1 Appendix: the u.o.c. convergence

Let $f_n : \mathbf{R} \to \mathbf{R}$, n = 1, 2, ..., and $f : \mathbf{R} \to \mathbf{R}$ be any functions.

Definition 1. $\begin{cases} f_n \overset{\text{u.o.c.}}{\to} f \text{ as } n \to \infty, & \text{if, for any compact (bounded and closed) set } K, \\ \sup_{x \in K} |f_n(x) - f(x)| \to 0 \text{ as } n \to \infty. \end{cases}$

For any f and for any t > 0, define a norm $||f||_t$:

$$||f||_t = \sup_{|x| \le t} |f(x)|,$$

and a norm ||f||:

$$||f|| = \sum_{m=1}^{\infty} 2^{-m} \cdot \frac{||f||_m}{1 + ||f||_m}.$$

Lemma 1. $[f_n \stackrel{\text{u.o.c.}}{\to} f \iff ||f_n - f|| \to 0 \text{ as } n \to \infty.$

Indeed,

 (\Rightarrow) . $\forall \varepsilon > 0$, choose m_0 :

$$\sum_{n=m_0+1}^{\infty} 2^{-m} \equiv 2^{-m_0} \le \frac{\varepsilon}{2}$$

Then choose n_0 :

$$||f_n(x) - f(x)||_{m_0} \le \frac{\varepsilon}{2m_0} \quad \forall \ n \ge n_0.$$

$$\implies ||f_n - f|| \le \sum_{m=1}^{m_0} ||f_n - f||_m + 2^{-m_0} \le m_0 \cdot \frac{\varepsilon}{2m_0} + \frac{\varepsilon}{2} = \varepsilon.$$

(\Leftarrow). Let K be a compact non-empty set. Take $m_0 \gg 1$: $K \subseteq [-m_0, m_0]$. Set $g_n = f_n - f$. Then

$$||f_n - f|| \to 0 \implies 2^{-m_0} \cdot \frac{||g_n||_{m_0}}{1 + ||g_n||_{m_0}} \to 0 \implies ||g_n||_{m_0} \to 0 \implies \sup_{x \in K} |g_n(x)| \to 0.$$

Remark 1. $\begin{bmatrix} For ||f|| \text{ to be finite, all } ||f||_m \text{ have to be finite. This is always the case } \\ \text{if } f \text{ is, say, continuous or monotone.} \end{bmatrix}$

Remark 2. $\begin{bmatrix} \textit{If } f \textit{ is defined on a measurable subset } B \subset \mathbf{R} \textit{ only, we let } f(x) = 0 \\ \forall \, x \not\in B. \end{bmatrix}$

Remark 3. [Any (right- and/or left-) continuous function is determined by its values on a dense subset (e.g., by values at all rational points).

Let all f_n , n = 1, 2, ... be non-decreasing functions and f a continuous Let an f_n , n-1,-1,

function.

Then the following are equivalent:

(a) $f_n \stackrel{\text{u.o.c.}}{\to} f$;

(b) for any dense subset B of the real line, $f_n(x) \to f(x)$, $\forall x \in B$.

Lemma 2.

(a)
$$f_n \stackrel{\text{u.o.c.}}{\to} f$$
;

Proof.

(\Leftarrow Only!). Take any m and prove that $||f_n - f||_m \to 0$. Assume, by the contrary, that

$$\limsup_{n \to \infty} ||f_n - f||_m = C > 0 \quad \text{(Note: } C < \infty!\text{)}$$

 $\implies \exists \text{ a subsequence } \{n_l\}: \|f_{n_l} - f\|_m \to C,$

 \implies since [-m, m] is a compact set, \exists a sequence $\{x_l\} \to x \in [-m, m]$ such that $|f_{n_l}(x_l) - f(x_l)| \ge C/2, \ \forall \ l, \ x_l \in [-m, m].$

Choose $\delta > 0$: (i) $\delta \in B$;

(ii)
$$|f(x+\delta) - f(x)| \le C/4$$
.

Then

$$f_{n_l}(x_l) - f(x_l) = f_{n_l}(x_l) - f_{n_l}(x+\delta) + f_{n_l}(x+\delta) - f(x+\delta) + f(x+\delta) - f(x) + f(x) - f(x_l)$$

and

$$\lim_{l \to \infty} \sup (f_{n_l}(x_l) - f(x_l)) \le 0 + 0 + C/4 + 0 = C/4.$$

Similarly, choose $\tilde{\delta} > 0$: (i) $\tilde{\delta} \in B$;

(i)
$$\delta \in B$$
;
(ii) $f(x - \tilde{\delta}) - f(x) \le -C/4$.

Then

$$\lim_{l\to\infty}\inf(f_{n_l}(x_l)-f(x_l))\geq -C/4$$
 — we arrive at a contradiction!

Lemma 3.

[(The "triangular" scheme).
Let
$$D, d > 0$$
 and $\{f_n\}$: $\sup_{|x| \le d} |f_n(x)| \le D \ \forall n$.
Then \exists a subsequence $\{n_r\}$: \forall rational x ,
 \exists a limit $\lim_{r \to \infty} f_{n_r}(x) := f(x)$.

Proof. Number all rational points in [-d,d] in an arbitrary order: x_1,x_2,\ldots Start with the procedure:

Step 1. Since $|f_n(x_1)| \leq D \ \forall n, \quad \exists \text{ a subsequence } \{n_{l,1}\}: \{f_{n_{l,1}}(x_1)\} \text{ converges}$ (denote the limit by $f(x_1)$).

. . .

Step $\underline{r+1}$. Assume we have defined a sequence $\{n_{l,r}\}: f_{n_{l,r}}(x_i) \to f(x_i) \quad \forall i = 1, \dots, r \in \mathbb{N}$ $1, \ldots, r$. Since $|f_{n_{l,r}}(x_{r+1})| \leq D \,\forall l$, $\Longrightarrow \exists$ a subsequence $\{n_{l,r+1}\}: \{f_{n_{l,r+1}}(x_{r+1})\}$ converges (denote the limit by $f(x_{r+1})$).

 $\forall r = 1, 2, ..., \text{ we defined a sequence } \{n_{l,r}\}: f_{n_{l,r}}(x_i) \rightarrow f(x_i) \quad \forall i = 1, 2, ..., r$ $1,\ldots,r.$

Now: set $n_r = n_{r,r}$.

Note: $\forall r_0, \{n_r, r \geq r_0\}$ is a subsequence of $\{n_{l,r_0}\}$

$$\implies f_{n_r}(x_{r_0}) \to f(x_{r_0}).$$

(I). Assume, in addition, that $\exists C < \infty$: $\forall x, y \in [-d, d]$,

$$\limsup_{n \to \infty} |f_n(x) - f_n(y)| \le C|x - y|.$$

If f is any limit from Lemma 3, then

$$|f(x) - f(y)| \le C|x - y|, \quad \forall \text{ rational } x, y \in [-d, d].$$

Therefore,

- Corollary 1.
- (i) $\forall t \in [-d, d]$, one can define $f(t) = \lim_{x_l \to t} f(x_l)$, where $\{x_l\}$ are rational;
- (ii) this limit does not depend on $\{x_l\}$;
- (iii) f(t) is continuous in [-d, d] and

$$|f(t_1) - f(t_2)| \le C|t_1 - t_2|.$$

(II). If conditions (I) are satisfied \forall d and if all $\{f_n\}$ are non-

$$f_{n_r} \stackrel{\text{u.o.c.}}{\longrightarrow} f.$$

Problem No 1. Prove the corollary.

Definition 2.

A function f is Lipshitz continuous with parameter $C < \infty$ if $\forall x, y$ $|f(x) - f(y)| \le C|x - y|.$

$$|f(x) - f(y)| \le C|x - y|.$$

Theorem 1. Let
$$f: \mathbf{R} \to \mathbf{R}$$
 (or $f: \mathbf{R}_+ \to \mathbf{R}$) be Lipshitz continuous. Then

(a) $\exists a \text{ measurable set } B \equiv B(f) \subseteq \mathbf{R} \text{ (or } \subseteq \mathbf{R}_+): \lambda(B) = 0 \text{ and}$
 $\forall x \not\in B, \quad \exists f'(x) = \lim_{\Delta \to 0} \frac{f(x+\Delta) - f(x)}{\Delta}, \quad |f'(x)| \leq C.$

(b) Let $f'(x) = 0$ for $x \in B$. Then $\forall x, \quad \forall t > 0$

$$f(x+t) - f(x) = \int_x^{x+t} f'(z) dz.$$

$$f(x+t) - f(x) = \int_{x}^{x+t} f'(z)dz.$$

Definition 3. Any point $x \notin B$ is a <u>regular point</u> of f.

Corollary 2. $\begin{bmatrix} Let \ f: \mathbf{R}_{+} \to \mathbf{R}_{+} \ be \ Lipshitz \ continuous, \ f(0) > 0. Assume \ \exists \ \varepsilon > 0 \ : \\ \forall \ regular \ point \ t \geq 0, \ if \ f(t) > 0, \ then \ f'(t) \leq -\varepsilon. \\ Then \ \exists \ t_{0} \leq \frac{f(0)}{\varepsilon} \ : \ f(t) = 0 \ \ \forall \ t \geq t_{0}. \end{cases}$

Proof.

First, if $f(t_0) = 0$, then f(t) = 0 $\forall t \ge t_0$, since $f(t) - f(t_0) = \int_{t_0}^t f'(z)dz \le 0$. Second. if f(t) > 0 $\forall t < \frac{f(0)}{t_0}$, then Second, if f(t) > 0 $\forall t \leq \frac{f(0)}{\varepsilon}$, then

$$f\left(\frac{f(0)}{\varepsilon}\right) \le \int_0^{f(0)/\varepsilon} (-\varepsilon)dz + f(0) \le 0.$$