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Monotonicity and Saturation Rule

1 Introduction

The paper of Loynes [8] was the first to consider a system (single server queue, and, later,
queues in tandem) with stationary-ergodic driver. The classical recursion X, 11 = (X, +
&,)T studied by Loynes is monotone. There is a variety of monotone models (including
queues in tandem, multi-server queues, Jackson-type networks, etc.) for which one can
develop a unified approach for stability study. Here we provide a short survey, see the
references for more details.

2 Single-server queue revisited

Consider a single server queue with interarrival times o,, and service times t,,. Assume that
a sequence {(oy,ty)} is stationary with finite means b = Eoy and a = Et; and satisfies the
SLLN, i.e.

1 1
ﬁZO’Z‘:b and ﬁZti:a a.s. (1)
—Nn —n
A sufficient condition for (1) to hold (but not necessary in general — see, e.g., a discussion

in [6]) is that a sequence {(on,t,)} is ergodic (see, e.g., Lecture 1 for definitions).

Assume further that b < a. Assume also, for simplicity, that customer 1 arrives in an
empty queue. Let W,, be a waiting time of customer n. Then W; = 0 and

n—1
W= 2 )
i=j
Also, {W,,} satisfy the following recursion
W1 = max(0, W), + o, — tp). (2)



Note that W,, coincides in distribution with

W, o6 ™= max E o; —t;).
" —n+1<5<0 4 ,( i i)
i=j

The latter sequence increases a.s. and “couples” with an a.s. finite limit

= supz

j<0

due to the SLLN (1). One can also define, for any m,

= supz

]<m

Then {WW™} is a stationary sequence and
W — max(0, W™ + g, — tim).
Thus, this is a stationary solution to recursive equation (2).

Exercise 1. Show that this is the only stationary solution.

3 Tandem of two single-server queues

Tandem queue will be our toy example.

Consider an open network with two single-server stations in tandem. Customers arrive
to the first station with interarrival times {t,} and form a queue there. In this example, it
is convenient to assume that ¢, is an interarrival time between customers n — 1 and n. A
server serves them in order of arrival with service times {a,ﬁl)}. Upon service completion,
customers go to the second station where are served also in order of arrival with service
times {07(12)}. Assume that customer 1 arrives in an empty system. Denote by Z, a sojourn
time of customer n. Then

Zn = U%l) + 0‘§2)

and, more generally, for any n > 1,

_ )L L0 N,
Zn_lgll[cngaqffgn (Zk:aj +Zaj —ZQ) (3)

k+1

Exercise 2. Prove formula (3).

(1) _(2)

It is known that if a sequence {(op ', 05, tn)} is stationary ergodic and if

max(b(1), b))
a

<1 (4)

where b(") = Eagi) and a = Etp, then a distribution of Z,, converges to a limiting stationary
distrribuion in the total variation norm.



Exercise 3. Show that if there is the opposite strict inequality in (4), then a sequence
{Z,} tends to infinity a.s.

. . 1 . . .
In order to introduce a recursive scheme, let ZT(L ) be a sojourn time of customer n in

the first system (i.e. a sum of a waiting time and of service time 0’,(11)). Then ZF) = 0%1)
and we get the following recursive relations:

Z7(11—21 = max(O, Z7(Ll) - thrl) + U'ELl—i)-la
Zpt1 = maX(Zr(Ll—gla Zy —tny1) + 0-1(12—1)-1'

In other words, introduce a function f : R> — R? as follows:

(@1, 22,91, y2,y3) = (max(0, 21 — y3) + y1, max(max(0, 1 — y3) + y1, T2 — ¥3) + ¥2).

Then f is monotone non-decreasing in (x1,x2), and we get a recursion

(21, Zosa) = F(Z9, Z), Ensa)

where &,11 = (0&21, 0'7(,?_1)_1,tn+1).

4 General statements on monotone and homogeneous recur-
sions

There are many applications, especially in queueing networks, where monotonicity in the
dynamics can be exploited to prove existence and uniqueness of stationary solutions. Al-
though the theory can be presented in the very general setup of a partially ordered state
space (see Brandt et al. [6]) we will only focus on the case where the state is R?. Consider
then the SRS

Xn+1 = f(Xna€n+1) = 9071+1(X7l)

and assume that g : Ri — Ri is increasing and right-continuous, where the ordering
is the standard component-wise ordering on Rﬁlr. Let 6 be stationary and ergodic flow on
(Q,.#, P) and assume that ¢, = ¢po8", n € Z. In other words, {y,} is a stationary-ergodic
sequence of random elements of the space of right-continuous increasing functions on Ri.
We first explain Loynes’ method. Define

Thus, ®,(Y) is the solution of the SRS at n > 0 when Xy =Y, a.s. Since 0 is the least
element of (R4, <), we have ®,(0) < ®,(Y), a.s., for any R%—valued r.v. Y. Next consider
P (0)007" = 5+ 0-m41(0), n>-—m,
and interpret ®,,,,(0) as the solution of the SRS at time n > —m, starting with 0 at time

—m. Clearly, ®,,4,(0) increases as m increases, because:
D (s 1)n (000 M) = 00 10 (11 (0)

= n - P—mt+1(P—(m11)(0))
2> PnP—mel (0) = <I>m+n(0)09_m.



Finally define

X, = lim @, ,(0)0™™, neZ.

m—0o0

The r.v. X, is either finite a.s., or is infinite a.s., by ergodicity. Assuming that the first case
holds, we further have

Xn+1 = lim (I)m+(n+1)(0)09_m

m—00

= lIm Qmint1@men - @1(0)o0" "
m—0o0

= lim Ypt19n - ©—m+1(0)
m—0o0

= lim Q0n+1(S0n o @—m+l (O))
m—0o0

= lim Qi1 (Dpan(0)o0 ™)
m—0o0

= Pnt1(Xn)-

Provides then that we have a method for proving P(XON < o0) > 0, Loynes’ technique results
in the construction of a stationary-ergodic solution {X,} of the SRS.

For a tandem queue, we get
X, = (Zz1,z2,)00™

-1

k 0 0
_ (1) M _ 4 (1 2 _ ,
B R 5% 2o ~t), —n12i%k<0 (Z T zk: v 2 tj)

j=i i+1
and clearly this sequence increases a.s. Here, by convention, > ;... =01is ¢ > r.
Consider another example of a multiserver queue.

Example. A multiserver queue G/G/s with s servers and FCFS service discipline.

Customers arrive with interarrival times {¢,} and have service times {0, } (service times
are associated with customers, not with servers. Upon arrival to the system, a customer
is immediately sent to a server (one of servers) with a minimal workload. At each server,
customers are served in order of arrival. Denote by V;, ; a workload of server i just before
arrival of nth customer. Let R be an operator that orders coordinates of a vector in the
non-decreasing order. Let

Wyn=RVpa,... Vo).

Then vectors {W,,} satisfy the following recursive equation (“Kiefer-Wolfowitz”):
Wiy = R(Wn +ejoy — itn+1)+

Here 7 = max(z,0) (coordinatewise), and e; = (1,0,...,0) and i = (1,1,...,1).
Exercise 4. Show the monotonicity of the latter recursion.

Return to the general setting. Without further assumptions and structure, not much
can be said. Assume next that, in addition, g is homogeneous, i.e.,

wo(x + 1) = po(z) + 1,



for all x € Ri and all ¢ € R. Such is the case, e.g., with the usual Lindley function
o : Ry — Ry, with ¢g(x) = max(z+&p,0). The homogeneity assumption is quite frequent
in queueing theory. It is easy to see that

lpo(z) — wo(y)] < |z —yl,

where |z| := max(|z1], ..., |zq]). Suppose then that {X,}, {Y,,} are two stationary solutions
of the SRS. Then

| Xnt1 = Yori| = [@nt1(Xn) — onr1(Ya)| < X0 — Yal, (5)

for all n, a.s., and since {|X,, — Y,|,n € Z} is stationary and ergodic, this a.s. monotonicity
may only hold if |X,, — Y,| = r, for some constant » > 0. Thus, a necessary and sufficient
condition for the two solutions to coincide is that,

P(|o1(Xo) — ¢1(Yo)| < [Xo — Yo[) > 0. (6)

Remark. Conditions (5) and (6) form the basic for the so-called contraction approach.

A classical example where, in general, (5) holds but (6) fails is the G/G/s queue, that is,
the s-server queue with stationary-ergodic data. Let A, p be the arrival and service rates,
respectively. Here, there is a minimal and a maximal stationary solution which, provided
that A < s, may not coincide. For details see Brandt et al [6]. But condition (6) holds if
the “driving” sequences are i.i.d. (or satisfy a weaker “mixing” condition). Also condition
(6) holds for the tandem queue with stationary and ergodic driving sequences. This is
Exercise 5 to you.

5 The Monotone-Homogeneous-Separable (MHS) framework

Consider a recursion of the form

Wn+1 - f(Wn7 £n+17 TnJrl)a

where &, are general marks, and 7,, > 0. The interpretation is that 7, is the interarrival
time between the n — 1-th and n-th customer, and W), is the state just after the arrival of
the n-th customer. We consider arrival epochs {7} such that T},+; — T}, = 7,,. We write
Winn for the solution of the recursion at index n when we start with a specific state, say 0,
at m < n. Finally we consider a functions of the form

X[m,n] - fernfl(Wm,n; Tm’ sy Tna €m+17 cee 7571)7

which will be thought of as epochs of last activity in the system. For instance, when we
have an s-server queue, X |m,n| represents the departure time of the last customer when
the queue is fed only by customers with indices from m to n. Correspondingly, we define
the quantity

Z[m,n] = X[m,n] — T,

the time elapsed between the arrival of the last customer and the departure of the last
customer. The framework is formulated in terms of the X, ], Z[ ) and their dependence
on the {7,,}. For ¢ € R, let {T},} + ¢ = {1}, + ¢}. For ¢ > 0, let ¢{T},} = {cT,,}. Define
{T,} <A{T)} if T,, < T for all n. We require a set of four assumptions:



[m,n]”

The first assumption is natural. In the second one, X [’m n] Are the variables obtained by
replacing each T,, by T} ; it says that delaying the arrival epochs results in delaying of the
last activity epochs.

(A3) {T0} = (T} + = X[,y = X + -

[m,n

This is a time-homogeneity assumption.
(A4) Form</</{+1<n, X[m,é} <Tp = X[m,n] = X[E—f—l,n]-

If the premise X, g < Ty41 of the last assumption holds, we say that we have separability
at index £. It means that the last activity due to customers with indices in [m, ¢] happens
prior to the arrival of the £ + 1-th customer, and so the last activity due to customers
with indices in [m,n] is not influenced by those customers with indices in [m,¢]. Basic
consequences of the above assumptions are summarized in:

Lemma 1. (i) The response Zimm) depends on Tp, ..., T, only through the differences
Tmysy++9sTn—1-

(ii) Let a < b be integers. Let T,, = Ty, + ZapL(n > b), T)) = T,y = ZjgpL(n < b).
And let X['mvn], X[,’:n,n] be the corresponding last activity epochs. Then both of them exhibit
separability at index b.

(i4i) The variables X{y, n); Zjm,n) increase when m decreases.

(iv) Fora <b<b+1<e¢, Zjgq < Zap + Zps1,d-

Proof. (i) Follows from the definition Zj;, ) = X, ) — T and the homogeneity assumption
(A3).

(ii) Obviously, Z[a,b] <7+ Z[a,b]v and so X[a,b} Ty, < 1+ Z[a,b]a which implies X[a,b} <
Tp+1+ Zja,p- The right-hand side is T 11, by definition. The left-hand side is equal to X [’a’b]
because T = T,, for n < b. So X[’a b] <T 41 and this is separability at index b. Similarly
for the other variable.

(iii) Let @ = b = m in (ii). Since we have separability at index m, we conclude that
X[’;n,n] = X[’;Hl’n]. But T} = T}, for k € [m + 1,n] and so X[/;n—l—l,n] = Xjm+1,n)- On the
other hand, {7}'} < {T}} and so, by (A2), Xf;ﬂ ] < Xpmn)- Thus X, ) > Xjpppq,5). And
S0 Zimn) 2 Zim+1,n) also.

(iv) Apply (ii) again. Since {T}} < {T}.}, (A2) gives X[, < X[’a o- By separability at index
b, as proved in (ii), we have X[’a q= X[,b+1 .- Because Ty =Ty + Zjgp) for all k € [b+1,¢],
we have, by (A3), X[’bJrLc} = Xppt1,q T Z[ap)- Thus, Xjq < Xpt1,e + Z[ap)- Subtracting Tt
from both sides gives the desired. O

Introduce next the usual stationary-ergodic assumptions. Namely, consider (Q2,.%,P)
and a stationary-ergodic flow 0. Let &, = &yo0", 7, = 190", set Ty = 0, and suppose
Em = A7! € (0,00), EZyo < oo. Stability of the original system can, in specific but
important cases, be translated in a stability statement for Zj,, ). Hence we shall focus on
it. Note that Z[m,n]oek = Zm+kntr) for all k € Z. For any ¢ > 0, introduce the epochs

6



cATn} = {cTn} and let Xy, 5(c); Zjmp)(c) be the quantities of interest. The subadditive
ergodic theorem gives that

1 .1
V(C) = lim Z[ nfl}( )_ lim *EZ[fn,fl](C)

n—oo n n—oo n

is a nonnegative, finite constant. The previous lemma implies that vy(c) > (¢’) when ¢ > ¢/.
Similarly, limn~' Xy ,,)(¢) = 7(c) + A7 !¢, and the latter quantity increases as ¢ increases.

Monotonicity implies that Z_, _;j(c) increases as n increases, and let Z(c) be the limit.
Ergodicity implies that P(Z(c) < oo) € {0,1}. Put Z = Z(1). The stability theorem' is:

Theorem 1. If \y(0) < 1 then P(Z < 00) = 1. If \y(0) > 1 then P(Z < oc) = 0.

Proof. Assume first that Ay(0) > 1. Fix n > 1. Define T} = 7", for all k € Z. Hence
X[’_mo](l) < Xi_no(1) = Z_p0(1), by (A2). On the other hand, by (A3), X[’_mo](l) =
X_n0)(0) + Ty = Z|_p 0)(0) + T—pp. Thus, n™'Z_,, q)(1) > n_lZ[_n’OJ(O) +n71T_,, and,
taking limits as n — oo, we conclude liminf n™'Z_, 5j(1) > 4(0) = A~" > 0, a.s.

Assume next that Ay(0) < 1. Let 7, (0) := EZ|_,, 11 ,0)(0)/n. Since y(0) = limp, o0 71(0) =
inf,, 7,(0), we can find an integer K such that A\yx(0) < 1. Consider next an auxiliary
single server queue with service times o}, := Z|_gy,41 K (n-1)(0) and interarrival times

Z_K(;nil t;. Notice that {(t},s)),n € Z} is a stationary sequence which satisfies
the SLLN. Consider the waiting time W), of this auxiliary system: W, 11 = (W, +s% —t:)T.
Since Es? = v < A1 = Et}, the auxiliary queue is stable. Since the separability property
holds, we have the following domination:

Z[—nK—i—l,O](l) < Wnoa_n + 867 a.s.,

where W), here is the waiting time of the n-th customer if the queue starts empty. By
the Loynes’ scheme, W,,00™" converges (increases) to an a.s. finite random variable. Hence
Z =lim, Z_, k41,0 (1) is also a.s. finite. O]

Example Consider a tandem queue and find v(0). Let b = max(b(), b)), Then
— 2z (1)
~v(0) = nhm - 01<na><<n ( g o; + E a >
.1 (1) 2)
> 1 ; :
2 lim— max (_En a; 7, _En o;

= b

;From the other side, assume that, say, b = b() > b2, Then

0
v(0) = lim— (Za()+01<11a><< (O’Z@)—O‘Z(l)))
< i My —y @
< fmg ZU mi%Z

IThis is known as the “saturation rule”



where the supremum in the RHS is finite a.s. and does not depend on n. Therefore, the
second term tends to 0 a.s. Thus, 7(0) = b. The same conclusion holds if b < b() (by the
symmetry) and if b(1) = b(2) (Why ?? - this is Exercise 6 for you !)

Exercise 7. Using Theorem 1, find stability conditions for G/G/s queue.

6 Saturation rule for large deviations

The proposed construction of an upper single-server queue may be of use not only for
staibility study, but also for study of large deviations.

We consider here only an example of a tandem queue. In this section, we assume that
three driving sequences {07(11)}, {07(12)}, and {t,} are mutually independent and each of them
consists of i.i.d.r.v.’s. We assume also that the stability condition a > b holds. We are
interested in the asymptotics for P(Z > z) as x — oo. For the simplicity,

— we consider only the case when both distributions of random variables o) and ¢ are
light-tailed, and
— we study only the logarithmic asymptotics: logP(Z > z) ~ .. ..

For i = 1,2, let () (u) = Eexp(uagi)) and ¢, (u) = Eexp(ut;). Let
7 =supfu oV (w)er(—u) < 1}.
Theorem 2. If both vV and 42 are positive, then
—logP(Z > z) ~ vz

where v = min(y(M, ~2)),

SKETCH OF PROOF. Since Z > Z(1),

lim sup
T—00

Similarly, consider an auxiliary system where service times in the first queue are replaced
by zeros. Then we get a single server queue with service times {0&2)} and interarrival times
{t,}. If we denote by Z (2) a stationary service time in this system, then Z() < Z and,
therefore,

—logP(Z
lim sup g P(Z > z) < 7(2).
T—00 X
Thus,

—logP(Z > x) <

lim sup
x

To obtain the lower bound, we take a sufficiently large K (see the proof of Theorem 1) and
an auxiliary upper single server queue. If we let

7" =sup{u : @+ (u)pe-(—u) < 1},

then one can show that
(a)lim inf —8—2=2 IOgP;(Z>x) > ¥,
(b) one can choose v* as close to  as possible.



Exercise 8. Complete the proof of Theorem 2.

Remark. The exact asymptotics for P(Z > z) in the heavy tail case have been found

in [3].
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