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Lecture 2

Lyapunov functions: Criteria for Positive Recurrence and for
Instability

1 History

Originally, Lyapunov functions were developed by A. Lyapunov in 1899 for the study of sta-
bility of dynamical systems described by ODE’s, mainly motivated by mechanical systems.
Since then, the methods based on Lyapunov functions have been extended to study stabil-
ity of dynamical systems of all kinds (chaotic systems, control systems, stochastic systems,
discrete systems, etc.)

2 Introduction

Our goal in this part of the lectures is to exemplify why and how Lyapunov functions work for
(Harris) Markov processes in a general state space. To avoid technicalities (which have not
fully resolved) we shall avoid continuous time and follow a more-or-less common convention
that a Markov chain is any discrete-time Markov process in a general state space.

The field of applications that interests us is those stochastic systems that appear to have
“simple evolution” “away from boundaries”. Highly-nonlinear but smooth stochastic sys-
tems are also interesting but more well-understood than our cases.

3 Lyapunov functions for Markov chaines

The problem of (stochastic) stability for a stochastic system described by a Markov chain
often (most of the time?) boils down to proving that some set is positive recurrent.
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The setup Our object of study is a Markov chain (Xn) with values in some general state
space S which will be assumed to be Polish (i.e. complete separable metric space). A
time-homogeneous Markov chain with values in S can be described either by its transition
probability kernel

P(x,B) = P(Xn+1 ∈ B | Xn = x) (1)

or by a stochastic recursion
Xn+1 = f(Xn, ξn), (2)

where the ξn are i.i.d. random variables. The existence of this explicit representation is
simple when S is countable (and technical when S is a Polish space). More precisely, such a
representation (2) exists for any time-homogeneous Markov chain taking values in the state
space whose sigma-algebra is countably generated.

Stationarity (stationary regime, stationary solution, etc.) This means existence of
a stationary Markov chain with the given transition kernel or, equivalently, existence of a
stationary probability measure π on S:

π(B) =
∫
S
π(dx)P (x,B).

Uniqueness is also often desirable.

Stochastic Stability This means stabilisation in time, or convergence of Xn, as n→∞,
in some stochastic sense.

We first realise that a.s. convergence (“in forward time”) is impossible, except in trivial
situations when we have absorbing states.

The weakest notion of convergence is that, for some x, the probability Px(Xn ∈ ·) converges
(weakly), as n→∞, to some proper probability distribution.

A stonger notion is to claim the above for all x ∈ S.

An even stronger notion is convergence in total variation.

Drift Let V : S → R+ be some function on the state space S of a Markov chain (Xn).
The drift of V in n steps is defined by

DV (x, n) := Ex[V (Xn)− V (X0)] = E[V (Xn)− V (X0) | X0 = x]

(provided the expectations exist) There is a space and a time argument in DV (x, n). It is
much more general and convenient to define the drift for a state-dependent time-horizon,
i.e. make n a function of x.

So, given a function g : S → N, we let

DV (x, g) := Ex[V (Xg(x))− V (x)].
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(Positive) Recurrence of a set For a measurable set B ⊆ S define

τB = inf{n ≥ 1 : Xn ∈ B}

to be the first return time1 to B if X0 ∈ B and the first hitting time, otherwise.

• The set B is called recurrent if

Px(τB <∞) = 1, for all x ∈ B.

• It is called positive recurrent if
sup
x∈B

ExτB <∞.

It is this last property that is determined by a suitably designed Lyapunov function.

Roughly speaking, we want to prove that if we can find a function V (the Lyapunov function)
such that the drift is negative outside a set, then the set is positive recurrent.

This is the content of Theorems 1 and 2 below. The first theorem is a particular case of the
second. That this property can be translated into a stability statement is the subject of a
next lecture.

Theorem 1. Suppose that the drift of V in one step satisfies, for some positive N0, c, and
H,

Ex[V (X1)− V (X0)] ≤ −c if V (x) > N0

and
Ex[V (X1)− V (X0)] ≤ H <∞ if V (x) ≤ N0

Then the set
B = {x : V (x) ≤ N0}

is positive recurrent.

Proof. We follow an idea that is due to Tweedie (1976). Let

τ = τB = inf{n ≥ 1 : V (Xn) ≤ N0} ≤ ∞.

Let Fn be the sigma field generated by X0, . . . , Xn. Note that τ is a “predictable” stopping
time in that 1(τ ≥ i) ∈ Fi−1 for all i. We define the “cumulative energy” between 0 and
τ ∧ n by

En =
τ∧n∑
i=0

V (Xi) =
n∑
i=0

V (Xi)1(τ ≥ i),

1This τB is a random variable. Were we working in continuous time, this would not, in general, be true,
unless the paths of X and the set B were sufficiently “nice” (another instance of what technical complexities
may arise in a continuous-time setup).
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and estimate the change Ex(En − E0) (which is finite) in a “martingale fashion”.2 Assume
that X0 ≤ N0. Then

Ex(En − E0) = Ex

n∑
i=1

Ex(V (Xi)1(τ ≥ i) | Fi−1)

= Ex

n∑
i=1

1(τ ≥ i)Ex(V (Xi) | Fi−1)

≤ V (x) +H + Ex

n∑
i=2

1(τ ≥ i)(V (Xi−1)− c)

≤ V (x) +H + Ex

n+1∑
i=2

1(τ ≥ i− 1)V (Xi−1)− cEx

n∑
i=2

1(τ ≥ i)

= V (x) +H + c+ ExEn − cEx

n∑
i=1

1(τ ≥ i)

= V (x) +H + c+ ExEn − cEx min(n, τ),

where we used that Ex[(V (X1)− V (X0) | F0] ≤ H and Ex[(V (Xi)− V (Xi−1) | Fi−1] ≤ −c
if τ ≥ i ≥ 1. We also used 1(τ ≥ i) ≤ 1(τ ≥ i− 1) and replaced n by n+ 1 in the pre-last
inequality.

Since ExE0 = ExV (x) = V (x), we obtain

Ex min(τ, n) ≤ (V (x) +H + c)/c, for any n.

Letting n to infinity and using the motonote convergence theorem, we have

Exτ ≤ (V (x) +H + c)/c ≤ (N0 +H + c)/c. (3)

Now we formulate and prove a statement which contains a general result on the positive
recurrence of a certain set. For that, we impose a number of assumptions.

Assumptions

(L0) V is unbounded from above: supx∈S V (x) =∞.

(L1) h is bounded from below: infx∈S h(x) > −∞.

(L2) h is eventually positive: limV (x)→∞ h(x) > 0.

(L3) g is locally bounded from above: G(N) = supV (x)≤N g(x) <∞, for all N > 0.

(L4) g is eventually bounded by h: limV (x)→∞ g(x)/h(x) <∞.

2albeit we do not make use of explicit martingale theorems
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Theorem 2. Suppose that the drift of V in g(x) steps satisfies

Ex[V (Xg(x))− V (X0)] ≤ −h(x),

where V, g, h satisfy (L0)–(L4). Let

τ ≡ τN = inf{n ≥ 1 : V (Xn) ≤ N}.

Then there exists N0 > 0, such that for all N ≥ N0 and any x ∈ S, we have

Exτ <∞,
sup

V (x)≤N
Exτ <∞.

Proof. From the drift condition, we obviously have that V (x) − h(x) ≥ 0 for all x. We
choose N0 such that infV (x)>N0

h(x) > 0. Then, for, N ≥ N0, we set

d = sup
V (x)>N

g(x)/h(x), −H = inf
x∈S

h(x), c = inf
V (x)>N

h(x).

We define an increasing sequence tn of stopping times recursively by

t0 = 0, tn = tn−1 + g(Xtn−1), n ≥ 1.

By the strong Markov property, the variables

Yn = Xtn

form a (possibly time-inhomogeneous) Markov chain with, as easily proved by induction on
n, ExV (Yn+1) ≤ ExV (Yn) +H, and so ExV (Yn) <∞ for all n and x. Define the stopping
time

γ = inf{n ≥ 1 : V (Yn) ≤ N} ≤ ∞,

for which
τ ≤ tγ , a.s.,

and so proving Extγ < ∞ is enough. Let Fn be the sigma field generated by Y0, . . . , Yn.
Note that γ is a “predictable” stopping time in that 1(γ ≥ i) ∈ Fi−1 for all i. We define
the “cumulative energy” between 0 and γ ∧ n by

En =
γ∧n∑
i=0

V (Yi) =
n∑
i=0

V (Yi)1(γ ≥ i),
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and estimate again the change Ex(En − E0) :

Ex(En − E0) = Ex

n∑
i=1

Ex(V (Yi)1(γ ≥ i) | Fi−1)

= Ex

n∑
i=1

1(γ ≥ i)Ex(V (Yi) | Fi−1)

≤ Ex

n∑
i=1

1(γ ≥ i)(V (Yi−1)− h(Yi−1))

≤ Ex

n+1∑
i=1

1(γ ≥ i− 1)V (Yi−1)−Ex ∼ni=1 h(Yi−1)

= ExEn −Ex

n−1∑
i=0

h(Yi)1(γ ≥ i),

where we used that V (x) − h(x) ≥ 0 and, for the pre-last inequality, we also used 1(γ ≥
i) ≤ 1(γ ≥ i− 1) and replaced n by n+ 1. From this we obtain

Ex

n−1∑
i=0

h(Yi)1(γ ≥ i) ≤ ExV (X0) = V (x). (4)

Assume first V (x) > N . Then V (Yi) > N for i < γ, by the definition of γ, and so

h(Yi) ≥ c > 0, for i < γ, (5)

by the definition of c. Use (5) in (4) to obtain

cEx

n∑
i=0

1(γ > i) ≤ V (x) +H + c.

Using the monotone convergence theorem and (5), we have

cExγ ≤ V (x) +H + c <∞.

Using h(x) ≥ dg(x) for V (x) > N , we also have

γ−1∑
i=0

h(Yi) ≥ d
γ−1∑
i=0

g(Yi) = dtγ ,

whence tγ <∞, a.s., and so

Exτ ≤ Extγ ≤
V (x) +H + c

cd
.

It remains to see what happens if V (x) ≤ N . By conditioning on Y1, we have

Exτ ≤ g(x) + Ex((cd)−1(V (Y1) + c)1(V (Y1) > N)) ≤ G(N) +
N +G(N)H + c

cd
.
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Discussion: The theorem we just proved shows that the set BN = {x ∈ S : V (x) ≤ N}
is positive recurrent. It is worth seeing that the theorem is a generalization of many more
standard methods.

I. Pakes’s lemma: This is the case above with S = Z, g(x) = 1 and h(x) = ε−C11(V (x) ≤
C2).

II. The Foster-Lyapunov criterion: Here S is general, and g(x) = 1 and h(x) = c −
H1(V (x) ≤ N0),

III. Dai’s criterion: When g(x) = dV (x)e (where dte = inf{n ∈ N : t ≤ n}, t > 0), and
h(x) = εV (x) − C11(V (x) ≤ C2), we have Dai’s criterion which is the same as the “fluid
limits” criterion. More on this will be seen later.

IV. The Meyn-Tweedie criterion: When h(x) = g(x) − C11(V (x) ≤ C2) we have the
Meyn-Tweedie criterion.

V. Fayolle-Malyshev-Menshikov: Similar state-dependent drift conditions, for count-
able Markov chains, were considered by these authors.

The indispensability of the “technical” conditions. It is clear why (L0)–(L3) are
needed. As for condition (L4), this is not only a technical condition. Its indispensability
can be seen in the following simple example: Consider S = N, and transition probabilities

p1,1 = 1, pk,k+1 ≡ pk, pk,1 = 1− pk ≡ qk, k = 2, 3, . . . ,

where 0 < pk < 1 for all k ≥ 2 and pk → 1, as k →∞. Thus, jumps are either of size +1 or
−k, till the first time state 1 is hit. Assume

qk = 1/k, k ≥ 2.

Then 1 is an absorbing state, and there is C > 0, such that

P (Xn+1 = Xn + 1 for all n) ≤ C exp

(
−
∑
k

qk

)
= 0.

But, for τ = inf{n : Xn = 1},∑
n

P (τ ≥ n) ≥
∑
n

exp
n∑
2

qi ∼
∑
n

1
n

=∞.

Therefore, the Markov chain cannot be positive recurrent. Take now

V (k) = log(1 ∨ log k), g(k) = k2.

We can estimate the drift and find

Ek[V (Xg(k))− V (k)] ≤ −h(k), (6)

where h(k) = c1V (k) − c2, and c1, c2 are positive constants. It is easily seen that (L0)-
(L3) hold, but (L4) fails. This makes Theorem 2 inapplicable in spite of the negative drift
(6). Physically, the time horizon g(k) over which the drift was computed is far too large
compared to the estimate h(k) for the size of the drift itself.

Now we discuss some examples.
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4 Instability criteria

We consider here two concepts of instability: the members of a certain class of sets either (i)
cannot be positive recurrent or (b) are transient (the definition of transience will be given).

We first give a simple instability criterion due to Tweedie which gives conditions for a
Markov chain not to be positive recurrent.

Theorem 3. Suppose there is a non-constant function V : S → R+ such that
(a) supx ∈ SDV (x, 1) <∞ and
(b) DV (x, 1) ≥ 0 when V (x) ≥ K, for some K > 0. Then the Markov chain cannot be
positive recurrent.

Proof. The first condition implies that Ex|V (Xn)| < ∞ for all x ∈ S. Now let τ = inf{n :
V (Xn) < K}. The second condition can be written as

(V (Xτ∧n), n ≥ 0) is a submartingale under Px, for all x ≥ K.

Hence
ExV (Xτ∧n) ≥ ExV (Xτ∧0) = V (x) ≥ K.

If the Markov chain is positive recurrent then Exτ <∞ and, by the martingale convergence
theorem, V (Xτ∧n)→ V (Xτ ) in L1. Therefore,

ExV (Xτ ) ≥ K.

But V (Xτ ) < K a.s., and so we arrived at a contradiction.

We now pass to transience.

Transient set A set B ⊆ S is called transient if Px(τB = ∞) > 0 for all x ∈ S, where
τB = inf{n ≥ 1 : Xn ∈ B} is the first return time to B.

Let V : S → R+ be a “norm-like” function, i.e., suppose (at least) that V is unbounded.
We say that the chain is transient if each set of the form BN = {x ∈ S : V (x) ≤ N} is
transient.

We now introduce a general criterion that decides whether limn→∞ V (Xn) = ∞, Px-a.s.
Clearly then, this will imply transience of each BN .

Thinking of V as a Lyapunov function, it is natural to seek criteria that are, in a sense,
opposite to those of Theorem 2. One would expect that if the drift Ex[V (X1) − V (X0)]
is bounded from below by a positive constant, outside a set of the form BN , then that
would imply instability. However, this is not true and this has been a source of difficulty
in formulating a general enough criterion thus far. To the best of our knowledge, the most
general criterion which may be found in textbooks is Theorem 2.2.7. of Fayolle et al. (1995)
which is, however, rather restrictive because (i) it is formulated for countable state Markov
chains and (ii) it requires that a transition from a state x to a state y, with V (x) − V (y)
larger than a certain constant, is not possible. However, it gives insight as to what problems
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one might encounter: one needs to regulate, not only the drift from below, but also its size
when the drift is large.

The theorem below is a generalization of the one mentioned above. First, define

σN := τBc
N

= inf{n ≥ 1 : V (Xn) > N}
∆x := V (X1)− V (X0), given X0 = x.

We then have:

Theorem 4. Suppose there exist N,M, ε > 0 and a measurable h : [0,∞) → [1,∞) with
the property that h(t)/t be increasing on 1 ≤ t <∞, and

∫∞
1 h(t)−1dt <∞, such that

(I1) Px(σN <∞) = 1 for all x.

(I2) infx∈Bc
N

Ex[∆,∆ ≤M ] ≥ ε.
(I3) The family {h−(∆), x ∈ Bc

N} is uniformly integrable.

Then Px(limn→∞ V (Xn) =∞) = 1, for all x ∈ S.

Possible examples of function h are x1+α, with positive α, and x ln2 x.

This theorem is proved in F–Denisov (2001) under a minor extra technical condition which
may be omitted . The proof is based on the super-martingale convergence theorem. First,
for an appropriate function g (such that g(x)→ 0 implies that x→∞),
(a) we show that r.v.s {g(Vn), n = 1, 2, . . .} form a positive super-martingale and, therefore,
converge a.s. to an a.s. finite limit,
(b) we find a (random) subsequence n1 < n2 < . . . such that g(Vnk

) converges to zero a.s.
Then the result follows.

We remark that there are extensions for non-homogeneous Markov chains. Condition (I1)
says that the setBc

N is recurrent. Of course, if the chain itself forms one communicating class,
then this condition is automatic. Condition (I2) is the positive drift condition. Condition
(I3) is the condition that regulates the size of the drift. We also note that an analogue of
this theorem, with state-dependent drift can also be derived. (The theorem of Fayolle et al.
does use state-dependent drift.)

To see that (I3) is essential, consider the following example: Let S := Z+, and {Xn} a
Markov chain with transition probabilities

pi,i+1 = 1− pi,0, i ≥ 1,
p0,1 = p0,0 = 1/2.

Suppose that 0 < pi,0 < 1 for all i, and
∑

i pi,0 < ∞. Then the chain forms a single
communicating class. Also, with τ0 the first return to 0, we have

Pi(τ0 =∞) =
∏
j≥i

(1− pj,0) > 0.

So the chain is transient. However not that the natural choice for V , namely V (x) ≡ x
trivially makes (I2) true.

Other examples:...
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5 Topics for discussion and problems

1. Finding an appropriate Lyapunov function is an art. Discuss how the geometric picture
may help you guess the form of a Lyapunov function.

2. Consider (ξn) to be i.i.d. Gaussian, say, random vectors in Rd with zero mean, and
define the Markov chain

Xn+1 = AXn + ξn,

where A is a d× d matrix with eigenvalues having magnitude strictly smaller than 1.
Show that the unit ball is positive recurrent by means of an appropriate Lyapunov
function.

3. Now let d = 1 and, instead of A, consider a time-dependent An, where (An) are i.i.d.
positive random variables:

Xn+1 = AnXn + ξn.

Show that the unit ball is positive recurrent if E logA1 < 0.

4. (Lamperti criterion) Consider a Markov chain in Z+ with E(Xn+1 −Xn | Xn = x) ∼
−c/x, and E((Xn+1 −Xn)2 | Xn) → b, as x → ∞, where c, b are positive constants.
Use an appropriate Lyapunov function in order to deduce that the chain is positive
recurrent if 2c > b. (Also prove that it is transient if 2c < b. The “critical case” 2c = b
is a tough one and what happens there depends on other conditions as well.)

5. The classical Lindley recursion is

Xn+1 = (Xn + ξn)+.

Assume that the (ξn) are i.i.d. integrable random variables with Eξ1 < 0. Show that
the set [0, b] is positive recurrent, for any b ≥ 0.

6. Suppose Xt is a Markov Jump Process (i.e. a Markov process in continuous time with
at most finitely many jumps on each bounded time interval, almost surely). Recall
that such a process is defined (in distribution) through its transition rates q(x, y),
x 6= y. Formulate a Lyapunov function criterion directly in terms of the rates. (Hint:
use any natural time embedding !)

7. A 2-station Jackson network may be represented as a continuous-time Markov process
in Z2

+ with q(x, x + e1) = λ, q(x + e1, x + e2) = µ1, q(x + e2, x) = µ2, x ∈ Z2
+.

Here e1 = (1, 0), e2 = (0, 1) are the standard unit vectors. Find Lyapunov function
when λ < µ1 < µ2 that shows that the unit ball is positive recurrent. Repeat when
λ < µ2 < µ1. (Hint: You may choose an appropriate time embedding, and linear or
piecewise linear text functions. To do so, it is helpful to consider the geometric point
of view).
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