
1 Appendix: the u.o.c. convergence

Let fn : R→ R, n = 1, 2, . . ., and f : R→ R be any functions.

Definition 1.


fn

u.o.c.→ f as n→∞, if, for any compact (bounded and closed) set K,

sup
x∈K
|fn(x)− f(x)| → 0 as n→∞.

For any f and for any t > 0, define a norm ‖f‖t :

‖f‖t = sup
|x|≤t

|f(x)|,

and a norm ‖f‖ :

‖f‖ =
∞∑

m=1

2−m · ‖f‖m
1 + ‖f‖m

.

Lemma 1.
[
fn

u.o.c.→ f ⇐⇒ ‖fn − f‖ → 0 as n→∞.

Indeed,

(⇒). ∀ ε > 0, choose m0:
∞∑

m=m0+1

2−m ≡ 2−m0 ≤ ε

2

Then choose n0:

‖fn(x)− f(x)‖m0 ≤
ε

2m0

∀ n ≥ n0.

|=⇒ ‖fn − f‖ ≤
m0∑

m=1

‖fn − f‖m + 2−m0 ≤ m0 ·
ε

2m0

+
ε

2
= ε.

(⇐). Let K be a compact non-empty set. Take m0 � 1: K ⊆ [−m0,m0]. Set

gn = fn − f . Then

‖fn − f‖ → 0 |=⇒ 2−m0 · ‖gn‖m0

1 + ‖gn‖m0

→ 0 |=⇒ ‖gn‖m0 → 0 |=⇒ sup
x∈K
|gn(x)| → 0.

ut

Remark 1.

[
For ‖f‖ to be finite, all ‖f‖m have to be finite. This is always the case

if f is, say, continuous or monotone.

Remark 2.

[
If f is defined on a measurable subset B ⊂ R only, we let f(x) = 0

∀ x 6∈ B.

Remark 3.

[
Any (right- and/or left-) continuous function is determined by its val-

ues on a dense subset (e.g., by values at all rational points).
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Lemma 2.



Let all fn, n = 1, 2, . . . be non-decreasing functions and f a continuous

function.

Then the following are equivalent:

(a) fn
u.o.c.→ f ;

(b) for any dense subset B of the real line, fn(x)→ f(x), ∀ x ∈ B.

Proof.

(⇐ Only!). Take any m and prove that ‖fn − f‖m → 0. Assume, by the contrary,

that

lim sup
n→∞

‖fn − f‖m = C > 0 (Note: C <∞!)

|=⇒ ∃ a subsequence {nl}: ‖fnl
− f‖m → C,

|=⇒ since [−m,m] is a compact set, ∃ a sequence {xl} → x ∈ [−m,m] such that

|fnl
(xl)− f(xl)| ≥ C/2, ∀ l, xl ∈ [−m,m].

Choose δ > 0 : (i) δ ∈ B;

(ii) |f(x+ δ)− f(x)| ≤ C/4.
Then

fnl
(xl)−f(xl) = fnl

(xl)−fnl
(x+δ)+fnl

(x+δ)−f(x+δ)+f(x+δ)−f(x)+f(x)−f(xl)

and

lim sup
l→∞

(fnl
(xl)− f(xl)) ≤ 0 + 0 + C/4 + 0 = C/4.

Similarly, choose δ̃ > 0 : (i) δ̃ ∈ B;

(ii) f(x− δ̃)− f(x) ≤ −C/4.
Then

lim inf
l→∞

(fnl
(xl)− f(xl)) ≥ −C/4 — we arrive at a contradiction!

ut

Lemma 3.



(The “triangular” scheme).

Let D, d > 0 and {fn} : sup|x|≤d |fn(x)| ≤ D ∀ n.

Then ∃ a subsequence {nr} : ∀ rational x,

∃ a limit lim
r→∞

fnr(x) := f(x).

Proof. Number all rational points in [−d, d] in an arbitrary order: x1, x2, . . . Start

with the procedure:

Step 1. Since |fn(x1)| ≤ D ∀ n, ∃ a subsequence {nl,1}: {fnl,1
(x1)} converges

(denote the limit by f(x1)).

. . .
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Step r + 1. Assume we have defined a sequence {nl,r}: fnl,r
(xi) → f(xi) ∀ i =

1, . . . , r. Since |fnl,r
(xr+1)| ≤ D ∀ l, |=⇒ ∃ a subsequence {nl,r+1}: {fnl,r+1

(xr+1)}
converges (denote the limit by f(xr+1)).

. . .

Thus, ∀ r = 1, 2, . . ., we defined a sequence {nl,r}: fnl,r
(xi) → f(xi) ∀ i =

1, . . . , r.

Now: set nr = nr,r.

Note: ∀ r0, {nr, r ≥ r0} is a subsequence of {nl,r0}

|=⇒ fnr(xr0)→ f(xr0).

ut

Corollary 1.



(I). Assume, in addition, that ∃ C <∞: ∀ x, y ∈ [−d, d],

lim sup
n→∞

|fn(x)− fn(y)| ≤ C|x− y|.

If f is any limit from Lemma 3, then

|f(x)− f(y)| ≤ C|x− y|, ∀ rational x, y ∈ [−d, d].

Therefore,

(i) ∀ t ∈ [−d, d], one can define f(t) = limxl→t f(xl), where

{xl} are rational;

(ii) this limit does not depend on {xl};

(iii) f(t) is continuous in [−d, d] and

|f(t1)− f(t2)| ≤ C|t1 − t2|.

(II). If conditions (I) are satisfied ∀ d and if all {fn} are non-

decreasing, then

fnr

u.o.c.→ f.

Problem No 1. Prove the corollary.

Definition 2.

 A function f is Lipshitz continuous with parameter C <∞ if ∀ x, y

|f(x)− f(y)| ≤ C|x− y|.
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Theorem 1.



Let f : R→ R (or f : R+ → R) be Lipshitz continuous. Then

(a) ∃ a measurable set B ≡ B(f) ⊆ R (or ⊆ R+) : λ(B) = 0 and

∀ x 6∈ B, ∃ f ′(x) = lim
∆→0

f(x+ ∆)− f(x)

∆
, |f ′(x)| ≤ C.

(b) Let f ′(x) = 0 for x ∈ B. Then ∀ x, ∀ t > 0

f(x+ t)− f(x) =

∫ x+t

x

f ′(z)dz.

Definition 3.
[

Any point x 6∈ B is a regular point of f .

Corollary 2.

 Let f : R+ → R+ be Lipshitz continuous, f(0) > 0.Assume ∃ ε > 0 :

∀ regular point t ≥ 0, if f(t) > 0, then f ′(t) ≤ −ε.

Then ∃ t0 ≤
f(0)

ε
: f(t) = 0 ∀ t ≥ t0.

Proof.

First, if f(t0) = 0, then f(t) = 0 ∀ t ≥ t0, since f(t)− f(t0) =
∫ t

t0
f ′(z)dz ≤ 0.

Second, if f(t) > 0 ∀ t ≤ f(0)

ε
, then

f

(
f(0)

ε

)
≤
∫ f(0)/ε

0

(−ε)dz + f(0) ≤ 0.

ut
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