

Basics in Process Design

Project cost estimation

- X Block flow diagrams
- Calculate flows from mass and energy balances
- X Rough sizing of equipment for
 - storage
 - preprocessing
 - reaction
 - separation,
 - heat exchange transport
- Instrumentation
- Cost estimates

Cost

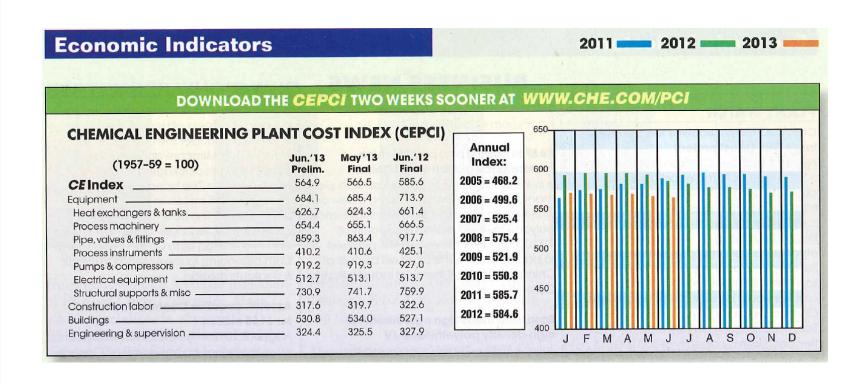
- Capital cost = cost of building the process plant (planning, equipment, construction ...)
- Operating cost = cost of running the process plant (raw materials, energy, waste handling, salaries ...)
- Profit = Income from sales capital costs operating costs

Reading

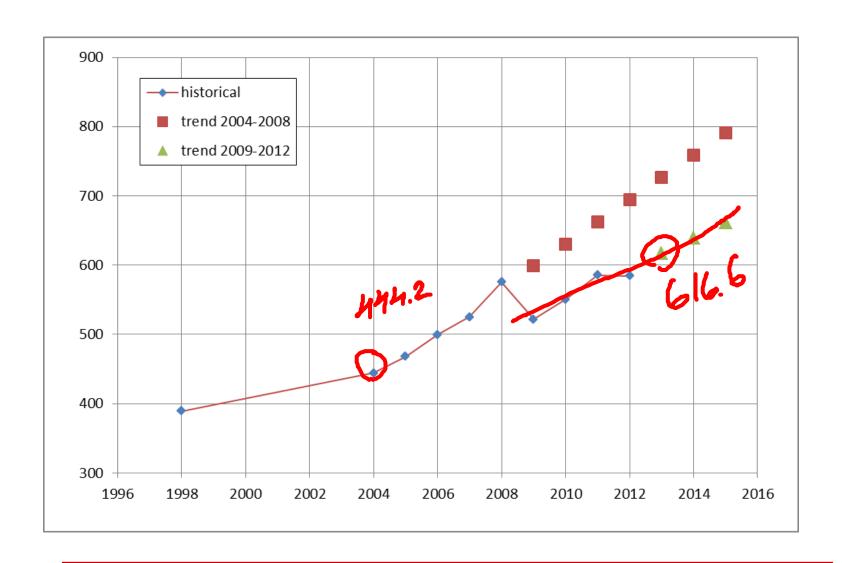
- The methods and data described are taken from chapter 6 in Chemical Engineering Design by R. K. Sinnott (vol. 6 in Coulson&Richardsons Chemical engineering).
- http://site.ebrary.com/lib/abo/docDetail.action? docID=10186190

Time value of money

- Changes in cost
 - Measured as inflation
- Interest on loans
- Cost indexes
 - Cost index as a function of time
 - Cost of equipment of same type but different size
 - Cost estimates



Plant cost index


Chemical Engineering,

http://www.che.com/Assets/File/CEPCI_I_0I-2002.pdf

Plant cost index

Plant size

Estimate of capital cost related to plant capacity

$$C_2 = C_1 \left(\frac{S_2}{S_1}\right)^n$$

- C_2 cost of plant with capacity S_2
- C_1 cost of plant with capacity S_1

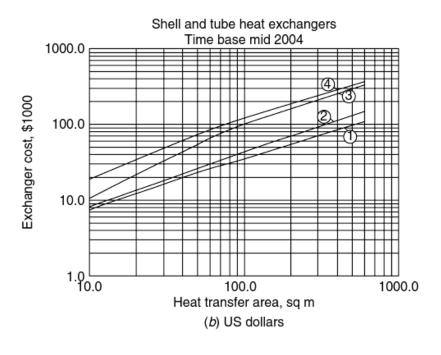
$$n = 0.6$$

Cost estimation

- Factorial method
 - Estimate total cost of major equipment (PCE or Ce)
 - Estimate total fixed capital cost using Lang factor (value depends on type of process)

$$Cf = f_L \cdot Ce$$

Cf = total fixed capital cost


Ce = total cost of major equipment cost

 $f_i = \text{Lang factor}$

Equipment cost

Materials		Pressure factors		Type factors		
Shell	Tubes	1-10 bar	× 1.0	Floating head	× 1.0	
1 Carbon steel	Carbon steel	10-20	× 1.1	Fixed tube sheet		
② C.S.	Brass	20-30	× 1.25	U tube	\times 0.85	
③ C.S.	Stainless steel	30-50	× 1.3	Kettle	× 1.3	
(4) S.S.	S.S.	50-70	× 1.5			

Figure 6.3a, b. Shell and tube heat exchangers. Time base mid-2004 Purchased cost = (bare cost from figure) \times Type factor \times Pressure factor

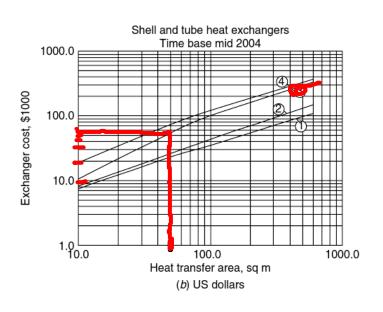
Ancilliary equipment

Cost= C.S

Table 6.2. Purchase cost of miscellaneous equipment, cost factors for use in equation 6.7. Cost basis mid 2004

Equipment	Size	Size	Con	stant	Index	Comment
	unit, S	range	C,£	C,\$	n	
Agitators						
Propeller	driver	5-75	1200	1900	0.5	
Turbine	power, kW		1800	3000	0.5	
Boilers						
Packaged	· >					oil or gas fired
up to 10 bar	kg/h steam	$(5-50) \times 10^3$	70	120	0.8	
10 to 60 bar			60	100	0.8	
Centrifuges						
Horizontal basket	dia., m	0.5-1.0	35,000	58,000	1.3	carbon steel
Vertical basket			35,000	58,000	1.0	$\times 1.7$ for ss
Compressors						
Centrifugal	driver	20-500	1160	1920	0.8	electric,
-	power, kW					max. press.
Reciprocating			1600	2700	0.8	50 bar
Conveyors						
Belt	length m	2-40				
0.5 m wide			1200	1900	0.75	
1.0 m wide			1800	2900	0.75	
Crushers						
Cone	t/h	20-200	2300	3800	0.85	
Pulverisers	kg/h		2000	3400	0.35	

Example


Estimate the cost of the following equipment 2014 using data from 2004:

- I. A shell and tube heat exchanger, heat transfer area 50 m², floating head type, carbon steel shell, stainless steel tubes, operating pressure 25 bar.
- 2. A horizontal, cylindrical storage tank, 3 m diameter, 12 m long, used for liquid chlorine at 10 bar, material carbon steel.
- 3. Turbine agitator, 20 kW drive.

Heat exchanger

 $(ost = 55.10) \cdot 1.25 \cdot 1.05 = 68750$

Materials		Pressure factors		Type factors				
_	Shell	Tubes		1-10 bar	× 1.0	Floating head	x 1	1.0
(1)	Carbon steel	Carbon steel		TU-20	1.1	Fixed tupe sneet	×ι	J.8
(2)	C.S.	Brass		20_30	v 1.25	U tube	× (0.85
<u>(3)</u>	C.S.	Stainless steel		30-50	× 1.3	Kettle	\times 1	1.3
(4)	S.S.	S.S.		50-70	× 1.5			

Figure 6.3a, b. Shell and tube heat exchangers. Time base mid-2004 Purchased cost = (bare cost from figure) \times Type factor \times Pressure factor

Pressure vessel

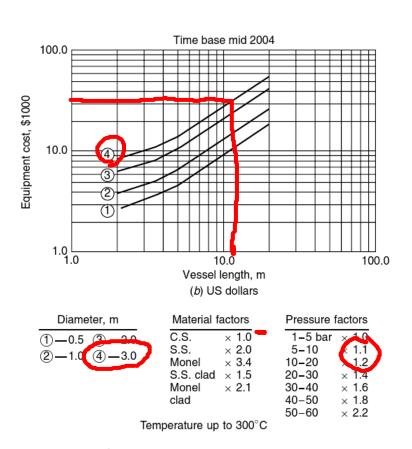
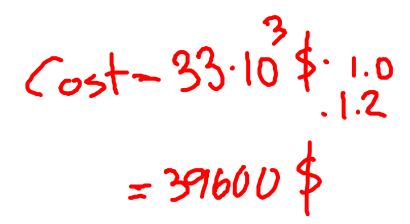



Figure 6.6a, b. Horizontal pressure vessels. Time base mid-2004. Purchase cost = (bare cost from figure) \times Material factor \times Pressure factor

Turbine agitator

Table 6.2. Purchase cost of miscellaneous equipment, cost factors for use in equation 6.7. Cost basis mid 2004

Equipment	Size unit, S	Size range	Const C,£	c,\$	Index n	Comment
Agitators Propeller Turbine Boilers	driver power, kW	5-75	1200 1800	1900 3000	0.5	
Packaged up to 10 bar 10 to 60 bar	kg/h steam	$(5-50) \times 10^3$	70 60	120 100	0.8 0.8	oil or gas fired

$$Cost = 30004.20^{0.5}$$

$$= 134164$$

Total

$$68750$$
 39600
 13416
 121766
 3004
Coctin 2013 = 121766 \$\frac{6166}{444.2}\$
= 169025 \$\frac{1}{2170000}\$

Questions?

