1.2

 aS^1 , and pectively,

For if tideal of for every sts x in S recalling is a group

igroup S,

empotent

is right

 $\{a, x \in S\}.$ (Bruck

forms by

en either ero semi-

7 of right ided ideal

rmations, ere are no

d assume ll x in K in S such

identical

ymmetric, and the

s γ and δ

of \mathscr{T}_X such that γ has rank r+1, δ has rank n-1, and $\beta=\gamma\delta$. (We can choose δ to be idempotent, and γ so as to differ from β at only one point of X.) By induction, every element of \mathscr{T}_X of defect k $(1 \le k \le n-1)$ is expressible as the product of an element of \mathscr{G}_X and k (idempotent) elements of defect 1.

(b) If α is an element of \mathscr{T}_X of defect 1, then every other element of \mathscr{T}_X of defect 1 can be expressed in the form $\lambda \alpha \mu$ with λ and μ in \mathscr{G}_X .

(c) If α is an element of \mathcal{T}_X of defect 1, then $\langle \mathcal{G}_X, \alpha \rangle = \mathcal{T}_X$. (Vorobev [1953b].)

1.2 Light's associativity test

To test a finite groupoid $S(\cdot)$ for associativity, when the operation (\cdot) is given by a Cayley multiplication table, is usually quite a tedious business. The following procedure was suggested to one of the authors by Dr. F. W. Light in 1949.

This procedure is to be carried out for each element a of the groupoid S. However, we shall show below that it suffices to carry it out for each element

a of a set of generators of S. Consider the two binary operations (*) and (\circ) defined in S as follows:

$$x * y = x \cdot (a \cdot y), \quad x \circ y = (x \cdot a) \cdot y.$$

Associativity holds in $S(\cdot)$ if and only if, for each fixed element a of S, these two binary operations coincide. The idea is essentially to construct the Cayley tables for (*) and (\circ) and then see if they are the same.

The (*)-table is obtained from the original (·)-table by replacing, for each y in S, the y column by the $a \cdot y$ column. Similarly, to make up the (o)-table we simply copy down in the x row the $x \cdot a$ row of the (·)-table. However, we do not need to write out the (o)-table, since we can check directly whether the x row of the (*)-table coincides with the $x \cdot a$ row of the (·)-table.

For convenience in performing the test, we replace the top index line of the (*)-table by the a row of the (·)-table, and the left-hand index column by the a column of the (·)-table. For each entry $a \cdot y$ in the a row of the (·)-table tells us what column of the (·)-table to copy down as the y column of the (*)-table, and each entry $x \cdot a$ in the a column of the (·)-table tells us which row of the (·)-table should be compared with x row of the (*)-table. For example, let $S(\cdot)$ be defined by the table:

	a	b	\boldsymbol{c}	d	e
\overline{a}	\overline{a}	\overline{a}	\overline{a}	d	\overline{d}
b	a	b	c	d	d
c	a	c	b	d	d
d	d	d	d	a	a
e	d	e	e	a	a

The set $\{c, e\}$ generates S, since $a = e \cdot e$, $b = c \cdot c$, and $d = c \cdot e$. The (*)-tables (with index rows and columns modified as described above) for the elements c and e are as follows:

c	a	c	b	d	d	e	d	e	e	a	<i>a</i>
a c b	$\begin{bmatrix} a \\ a \\ a \\ d \end{bmatrix}$	a c b d	a b c d	d d d d	d d d a	$egin{matrix} d \ d \ a \end{matrix}$	$\left egin{array}{c} d \\ d \\ d \\ a \\ a \end{array} \right $	$egin{array}{c} d \ d \ a \end{array}$	$egin{array}{c} d \ d \ a \end{array}$	$egin{array}{c} a \ a \ d \end{array}$	$egin{array}{c} a \ d \end{array}$
e	d	e	e	a	a	a	1 0		•		

Thus, to form the c-table, copy the c row (a c b d d) from the (\cdot)-table into the upper index line, and similarly the c column into the left-hand index column. Now copy the columns of the (·)-table in the order specified by the upper index line, i.e., the a column, the c column, etc. We now verify that the rows of the c-table thus formed are just those of the (·)-table labelled by the left-hand index column. One may prefer to copy the rows of the (·)-table as specified by the left-hand index column, and then check that the columns are correctly labelled. Since this is found to check for both the c-table and the e-table, we conclude that $S(\cdot)$ is associative.

That it suffices to carry out Light's procedure only for a set of generators of S is an immediate consequence of the fact that the set of all elements a of a groupoid S that associate with all elements of S, in the sense that x(ay) = (xa)yfor all x, y in S, is a subsemigroup of S. For if we assume that a and b are elements of S such that x(ay) = (xa)y and x(by) = (xb)y for all x, y in S, then

$$x((ab)y) = x(a(by)) = (xa)(by)$$

= $((xa)b)y = (x(ab))y$.

Thus if a and b associate with all elements of S, so does ab.

EXERCISES FOR §1.2

1. Check for associativity:		e	f	<i>g</i>	<u>a</u>	
2. Check for associativity:	$\left.egin{array}{c} e \\ f \\ g \\ a \end{array}\right $	$egin{array}{c} e \ f \ g \ e \ \end{array}$	$egin{array}{c} e \\ f \\ g \\ e \\ f \end{array}$	$egin{array}{c} e \\ f \\ g \\ f \end{array}$	$egin{array}{c} e \ g \ e \ a \end{array}$	0
Z. Official for disserting to	$egin{array}{c} e \ f \ g \ a \ 0 \end{array}$	e 0 g 0 0	a f f a 0	e g g e 0	f	0 0 0 0 0

Clifford - Preston The Algebraic Theory of Semigroups, Vol. I

3. The x, y in S i

TR

1.3

Let S a phism if (all eleme homomo S ~ S6. into S' is then said into itse called ar A maj phism if

transfor phism if Let S on X. resentati $\phi|T'(\phi)$ that ino true if i With

anti-end

oaldal C \$1512.50