Markov Chains (273023), Exercise session 3, Tue 29 Jan 2013.

Exercise 3.1. Let (X_t) be a Markov chain with finite state space Ω and transition probability matrix P. Show by using the definition of the conditional probability that

$$\mathbb{P}(X_t = y | X_0 = x) = \sum_{z \in \Omega} \mathbb{P}(X_t = y | X_1 = z) P(x, z)$$

where $x, y \in \Omega$ and t > 1.

Exercise 3.2. Let $0 \le n \le 6$ and $E = \{(i,j) : 1 \le i,j,\le 3, i \ne j\}$. Let $A \subset E$ be a random subset of E with |A| = n. Define $A_k = \{(i,j) : (i,j) \in A, i = k\} \cup \{(k,k)\}$ for k = 1,2,3. For $1 \le i,j \le 3$ let $P(i,j) = \frac{1}{|A_i|}$ if $(i,j) \in A_i$ and zero otherwise. What is the probability that the Markov chain, defined by the transition probability matrix P, is irreducible?

Exercise 3.3. Let n, m > 0 and let (X_t) be a Markov chain with state space $\Omega = \{1, 2, ..., n + m\}$. Suppose that the states 1, ..., n are inessential and the states n + 1, ..., n + m are essential. Show that the transition probability matrix can be written as

$$P = \left(\begin{array}{cc} Q & R \\ 0 & E \end{array}\right)$$

where Q satisfies

$$\lim_{n \to \infty} Q^n = 0,$$

the matrix R is non-zero, and E is a stochastic (sub)matrix.

Exercise 3.4 (Levin, Peres, Wilmer: Ex. 2.5 p. 34). Let P be the transition probability matrix for the Ehrenfest chain. Show that the binomial distribution with parameters n and 1/2 is the stationary distribution for the chain.

Exercise 3.5 (Levin, Peres, Wilmer: Ex. 2.9 p. 34). Fix $n \ge 1$. Show that simple random walk on the n-cycle is a projection of the simple random walk on \mathbb{Z} .

Exercise 3.6 (Levin, Peres, Wilmer: Ex. 2.10 p. 34). Let (S_n) be the simple random walk on \mathbb{Z} . Show that

$$\mathbb{P}\left(\left\{\max_{1\leq j\leq n}|S_n|\geq c\right\}\right)\leq 2\,\,\mathbb{P}\left(\left\{|S_n|\geq c\right\}\right).$$