −3/2− x + y and −7/2+ y + x have the
same value 1/2 at the point (x0,y0) and thus the
subdifferential is

�g(1,3) =
{
(Ó,1)T |Ó ∈ [−1,1]

}
. (1)
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I Since we may select an abitrary subgradient we may
choose, e.g., à(x0,y0) = (1,1)T . Thus the new linear
constraint is

1
2
+(1,1)(x −1,y −3)T ≤ 0 ⇒ x + y − 7

2
≤ 0.
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Step 3: Update the current best point if NLP(y0) is feasible, but
since NLP(y0) was not feasible go to Step 4.

Step 4: Create and solve the current relaxation M 0 of the
master program giving a new integer assignment y1.
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minimize 2x − y

subject to x + y −7/2 ≤ 0

y −4x −1 ≤ 0

0 ≤ x ≤ 2, y ∈ Y .

(M 0)

I The solution point of (M 0) is (1/2,3). Set i = i +1, y1 = 3.

Repeat steps 1–4: Until M i is infeasible.
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I Hence y1 = y0 and Fy1 ≡ Fy0 . Thus LOA may generate an
infinite loop between points (1,3) and (1/2,3).

I Both of them are infeasible but the problem (E) has a
feasible point (0,1) for example, where the objective
function 2x − y has the value −1.
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I A new interior point based algorithm for solving convex
MINLP problems to global optimality is introduced.

I Roots:
. Kelley’s cutting plane algorithm 19603

. The extended cutting plane (ECP) algorithm 19954

I Cutting planes are replaced with supporting hyperplanes
using a line search procedure.

I Two LP preprocessing steps are utilized to quickly get a
tight linear relaxation of the part of the feasible region
defined by the convex/quasiconvex constraints.

I An interior point is required for the line search.

3Kelley, Jr., J., The cutting-plane method for solving convex programs, Journal of the SIAM, vol. 8(4), pp.
703–712, 1960.

4Westerlund, T. and Pettersson, F., An extended cutting plane method for solving convex MINLP problems,
Computers & Chemical Engineering 19, pp. 131–136, 1995.
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The MINLP problem

I The algorithm finds the optimal solution x∗ to the following
convex MINLP problem:

x∗ = argmin
x∈C∩L∩Y

cT x (P)

where x = [x1,x2, . . . ,xN ]
T belongs to the compact set

X =
{
x
∣∣∣x i ≤ xi ≤ x i , i = 1, . . . ,N

}
⊂�

n ,

the feasible region is defined by C ∩ L ∩Y ,

C = {x |gm(x) ≤ 0, m = 1, . . . ,M , x ∈ X } ,
L = {x |Ax ≤ a , Bx = b , x ∈ X } ,
Y = {x |xi ∈�, i ∈ I

�
, x ∈ X } ,

and C is a convex set.
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Steps in the interior point

supporting hyperplane algorithm

NLP: If an interior point is not given, obtain a feasible, relaxed
interior point (satisfying C ) by solving a NLP problem.

LP1: Solve simple LP problems (initially in X ) and conduct a
line search procedure to obtain supporting hyperplanes
giving a first linear relaxation of the convex set C . Optional.

LP2: Continue with a corresponding procedure as in LP1 but
now also including the linear constraints in L . Optional.

MILP: Finally include the integer requirements and solve MILP
problems using a corresponding procedure to find the
optimal solution to (P).
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NLP-step

I A point in C is required as an endpoint for the line searches to
be conducted in the LP1-, LP2- and MILP-steps.

I Assuming that (P) has a solution, the internal point can be
obtained from the following NLP problem:

x̃NLP = argmin
x∈X

F(x), (P-NLP)

where F(x) := max
m=1,...,M

{gm(x)}.

I F is convex/quasiconvex since it is the maximum of
convex/quasiconvex functions.

I (P-NLP) may be nonsmooth (if M > 1) even if gm is smooth.

I The point x̃NLP need not be optimal but then fulfill F(x̃NLP) < 0.

I Can be solved, e.g., with the accelerated gradient method in5.
5Nestorov, Y., Introductory lectures on convex optimization: A basic course, Kluwer Academic Publishers, 2004.



3. A new algorithm for solving convex MINLP problems 37 | 89

LP1-step

I Starting from k = 1, Ò0 = X , the problem

x̃k
LP = argmin

Òk−1

cT x (P-LP1)

is repeatedly solved, and supporting hyperplanes (SHs)

lk := F(xk )+ àF (x
k )T (x − xk ) ≤ 0

are generated and added to Òk . The point xk is obtained
by a line search for F(xk ) = 0 between the internal point
x̃NLP and the solution point to (P-LP1) x̃k

LP:

xk = Ýx̃NLP +(1−Ý)x̃k
LP, Ý ∈ [0,1].

àF (xk )T is a gradient or subgradient of F at xk .
I If not F(x̃k

LP) < ×LP1 or a maximum number of SHs have
been generated, then k is increased and (P-LP1) resolved.
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LP2-step

I This step is otherwise identical to LP1, with the exception
that the linear constraints in L are now also included, i.e.,

x̃k
LP = argmin

Òk−1∩L
cT x (P-LP2)

I (P-LP2) is repeatedly solved until F(x̃k
LP) < ×LP2 or a

maximum number of SHs have additionally been
generated.
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MILP-step

I Finally, in order to also fulfill the integer requirements of
problem (P), a MILP step is performed.

I This step is otherwise identical to LP2, with the exception
that the integer requirements in Y are now additionally
considered, i.e.,

x̃k
MILP = argmin

Òk−1∩L∩Y
cT x . (P-MILP)

I (P-MILP) is repeatedly solved until F(x̃k
MILP) < ×MILP.

I Intermediate (P-MILP) problems do not need to be solved to
optimality, but in order to guarantee an optimal solution of
(P), the final MILP solution must be optimal.
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An example

minimize cT x = −x1 − x2

subject to 1/x1 +1/x2− x0.5
1 x0.5

2 +4 ≤ 0

0.15(x1 −8)2 +0.1(x2 −6)2 +0.025ex1 x−3
2 −5 ≤ 0

2x1 −3x2 −2 ≤ 0

1 ≤ x1 ≤ 20, 1 ≤ x2 ≤ 20, x1 ∈�, x2 ∈�.
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NLP step – find an interior point

x̃NLP = argmin
(x1 ,x2)∈X

F(x1,x2),

where F(x1,x2) := max{g1(x1,x2), g2(x1,x2)}.

I The problem can be found using a
suitable NLP solver.

I Not required to be the optimal point

I The optimal point here is
(7.45,8.54)
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LP1 – Iteration 1

I Assume initially that Ò0 = X .

I k = 1, solve LP in Ò,

x̃k
LP = argmin

Òk−1

cT x .

5 10 15 20
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20

I Do line search
xk = Ýx̃NLP +(1−Ý)x̃k

LP.

I Generate supporting hyperplane in xk and add to Ò.
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I Assume initially that Ò0 = X .
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LP1 – Iteration 2

I Ò1 = {x |l1(x) ≤ 0, x ∈ X }.

l1(x) = 3.26x1 +0.313x2 −33.9

I k = 2, solve LP in Ò,

x̃k
LP = argminÒk−1

cT x .
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LP1 – Iteration 3

I Ò2 = {x |lj (x) ≤ 0, j ∈ {1,2}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2
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I k = 3, solve LP in Ò,

x̃k
LP = argminÒk−1

cT x .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP1-step since F(x̃k
LP) < ×LP1.
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LP2 – Iteration 4

I Ò3 = {x |lj (x) ≤ 0, j ∈ {1,2,3}, x ∈ X }

l1(x) = 3.26x1 +0.313x2 −33.9

l2(x) = 0.332x1 +1.30x2 −19.2

l3(x) = 1.66x1 +0.951x2 −26.2
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I k = 4, solve LP now in Ò∩ L ,

x̃k
LP = argminÒk−1∩L cT x .

I Do line search, generate supporting hyperplane and add to Ò.

I Terminate LP2-step since F(x̃k
LP) < ×LP2.
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MILP step
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MILP k = 5
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MILP k = 6

I In this step the integer requirements in Y are also
considered, i.e., initially k = 5, Ò=Òk−1 ∩ L ∩Y .

I The MILP steps are required to guarantee an
integer-feasible solution.
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Solution and comparisons to other solvers

I Solving the MINLP problem with the supporting hyperplane
algorithm gives the following solution

Type Iteration Obj. funct. x1 x2 F(x1,x2)
LP1 1 −40.0000 20.0000 20.0000 30 359
LP1 2 −28.4720 8.47199 20.0000 14.9321
LP1 3 −21.6378 9.19722 12.4406 0.957382
LP2 4 −21.1639 8.56022 12.6037 0.229455
MILP 5 −20.9065 8.90647 12 0.00442134
MILP 6 −20.9036 8.90362 12 4.22619 ·10−6

I Solution times compared to some other MINLP solvers:

Solver Iterations Time (s) Implementation
New algorithm 6 0.7 Prototype in Mathematica + CBC
ECP 21 1.5 GAMS 24.2 + CPLEX
DICOPT 11 1.5 GAMS 24.2 + CONOPT + CPLEX
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MINLP problems
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Convex relaxation: branching vs reformulation

I Branching: n convex subproblems (the subproblems with
the green domains are solved using a branching strategy)

I Reformulation: the entire nonconvex MINLP problem is
reformulated to a convex relaxed MINLP problem solved
sequentially.
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Convex envelopes of functions or sets

for tight convex relaxations

I Does a convex envelope c(x) = conv g(x) of a nonconvex
function g in an inequality constraint g(x) ≤ 0 give the
tightest convex relaxation of g(x) ≤ 0 when replacing it
with c(x) ≤ 0?
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Convex relaxations and envelopes in literature

Tuy 1998

“A nonconvex inequality constraint g(x) ≤ 0, x ∈ X , where X is
a convex set in �

n , can often be handled by replacing it with a
convex inequality constraint c(x) ≤ 0 where c(x) is a convex
minorant of g(x) on X . The latter inequality is then called a
convex relaxation of the former. Of course, the tightest

relaxation is obtained when c(x) = conv g(x), the convex

envelope, i.e., the largest convex minorant, of g(x).”
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Let’s see. . .

I Could it be possible to find some function q , other than
c(x) = conv g(x), with the property:

N ⊂ Cq ⊂ Cc ,

where

N = {x |g(x) ≤ 0}
Cq = {x |q(x) ≤ 0}
Cc = {x |c(x) ≤ 0}

for all x ∈ X such that Cq would still be a convex set?



4. Aspects on frameworks for nonconvex MINLP problems 53 | 89

The convex envelope of a function

Consider the function

g(x) = 0.00506x4 +0.09553x3 −1.2774x2 +2.8821x +1.5.

The convex envelope of the nonconvex function g(x) on the interval
[0,7] is given by

conv g(x) =

−0.488764x +1.5 if 0 ≤ x ≤ 4.8312,
g(x) if 4.8312 < x ≤ 7.

2 4 6
−2

0

2

4

x g(x)
conv g(x)
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The ÓBB underestimator, Floudas (2000)

Convex underestimator for twice-differentiable
functions

A function g(x) ∈ C 2 has the convex underestimator

ĝ(x) = g(x)+
¼

i

Ó(x i − xi )(x i − xi )

for xi ∈ [x i ,x i ] ∀i if and only if the parameter Ó fulfills

Ó ≥max
{

0,−1
2 min

i
Ýi

}
where the Ýi ’s are the eigenvalues of the Hessian of g(x) on
the interval [x i ,x i ].
Different methods for calculating the Ó-values are available,
e.g., the scaled Gerschgorin method.



4. Aspects on frameworks for nonconvex MINLP problems 55 | 89

The ÓBB underestimator, illustration

I For example for the function

g(x) = 0.00506x4 +0.09553x3 −1.2774x2 +2.8821x +1.5,

where 0 ≤ x ≤ 7, the ÓBB underestimator becomes

ĝ(x) = g(x)+1.2774(0− x)(7− x).

2 4 6

−15

−10

−5

0
x

g(x)
conv g(x)

ĝ(x)



4. Aspects on frameworks for nonconvex MINLP problems 56 | 89

Convex envelope of the level set

I Observe that the convex envelope of a function g(x) is the
tightest convex relaxation of the function in question, but does
not generally give the tightest convex relaxation of a level set
L = {x | g(x) ≤ Ó} (in this case Ó= 0).

2 4 6

−4

−2

0

2

4

g(x)

I The tightest convex relaxation of L is conv L , i.e., the convex
hull of L .

I The convex envelope of the set L is given by the border of its
convex hull.
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Convex relaxations of the level set L = {x |g(x) ≤ 0}

2 4 6
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0
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4

g(x)

I The level sets L g
Ó = {x |g(x) ≤ Ó} are:

L g
Ó=0 = [4,6]
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Convex relaxations of the level set L = {x |g(x) ≤ 0}
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I The level sets L g
Ó = {x |g(x) ≤ Ó} are:

L g
Ó=0 = [4,6] L conv g

Ó=0 = [3.069,6]
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Convex relaxations of the level set L = {x |g(x) ≤ 0}
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ĝ(x)

I The level sets L g
Ó = {x |g(x) ≤ Ó} are:

L g
Ó=0 = [4,6] L conv g

Ó=0 = [3.069,6]

L ĝ
Ó=0 = [0.248,6.713]
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Convex relaxations of the level set L = {x |g(x) ≤ 0}
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I The level sets L g
Ó = {x |g(x) ≤ Ó} are:

L g
Ó=0 = [4,6] L conv g

Ó=0 = [3.069,6]

L ĝ
Ó=0 = [0.248,6.713] L c1

Ó=0 = [4,6]

I A possible tight convex relaxation: c1(x) =
5
2 (x −4)(x −6).
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Convex relaxations of the level set L = {x |g(x) ≤ 0}
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I The level sets L g
Ó = {x |g(x) ≤ Ó} are:

L g
Ó=0 = [4,6] L conv g

Ó=0 = [3.069,6]

L ĝ
Ó=0 = [0.248,6.713] L c1

Ó=0 = L c2
Ó=0 = [4,6]

I Another tight convex relaxation:
c2(x) = max

{
−3

4 (x −4), 3
4 (x −6)

}
.
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A nonconvex size constraint in two dimensions

I Consider the inequality constraint

g(x) ≤ 0,

where
g(x) = 50− x1 · x2, 0.5 ≤ x1, x2 ≤ 10.

I The contour plot of the constraint function g is
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McCormick convex relaxation

I The convex envelope of the negative bilinear term −x1x2 is

max{−x1x2 − x2x1 + x1x2, −x1x2 − x2x1 + x1x2}

where the bounds of the variables are x i ≤ xi ≤ x i .

I If 0.5 ≤ x1, x2 ≤ 10, we then obtain

conv g(x) = 50−max{−10 · x1 −0.5 · x2 +5,

−0.5 · x1 −10 · x2 +5}
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The level sets for the McCormick relaxation
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Left: The level set L g
Ó=0. Right: The level set L conv g

Ó=0 .

I Observe that, although L g
Ó=0 is a convex set, replacing g(x) ≤ 0

with conv g(x) ≤ 0 does not give the tightest convex relaxation
of L g

Ó=0.
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A convex reformulation

I By reformulating
g(x) = 50− x1 · x2

at g(x) = 0 we can, in this case, obtain the following convex
constraints exactly defining the border of the level set L g

Ó=0:

c1(x) =
50
x2
− x1 and c2(x) =

50
x1
− x2.

I Since c1(x) and c2(x) exactly define the border of L g
Ó=0, it

follows that
L c1
Ó=0 ≡ L c2

Ó=0 ≡ L g
Ó=0.
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The level sets for the convex reformulation
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Upper left: The level set L g
Ó=0. Upper right: The level set L conv g

Ó=0 .

Lower left: The level set L c1
Ó=0. Lower right: The level set L c2

Ó=0.



4. Aspects on frameworks for nonconvex MINLP problems 63 | 89

3D illustration of the relaxations

Illustration of g(x)
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3D illustration of the relaxations

Illustration of g(x) and c1(x)
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3D illustration of the relaxations

Illustration of g(x), c1(x) and c2(x)
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Introduction

I A framework for reformulating nonconvex
(twice-differentiable – C 2) mixed integer nonlinear
programming (MINLP) problems to convex form is
presented.

. The framework is an extension to a previously introduced
reformulation technique for signomial problems.

. For C 2-constraints, convex reformulations are made in an
extended variable-space using variants of the ÓBB
quadratic convex underestimator.

. With the framework, a nonconvex problem can be
reformulated to a larger convex MINLP problem solved in
one step or to a sequence of smaller relaxed MINLP
problems solved iteratively.
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The considered problem-type

min. f(x)

s.t. q(x)+h(x) ≤ 0

x ≤ x ≤ x

Nonconvex problem I f(x) is a convex function

I q(x) are convex functions

I h(x) are nonconvex
twice-differentiable (C 2) functions

I the variables in x are reals, binaries
or integers

I Nonconvex twice-differentiable functions (incl. signomials) can
be convexified using an ÓBB-type reformulation.
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Convex underestimation of C 2-functions

I A convex underestimator for twice-differentiable functions in a
box-domain from, e.g., Floudas (2000).

Theorem

A function g(x) ∈ C 2 has the convex underestimator

ĝ(x) = g(x)+
¼

i

Ó(x i − xi )(x i − xi )

for xi ∈ [x i ,x i ] ∀i if and only if the parameter Ó fulfills

Ó ≥max
{

0,−1
2 min

i
Ýi

}
where the Ýi ’s are the eigenvalues of the Hessian matrix of g(x) on
the interval [x i ,x i ].

I Several methods for calculating the Ó-values are available.
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Gerschgorin’s circle theorem

Theorem

Let A ∈�n×n with entries aij and define Ri =
´

j,i |aij |. Every
eigenvalue of A lies within at least one of the Gerschgorin disks

D(aii ,Ri ) = {x : |x −aii | ≤ Ri }.
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Extending Gerschgorin’s circle theorem to interval matrices

I The circle theorem can be extended to interval matrices by
considering the worst case.

I Positive-semidefiniteness is wanted, therefore “worst case”
should be interpreted as lowest eigenvalue.

Example

H =

 [2,5] [−1,3] 0
[−1,3] [5,6] [−1,0]

0 [−1,0] [−2,−1]


−2 2 4 6

−4

−2

2

4 Im

Re
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Diagonal ÓBB using the Gerschgorin Method

I The function is underestimated by adding the perturbation
−
´

i Ói (x i − xi )(xi − x i ).

I To guarantee positive-semidefiniteness we set the constraints
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Diagonal and off-diagonal ÓBB

I The function can also be underestimated by adding
−
´

i Ói (x i − xi )(xi − x i )+
´

i
´

j>i Ôij xi xj as in Skjäl et al. (2012).

I To guarantee positive-semidefiniteness we can then manipulate the diagonal
and off-diagonal elements of the resulting Hessian matrix: the radius and
midpoint of each Gerschgorin circle will be altered in the constraints

hii +2Ói −
´

j,i

∣∣∣∣h ′ij + Ôij

∣∣∣∣ ≥ 0 ∀i , h
′
ij ∈ [hij ,hij ].
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Branching vs reformulation

I Branching: n convex subproblems (the subproblems with
the green domains are solved using a branching strategy)

I Reformulation: a sequence of convex MINLP problems are
solved (the whole domain is considered in each iteration)
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Including ÓBB in the reformulation framework

I To be able to reformulate the problem in subdomains
without branching, a convex quadratic function Óx2 is
added to and a variable Ŵ subtracted from the nonconvex
C 2 constraint, i.e.,

h(x) + Óx2 − Ŵ︸              ︷︷              ︸
convex

≤ 0.

I If Ó is large enough, then the reformulated constraint will
be convex.

I If Óx2 − Ŵ ≤ 0, then the reformulated constraint
underestimates the original one.
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The convex reformulation in subdomains

h(x) + Óx2−Ŵ ≤ 0

x x x
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The convex reformulation in subdomains

h(x) + Óx2−Ŵ ≤ 0

x x x

x x x

I If Ó in Óx2 is large enough then h(x)+Óx2 − Ŵ will be
convex.

I If Ŵ is given by a PLF of Óx2 then h(x) is also
underestimated in each subdomain since Óx2 − Ŵ ≤ 0.
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The convex reformulation in subdomains

h(x) + Óx2−Ŵ ≤ 0

x x x

x x x

x x x
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The spline ÓBB underestimator

I The spline ÓBB-underestimator is a smooth convex piecewise
polynomial expression

S(x) =


Ó1x2 + Ô1x +Õ1 if x ∈ [é1,é2]

Ó2x2 + Ô2x +Õ2 if x ∈ [é2,é3]
...

...

ÓK−1x2 + ÔK−1x +ÕK−1 if x ∈ [éK−1,éK ],

I The Ók ’s ensure convexity. The Ôk and Õk for k ∈ {2, . . . ,K −1}
ensure smoothness and continuity, and Ô1, Õ1 gives
S(é1) = S(éK ) = 0.

é2 é3 é4 é5
Ó1

Ó2
Ó3

Ó4

Ó= max{Ó1, . . . ,Ó4}

L(x)
S(x)
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An illustrative example

I Consider the function

h(x) = x · sinx + x/10.
2 4 6 8

5

h(x)

I The convex underestimators are then

ĥ1(x) = x · sinx + x/10+Óx2 − Ŵ

for the reformulated ÓBB understimator using constant Ó
and

ĥ2(x) = x · sinx + x/10+S(x)− Ŝ

for the reformulated spline ÓBB underestimator, where Ŵ
is the PLF of W = Óx2 and Ŝ is the PLF of the spline
function S(x).
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An illustrative example

2 4 6 8

−60
−40
−20

20

h(x) ĥ1(x) ĥ2(x)

2 4 6 8

100

200

x

W Ŵ

2 4 6 8

−60

−40

−20

x

S Ŝ

ĥ1(x) = x · sinx + x/10+ Óx2 − Ŵ Ó= 4.10293

ĥ2(x) = x · sinx + x/10+ S(x)− Ŝ

Ŵ is the PLF of W = Óx2 and Ŝ is the PLF of S(x)
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An illustrative example

2 4 6 8
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h(x) ĥ1(x) ĥ2(x)

2 4 6 8
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x

W Ŵ

2 4 6 8
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x

S Ŝ

W(x) = 4.1x2 S(x) = 4.1x2 −32.8x ,0 ≤ x ≤ 8
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An illustrative example

2 4 6 8

−20
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h(x) ĥ1(x) ĥ2(x)

2 4 6 8

100

200

x

W Ŵ

2 4 6 8

−60

−40

−20

x

S Ŝ

W(x) = 4.1x2 S(x) =

1.6x2 −17.8x 0 ≤ x ≤ 4

4.1x2 −37.8x +40.0 4 ≤ x ≤ 8
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An illustrative example

2 4 6 8
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h(x) ĥ1(x) ĥ2(x)

2 4 6 8
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2 4 6 8
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x

S Ŝ

W(x) = 4.1x2 S(x) =


1.6x2 −11.7x 0 ≤ x ≤ 4

1.1x −25.6 4 ≤ x ≤ 6

4.1x2 −48.1x +122.1 6 ≤ x ≤ 8



5. A reformulation algorithm for solving C 2 MINLP problems 77 | 89

An illustrative example

2 4 6 8
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h(x) ĥ1(x) ĥ2(x)

2 4 6 8
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W Ŵ

2 4 6 8

−60
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x

S Ŝ

W(x) = 4.1x2 S(x) =


1.3x2 −10.7x 0 ≤ x ≤ 2

1.6x2 −11.8x +1.1 2 ≤ x ≤ 4

1.1x −24.5 4 ≤ x ≤ 6

4.1x2 −48.2x +123.2 6 ≤ x ≤ 8
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Generalization to N dimensions

I The formulation can easily be extended from one to N
dimensions by using the underestimators

h(x)+
N¼

i=1

(
Ói x

2
i − Ŵi

)
≤ 0, x= (x1,x2, . . . ,xN ), or

h(x)+
N¼

i=1

(
Si (xi )− Ŝi

)
≤ 0, x= (x1,x2, . . . ,xN ).

when using the reformulated versions of the original ÓBB
and spline ÓBB underestimators respectively.

I Here Ŵi is the PLF of Wi = Ói x
2
i and Ŝi is the PLF of Si .
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Reformulation or implementation in a global optimization

algorithm

I The underestimator can be used for reformulation or
directly implemented in a global optimization algorithm,
e.g., ÓGO, for solving nonconvex MINLP problems with
C 2-constraints, c.f., Lundell et al. (2013).

I A sequence of overestimated convex MINLP problems is
solved (see Eronen et al. (2012) for convex MINLP
methods) until the solution fulfills the constraints in the
original nonconvex problem.

I The feasible region of the overestimated convexified
problem is reduced in each iteration by improving the PLFs
of W = Ói x

2
i or S(x).
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The original nonconvex MINLP problem

minimize f(x1,x2) = (2x1 −4)2 +(x2 −13/2)2

subject to x1 cos2 x2 + x2 sin2 x1 −3/x2︸                                ︷︷                                ︸
h(x1,x2)

+x1/2−5/2︸      ︷︷      ︸
q(x1)

≤ 0,

2 ≤ x1 ≤ 4, 2 ≤ x2 ≤ 8, x1 ∈�, x2 ∈�.

2 2.5 3 3.5 4 2
3

4
5

6
7

8
0

5

x1

x2

h
+

q

2 2.5 3 3.5 4
2

3

4

5

6

7

8

2 4
2

3

4

5

6

7

8

x1

x2

h +q ≤ 0



5. A reformulation algorithm for solving C 2 MINLP problems 80 | 89

The original nonconvex MINLP problem

minimize f(x1,x2) = (2x1 −4)2 +(x2 −13/2)2

subject to x1 cos2 x2 + x2 sin2 x1 −3/x2︸                                ︷︷                                ︸
h(x1,x2)

+x1/2−5/2︸      ︷︷      ︸
q(x1)

≤ 0,

2 ≤ x1 ≤ 4, 2 ≤ x2 ≤ 8, x1 ∈�, x2 ∈�.

2 2.5 3 3.5 4 2
3

4
5

6
7

8
0

5

x1

x2

h
+

q

2 2.5 3 3.5 4
2

3

4

5

6

7

8

2 4
2

3

4

5

6

7

8

x1

x2

h +q ≤ 0



5. A reformulation algorithm for solving C 2 MINLP problems 81 | 89

The reformulated MINLP problem

minimize f(x1,x2) = (2x1 −4)2 +(x2 −13/2)2

subject to x1 cos2 x2 + x2 sin2 x1 −3/x2 + x1/2−5/2

+S1(x1)+S2(x2)− Ŝ1 − Ŝ2 ≤ 0,

Ŝ1 = PLF(S1(x2),V1; Ò1), Ŝ2 = PLF(S2(x2),V2 ; Ò2),

2 ≤ x1 ≤ 4, 2 ≤ x2 ≤ 8, x1 ∈�, x2 ∈�,
Vi and Òi are sets including the variables

and breakpoints in PLFi of Si (x1)

I This reformulated problem is convex in the extended
variable space consisting of the original variables x1 and
x2, as well as, those needed for the PLFs in V1 and V2.
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ÓGO iteration 1
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ÓGO iteration 2
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ÓGO iteration 2
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ÓGO iteration 3
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ÓGO iteration 4
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ÓGO iteration 5 and 6
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Iter. Regions f(x1,x2) x1 x2 h(x1,x2)+q(x1)
1 1 0.2500 2.0 7 4.9959
2 4 0.2500 2.0 6 4.9959
3 9 0.2500 2.0 7 4.9959
4 16 3.3630 2.52749 5 0.0273
5 20 3.3767 2.53074 5 0.0139
6 24 3.3848 2.53263 5 0.0061
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Summary

1. Introduction – a short background to MINLP

2. Some aspects on convex MINLP algorithms
. Convex functions and convex sets
. Smooth and nonsmooth functions

3. A new algorithm for solving convex MINLP problems

4. Aspects on solving nonconvex MINLP problems
. Convex relaxations in BB and relaxation frameworks
. Convex envelopes of functions or level sets

5. A reformulation algorithm for solving C 2 MINLP problems
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The end of the presentation

Thank you for listening!

The presentation including relevant references will be
available at www.abo.fi/ose
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