Chapter V
Multiresolution Analysis (MRA)

In this chapter we develop a general theory which resembles the Haar theory
in Chapters III-IV, but which uses “better” classes of wavelets than the Haar
wavelet.

V.1 Orthonormal Systems of Translates

Definition 1.1. The translation operator T} is the shift by the amout k:
(Thg)(x) = g(x — k), z€R, kel

(right-shift if & > 0, left-shift if & < 0).

Recall from Theorem 1.6, page 25: There we had Vj = dyadic step func-
tions in L?*(R) which are constant in each interval [k,k + 1), kK € Z. An
orthonormal basis for Vj was given by {Typ}>__ (all integer translates of
the Haar scaling function p on page 25). Now we look at other functions g
with a similar property.

Definition 1.2. An orthonormal system of functions g;. of the type g, = T}g
(for some fixed g € L*(R)) is called an orthonormal system of translates.

Orthonormal means: g, L g, n # m, ||g.|| = 1.

Note. Need not be a basis: There will always exist functions f € L*(R)
which are orthonormal to all gy.
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Example 1.3. a) The collection of scale zero Haar scaling functions {po 7>
is an orthonormal system of translates.

b) The collection of scale zero Haar wavelets {hoy}> .. is another or-
thonormal system of translates.

Neither is a basis in L*(R).

—00

Theorem 1.4. Let {gi};> . be an orthonormal system.

—00

(i) The set V of all functions f € L*(R) which has an expansion of the
lype

f= Z ck9x, where Z |en|? < o0, (1)

k=—0o0 k=—00

is a closed supspace of L*(R).
(i1) {gr}_.. is an orthonormal basis for V.

(iii) The orthonormal projection of L*(R) onto V 1is given by

o0

k=—o0
Proof.
(i) See Analysis II.
(ii) If f L every g and (1) holds, then

0 = (f,gk)=<z agi, 9k)

l=—o0

= Z ¢t {91, Gk) = C-
N——

l=—00 5f

Thus, ¢, = 0 for all k. Substitute thisin (1) = f = 0. By Definition
2.1 on page 12, {gr}7>_ is a basis for V.

(iii) See Theorem 3.7 on page 14. O

Note. (For readers of Analysis II): V' = closed linear span of {g;}3> . =

(({ge}ie o) D)™
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Theorem 1.5. The collection {Trg}32 .. is an orthonormal system if and
only if

Z lgw+k))*=1 ae

k=—o0

Proof. Note first that

(Thg, Tig) = /_oogu—k)g(x—z)da: (x—1=1)

_ / " gly— b+ D)y

= (Tha9.9)

so that
(Thg, Thg) = 0, <= (Tkg,g) = oy

for all k. By Parsevals formula (see page 16 and 18)

Tig.) = [ ol Hala)da
_ / §(w)e 2 () dw
= [l
S /n"+1|§/<w>|2e-2“‘% (w=n+v)

n=—oo

0
(Note that ™ n=1)

1 0o
— / ( Z \g(u+n|2>6_2”k”dy
0

n=—oo

(O.k. to change order since everything converges absolutely). The function
F(v) =2 _lg(v+n)|* is a periodic function in L'(T) (easy to check).
The k:th Fourier coefficient of this series is

1
F(k) = / F(v)e ™™ dy = (Tyg,9) 12y (by the computation above).
0
(2)
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If F(v) =1, then it is easy to check (by direct computation) that the inverse
transform F' of F' is given by

By (2) this implies that

(Tvg,9) = &,
so {T},g} is an orthonormal system of translates. Conversely, if (T,g, g) = %,
then the reconstruction formula for F' gives, for almost all x,

[e.9]

F(z) = Y F(k)e*™*
k=—o00
= Y =1 0
k=—o00

Let {Tg}> . be an orthonormal system of translates. Is there an “easy”
way to check if f € V, where V is the subspace of L?(R) described in Theorem
1.4 with gp = Tyg? Answer:

Theorem 1.6. Let {T}g}32 . be an orthonormal system of translates, and
let V be the subspace of L*(R) described in Theorem 1.4, page 42, with g, =
Trg. Then f €V if and only if

flw) = &w)iw),

where ¢(w) is a periodic function with period 1 satisfying f01|é(w)|2dw < 00.
The connection between this function and the coefficients c; in the expansion

[= Z cklrg

k=—00

is the following: ¢ is the discrete Fourier transform of the sequence {c,}7
(see Section I1.6), i.e.,

o

tw) = Z e and

k=—00

1
= / XM (W) dw.
0
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We have
£l Z2@) = l1elZzmy = llellZzz):
i.e.,
00 1 >
| r@pds = [lewfde = 3 o
o k=—o0

and

o = (f, Thg) = / " f@)gle —Ryde.

Moreover, if fi € V has the expansion fi = > ;- c1xTxg and fo € V
has the expansion fo = ZZ‘;_OO coxTrg, then

<f17f2>L2(R) = <01,C2>£2(Z) = <élaé2>L2(T)

i.€.,

/_: fiw)falw)de = i C1EC2k = /0 1 ¢1(w)ea(w) dw.

k=—o00

Proof. Suppose that f € V. First look at the case where f is a finite sum of

the type
N

@)=Y agle—h)

k=—N

Transforming this equation and using rule (a) on page 15 we get

flw) = Z cpe TR G(w) = en(w)g(w)

k=—N

where
N
en(w) = E cpe 2Tk,
k=—N

In the general case we let N — oco. Then

N 00

In(@)= ) agle—k) — fl@)= Y aglz—k)

k=—N k=—00
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in L% so fy — f in L2(R). Likewise
en(w) — ¢(w) = Z cpe” Friwk
k=—o00

in L2(0,1). Therefor f(w) = é(w)§(w) also in this case. A
The proof of the converse is similar: Assume that f(w) = é¢(w)g(w) for
some periodic ¢ in L*(T). This function can be expanded in a Fourier series

00
é(w): Z Ck6—2mwk’

k=—00

where )
ck:/ Xk (W) dw.

0

Define
N
fn(z) = Z aeg(x — k),
k=—N

and continue as above.
That

/ Tli@Pdr= 3 feP

k=—00

follows from Bessel’s equality (see Theorem 2.3 (iii) on page 12), since {Trg}7>
is an orthonormal basis for V' (see Theorem 1.4 (iii) on page 42). By
Plancherel’s identity (see page 20)

That ¢, = (f, Tkg) is a special case of Theorem 2.3 (iii) on page 12.

The final claim about the inner products follow from the fact that the
operator which maps f into ¢ is isometric (i.e., it preserves norms), and
therefore, it also preserves inner products (this follows from the polarization
identity). O
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V.2 Non-orthogonal Systems of Translates

If we start with an arbitrary function g € L*(R), then in most cases it is not
true that Trg 1 g. However, if g is “narrow enough” then it will be “almost
true” in the following sense.

Recall: {T}g}° _ is an orthogonal system of translates <= > .~ _ [g(w+
k)?=1.

— 00

Definition 2.1. Let g € L*(R). The collection {Tyg}?> ___ is a Riesz system
of translates if there exists constants 0 < A < B < oo such that

(0<)A< Y |o(w+ k)] < B(< o)
k=—o00
for (almost) all w € R.

Note 2.2. Every orthogonal system of translates is also a Riesz system (take
A=B=1).

Note 2.3. If A = B, then we get an orthogonal system of translates by
replacing g by g/v/A.

Proof. Define § = g/v/A. Then

[e’s) . 1 0 R
Y liw+ k)P = 1 o law+ k)P =1.
k=—00 k=—o00
The rest follows from Theorem 1.5 on page 43. O

Theorem 2.4. Let {Trg}2 .. be a Riesz system of translates, and let § be
the inverse Fourier transform of the function

g(w)

(w) = :
VIR law+ k)P

Qv

Then {Trg}32._ . is an orthonormal system of translates.

—00

Proof. Denote F(w) := (3 5" |9(w+ k)|*)/2. Then 0 < A< F(w) < B <
oo for all w (see page 47). We know that g € L*(R) since g € L?(R) (by

Plancherels identity). Therefore, also % belongs to L?(R) (it is < |g(:)|)_
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This means that % has an inverse Fourier transform in L?(R), which we
call g. Obviously

- 2 + k |2
k’ 2 — |gw
S liwsne = 3 el

(The function F is periodic with
period 1, so F(w+k)=F(w))

1 =
= e X e hr=1
k=—00

=[F(w)|?

By Theorem 1.5 on page 43, {T}.¢} is an orthonormal system of translates. [

With the help of the orthogonalized functions g we can define the space
V as in, e.g., Theorem 1.6 on page 44. Can we say anything about how the
original function g is related to this subspace?

Lemma 2.5. In the situation described in Theorem 2.4, the function g lies
in the subspace V' spanned by {Vi.g}3>_... More precisely,

o0

gl@) = Y erile —k)

k=—o00

where ¢, s the inverse Fourier series of the function

tw) = Z| (w+ k)2

k=—00

Proof. This follows from Theorem 1.6 on page 44 and Theorem 2.4 on page 47.

]
Lemma 2.6. There also ezist coefficients e, with Y . _ |ex|* < oo such
that .
g= Z exg(z — k).
k=—o00

More precisely, ey is the (inverse) Fourier series of the function

o(w) = !

ST
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Proof. “Essentially” the same as the proof of Theorem 1.6: The algebraic
computations remains the same (it does not matter that {T;g} is not or-
thogonal). However, the convergence proofs become less trivial in this case.
(More details later if we have the time). O

Lemma 2.7. In the situation described in Theorem 2.4 and Lemmas 2.5-2.6,
a function f belongs to V if and only if it can be written in the form

[e.9]

flx) =Y eglz—k)

k=—o0

for some sequence {ex} € (*(Z) (i.e., > ,lex|* < o00). More precisely, the
relationship between the coefficients e, above and the coefficients ci in the

exrpansion
o0

f@) = S adle—k)

k=—00

is the following: The Fourier transforms of {c} and {ex} satisfy

) ¢(w)

é(w) = .
VI g+ k)P

(Thus, we get {ey} from {cx} by first taking a Fourier transform, then divid-
ing with the square root, and finally taking the inverse Fourier transform).

Proof. Same comments as in the proof of Lemma 2.6. O
Corollary 2.8. The following are equivalent:

(i) f LV (ie., f Lg forallgeV)

(i) [ L Trg for all k

(i1i) [ L Trg for all k.

Proof. Follows from Lemma 2.7. O
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V.3 Multiresolution Analysis

In the preceeding sections we only looked at translations of a fixed function
g. Now we also introduce dilations (and compressions).

Definition 3.1. The dilation operator D, (for all a > 0) is given by
(Dag)(z) = Vag(ax), z€R
(dilation for 0 < a < 1, compression for a > 1).

Definition 3.2. A multiresolution analysis (MRA) on R is a sequence of
closed subspaces {V;}5°__ of functions in L?(R) with the following proper-

ties: —
(a) V; C Vjqy for all j € Z,
(b) M2 Vi =0,
(c) Uit Vi = L*(R),

(d) f e Vyifandonlyif Dy f €V},

(e) There is a function ¢ € L?*(R), called a scaling function such that
{Trp}2 _ . is an orthogonal system of translates, and such that f € 1}
if and only if it has an expansion of the type

f= Z ckTip
k=—00
(Compare this to Theorem 1.4, page 42). (Note: ¢ is also called “father
wavelet”).
Note 3.3.

(i) Some people like to write (a)-(c) in the form
{0} e—---cV,cVycVicVoC - — LAR)
(intersection is {0}, closure of union is L*(R)).

(ii) Also note that we get from V; to V,,1 by compressing the function by
a factor 2, and from V;;, to V; by dilating the function by a factor two.
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(iii) It follows from Theorem 1.4 (page 42) and Theorem 2.3 (page 12), that
for all f € V; we have

1Fllz2m = D [(Ties NI

k=—00

Assuming properties (a)-(e) in Definition 3.2, we may now proceed exactly
like in the Haar case.

Definition 3.4. For each j, k € Z, we define ¢, ;, by
pin() = 277p(2w — k) = (D Tip) ().

For each j € Z we define the approzimation operator P; by

[e.9]

Pif = Z {f: @ik) @ik

k=—00

and the detail operator (); by
Qif = Pinf = Bif.
Lemma 3.5. For each j € Z, {p; i} _. i an orthonormal basis for V;.

Proof. By Definition 3.2 (e), each ¢(x — k) = Typ belongs to Vy, and by
property (d), we have
ik = DayTrp €V}

To see that it is an orthonormal system in V; we compute

(@i Pim) = / PPp(Pa — k)2 e —m)de  (Pr—m=y)

—00

= / Py +m —k)p(y)dy = 6™
Thus, it is orthonormal. By using a similar change of variable we can get an
expansion for an arbitrary f € V;: Since D,-; f € V{, we have an expansion
for Dy f:

o0

Dy f = Z (Do-i f, Trp) s i

k=—o0

o1



and finally make a change of variable as above (check this) to get

(Do-i f, Tutp) = (f, D2iThip) = ([, 0j)-
By Theorem 2.3 on page 12 {¢; s }rez is an orthonormal basis for V. 0
Lemma 3.6. For all f € L*(R),
(a) Pif = f as j — 0,
(b) Pif — 0 as j — —oc.
Proof.
(a) Same as proof of Theorem 3.2 iii) on page 31.

(b) Define R; = I — P;. Then R; is the orthogonal projection onto X; =
L*(R) © V; = V;-. It follows from conditions (a)-(c) that

(al) Rjp1 C Ry
(b1) M o X =Mt Vi = (Ui Vi)™

(e]) U o X = (U X)) = (e X)) = (N2 Vi)t =
{0} = LA(R).

Thus, by repeating the proof of (a) with the replacements V; — X;,
P; — R; and letting j — —oo instead of j — +oo, we find that
Rjf — fasj— —oo for all f € L?(R). Therefore Pjf = (I —R;)f =
f—Rjf - 0asj— —o0. O

Lemma 3.7. Condition (b) in Definition 3.2 is redundant, i.e., it follows
from conditions (d) and (e).

Proof. Above we proved part (b) of Lemma 3.6 by using conditions (a) and
(c) in Definition 3.2. It is also possible to prove part (b) of Lemma 3.6 by
instead using only conditions (d) and (e) in Definition 3.2. See Walnut’s
book or Gripenberg’s notes. Thus, (d) and (e) in Definition 3.2 imply (b) in
Lemma 3.6. It is easy to see that (b) in Lemma 3.6 implies (b) in Defini-
tion 3.2. U

The following result can be used to check condition (c) in Definition 3.2:
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Lemma 3.8. Let (d) and (e) in Definition 3.2 hold, and suppose that at least
one of the following conditions hold:

(A) limST_>Oo fg o(z)dx = where |y| =1

(B) ¢ is continuous at zero, and (0) = 1.
Then condition (c) in Definition 3.2 holds.

Proof. See Gripenberg’s notes. A partial converse to this statement is found
in Lemma, 7?7 below.

Thus, if conditions (d) and (e) hold, then (c) is “almost equivalent” to
6(0)] = 1. O

By using condition (d) in Definition 3.2 on page 50 we get the important

Theorem 3.9 (Two-scale Dilation relations). Assume that (a) - (e) of Def-
inition 3.2 hold. Define the sequence a(k) by

alh) = [ ole)p@a = Rdz = 2720, 10 (3)
Then -
plx) =2 Y a(k)p(2z — k), (4)
k=—o00
and
P(2w) = d(w)p(w), (3)
where &(w) = S0 e 2™ka(k) is the Fourier transform of {a(k)}3_ .
Moreover -
> lath)? =3, (©
k=—o00
and )
W)+ a(w+3)P=1, weR (7)

2
Note. &(w) is periodic with period 1.

Note. Here we use the same scaling factor as in Gripenberg’s notes. Walnut
replaces the factor 2 in (4) by /2. This leads to a number of factors v/2 in
all the remaining formulas.
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Proof. Since ¢ € Vj; C V; and ¢ is an orthonormal basis for Vi (see
Lemma 3.5, page 51), it follows that

p(z) = Z (0, P1,6)P1E
Z / 02y — k)dy V2p(2z — k)
= 2 Z o2z — k).
k=—o00

This proves (4). Formula (6) follows from the fact that
1= llelzem = Z (e o> =2 ) la(k)]
k=—00 k=—o00
To derive (5) we first replace by § in (4) to get

[e.e]

20(5) = Y a(k)p(z —k),

k=—o00

and then we use Theorem 1.6 on page 44 and property (e) on page 17 to get

P(2w) = d(w)@(w).

The only remaining claim is (7). To get this we use Theorem 1.5 on page 43
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(have replaced w by 2w):

1 = Z| (2w + k)|

k=—o00

k split into sum of

- Z \ozw—i— | ‘(‘O(W—i_ 2)‘ odd and even k
k=—00

= Slat+ IR+ IR (even

. 2m+1 R 2m +1
+Z|a<w+ et + 22N (oda)

(& is periodic with period one

= |a(w)[? ZI@(w +m)[?

1
+|&( w+ )2 Z|g0w+ +m)|?
(use Theorem 1.5 again)
1
= W)’ +law+ P O
We call the sequence « in Theorem 3.9 a filter if, in addition, ) |a(k)| < oc.

Definition 3.10. A sequence {a(k)}> is called a quadrature mirror filter
if

A) a el ie, Y |a(k)| < oo (sometimes omitted), and
B) |&(w)[*+ |&(w + 3)[* = 1, (this is condition (7) on page 53).

The filter in {a(k)}2_., in Theorem 3.9 is called the qudrature mirror
filter induced by the multiresolution analysis in Definition 3.2 (as-
suming that > |a (k)| < o0).
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V.4 Examples of MRA
V.4.1 The Haar MRA

Here ¢ = the Haar scaling function
1, 0<z <1,

p(x) =
0, otherwise.

J U

Figure V.1: The Haar scaling function.

Vy = collection of dyadic step functions in L? with step length one. This
is a MRA. See Lemma 1.5 on page 24, Theorem 1.6 on page 25.

V.4.2 The Piecewise Linear MRA

Let V; consist of all continuous functions in L?(R) which are linear in each
dyadic interval of length 277, Then it is easy to show that properties (a)-(d)
in Definition 3.2 (page 50) holds (the computations are analogous to those
in the Haar case. The only problematic condition is condition (e)).

We could try to use a triangular function ¢(x):

L=z, |z <1,

0, |z| > 1.

N

Figure V.2: The triangular function ¢.

This is a nice function in the sense that it is obvious that every function
in V4 can be written as a sum of the type

f= Z cxlyp.
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However, {Tpp}7° . is not an orthogonal system of translates. Fortu-
nately, it is still a Riesz system of translates. Let us define a new function ¢
as in Theorem 2.4 on page 47 through its Fourier transform:

(w) = P(w)
(e sol@lw + K)[)12

p(w) _
(5(1+2 c:082(7ru))))1/2

S

This gives us an orthogonal system of translates (see Theorem 2.4 on page 47),
and the space V| corresponding to ¢ is the same space V, which we had above
(see Lemma 2.7 on page 49).

We conclude that this is a MRA. The scaling function ¢ is obtained from
¢ as a sum (see Lemma 2.6 on page 48)

[e.e]

k=—o00
where {e;}72 _ is the inverse Fourier transform of the periodic function
1
/2
(3(1 + 2cos?(mw)))

A~

This function has infinite support (but it decays exponetially). See picture
in Walnut on page 188.

V.4.3 The Shannon (bandlimited) MRA

Here we define ¢ through its Fourier transform:

1, |w| < %,

plw) = (8)

0, otherwise.

By Theorem 1.5 on page 43, {1} is an orthogonal system of translates. We
define the space V; as in Theorem 1.6 on page 44. It contains all functions
which has an expansion of the type

feVo <= f= > alip,

k=—00
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and analogously, we get V; by replacing ¢ by D¢ (a suitable compression
of ¢). Then (d)-(e) in Definition 3.2 hold. To check that also (a)-(c) hold we
look at the Fourier transforms of the functions in 1, and V.

By Theorem 1.6 on page 44, f € Vj if and only if

. 1 2
f(w) =0 for |w| > =, and / |f(w)|?dw < .
2 —1/2
Analogously, f € V; if and only if
R 1. 2o
f(w) =0 for |w| > =27, and / |f(w)]Pdw < .
2 —97—1
—oi-1

From this follows that (a)-(c) hold.
Note. By inverting the Fourier transform in (8) we get

_ sin(mz) '

p(z)

See picture in Walnut on page 189.

T

Note. The Shannon scaling function is very poorly located in time:

/°°|so<as>|dx —o (= o L'(R)

— 00

(although [7 |p(z)[*dz = 1 < o).

V.4.4 The Stromberg and Meyer MRA

Essentially same result, done independently first by Stromberg and later by
Meyer.

The idea is to use the same construction as in the Shannon case, but to
replace the square window function

1, |w| < %,
0, |w|> 1.

by a smoother function. We choose this function so that it satisfies the
following conditions:
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Wi Wi

Y

)+ =D = 1, for & < Ju] < 2

| | | | >
-

Explicit formulas giving examples on how ¢(w) should be defined for
% <w< % are given in just about all books on wavelets. We can make ¢
have any finite number of derivatives (as Stromberg did) or even make it C*
(as Meyer did). The proof that this gives us a MRA is almost the same as in
the Shannon case. (Also here all functions in 1}, are bandlimited with band
limit 2, but not every f satisfying |f(w)] = 0 for |w| > 2 belongs to Vj. In
addition f must be “small” as w — :I:%) See picture on page 190 in Walnut.

V.5 The Detail Spaces W;
Recall: In the Haar construction we first had the approximation spaces
{0} e ---cV,cVycWViC---— L*R).

Then we split each V;, into the ortogonal sum

Vier = V; & Wy,
and got a “sum decomposition” of L*(R):

L*R)= P W, (9)

j=—o0
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(where W; L W, for j # 1).
In addition we succeeded to find an orthonormal basis for W; by dilating

and translating the mother wavelet 1.
Question: Given a general MRA of the type discussed in section V.4, let
W; be the orthogonal complement to V; in V;,1, so that

Vil =V; & W
A) Can we repeat the Haar construction and get (9)?
B) Can we find a “wavelet basis” for W,?

What do we mean by a wavelet basis?
To answer these questions, let us proceed as in the Haar case (Chap-
ter II1).

Theorem 5.1. The approximation operators P; defined on page 51 have the
following properties:

(i) P; is the orthogonal projection of L*(R) onto V;.
(i) Pjf = fif f €Vy for some J < j.
(i4) lim; oo Pjf = f for all f € L*(R).
(iv) lim;_,_o P;f =0 for all f € L*(R).
(v) PiP;f = P;P;f = P;f when J < j.
Proof.

(i) See Theorem 3.7 on page 14, part (e) of Definition 3.2 (page 50), and
Lemma 3.5, page 51.

(ii) We have P;f = f for all f € V}, (since P; is a projection onto V;), and

(iii) See Lemma 3.6 on page 52.

(iv) See Lemma 3.6 on page 52.
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(v) It follows from (ii) that P;P;f = P;f. Let U be the orthogonal com-
plement in V; to V; so that V; = V; @ U. Then every f € L*(R) can
be split into three parts:

First we split f into f = g+ h where g = P;f, h = f —g. Then g € V},
and
Pih = Py(f = Pif) = B;f = PAf = Pif = Bif =0,

so P;h =0 <= h e A4 (P;) <= his orthogonal to Vj.

Next we split ¢g into g = g1 + g2, where g; € V; and go € U. We have
g2 € U and h € le, so both g, and h are orthogonal to V; (€ Vj).
Therefore P;go = 0 and P;h = 0, so

Pif = Pi(g1+ g2+ h) = Psg1 (= g1) = Ps(g1 + g2) = Psg = PsP;f.
Thus P; = P;P; as claimed. ]

Theorem 5.2. The detail operators (Q; defined on page 51 have the following
properties:

(i) Q; is the orthogonal projection of L*(R) onto the orthogonal comple-
ment W; to V; in Vi1, so that Vi1 = V; @ W;. We call W; the detail
space of scale 277.

(1) Pjt1 =P+ Q.

(i) Py=Py+3 ,0.,Q, j>J.

(iv) lim;_o, Q;f =0 for all f € L*(R).

(v) lim;—, o Q;f =0 for all f € L*(R).

(vi) Q;Quf =0 for all j #1, f € LA(R).
Note. Compare this to Theorem 4.2 on page 33.
Proof.

(i) Let us define Q; to be the orthogonal projection of L*(R) onto W;.
As in the proof of Theorem 5.1 we split an arbitrary f € L*(R) into
f=fi+ fa+ fs where

flEWj? f2€‘/}a f3€‘/j+1.
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Then (as in that proof)

ijlzflu @jf2:O, ij:;:o
(since f» and f3 are orthogonal to W;)
Pif =f, Pifi=0, Pjfs=0,
Pj—i-lf:fl"‘f% Pj+1f3:0.
Thus: i
Pinf=h+f=Q;f+ P/,
S0 i )
Piy1 =P+ Q;, and Q; =P — P

This is how we defined Q);;1 on page 51, so Q; = @j = orthogonal
projection onto W;.

(ii)-(v) These proofs are the same as the ones on page 33.

(vi) Follows from the fact that W; L W, for all j # [. We have Q,f € W,
and W, L W;, so Q;[Q.f] = 0. O

V.6 The Mother Wavelet ¢

To proceed we need a “mother wavelet”:

Definition 6.1. Given a general MRA of the type discussed in Section V.4,
with the approximation spaces V; (see page 50) and detail spaces W, (see
page 61), we call ¢ € V} a mother wavelet if

{Tx}72 _ . is an orthonormal basis for W

(Recall: {Tyxy}e
page 51).
How can we check if ¢) is a mother wavelet?

- 1s an orthonormal basis for V; see Lemma 3.5,

Lemma 6.2. ¢ € L*(R) is a mother wavelet if and only if
(1) e

(i1) {Tp}32 . is an orthonormal system of translates
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(iii) (Txp, Tip) = 0 for all k,l (where ¢ is the father wavelet = scaling
function)

(iv) No function f € Wy is orthogonal to every Ty, k € Z.

Proof. Conditions (i), (ii) and (iii) are necessary for 1) to be a mother wavelet
(by definition). Suppose that these conditions hold. Let W be the space
spanned by the functions {7}, as in Theorem 1.4 on page 42, i.e., every
f € Wis of the form f =32 _ d;Ty. Then by that theorem, {T}v} is
an orthogonal basis for W. We claim that W = W,,.

Because of (i), ¢ € V;, and since TV}, = Vi (why?), we have Ty € V)
for all k. Thus W C Vj.

By (iii), Txv L Tip for all | = Tyyp LV} (since {T;p} is a basis for V)

= W L.

We conclude that W C W, (since V; =V & Wp).

If W # W, then there is some f € Wy, f # 0, such that f 1 W. But
then, by (iv), f L Ty¢ for all k, and so f = 0. This shows that we cannot
have W # W,,.

Consequently, {71} is an orthonormal basis for W, (= W). O

—0o0

By using the mother wavelet ¢ (if it exists) we can repeat many of the
theorems in the Haar chapter.

Definition 6.3. For each j, k € Z, we define the wavelet family 1); ;, induced
by the mother wavelet ¢ by

Vin(r) = 229X x — k) = (Do Tit) (2)
(cf. page 51).

Lemma 6.4. For each j € Z, {j1}7>_ 5 an orthonormal basis for W;.

Proof. Same as proof of Lemma 3.5 on page 51. O
(Compare this to Theorem 2.4 on page 27.)

Theorem 6.5. Suppose that we have a MRA with scaling function ¢ and
mother wavelet . Then
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(a) For every j > J, the set of functions
{00372 oo {14} —sochenc
J<I<y

is an orthonormal basis for V.

(b) For every J € Z, the set of functions

{en bz HWin} 520

—oo<k<oo
is an orthonormal basis in L*(R).
(c) The set of functions
{wj7k};'>,olc=—oo
is an orthonormal basis in L*(R).
Proof. Same as the proofs of Theorems 2.7-2.9 on pages 28-29. O

Question 6.6.
A) Does there always exist a mother wavelet 1)?
B) How do we find it?

To answer this question we first take a closer look at the functions in V_;
and W,.

Lemma 6.7. Let ¢ be a scaling function of a MRA {V;}2 and let & be

j:-oo)

the function in Theorem 3.9, page 53 (the “lowpass filter”). Then

i) feVy <= fw)=eéw)p(w) for some periodic ¢ € L(T).

1 [
11 = [ letw)Pae = 3 fal

k=—00

In this case

where ¢ are the coefficients in the expansion

f=Y alip.

k=—00
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i) f eV <= flw) = l(waw)p(w) where l(w) is periodic with
period 1, and

2 1/2
I = [l P
Proof.
i) See Theorem 1.6 on page 44.
ii) We have f € V1 < Dyf € 1}, so by i),
Do f(w) = é(w)p(w).

Here

Dipllw) = / e af(n)de (2 = y)
1

flw) = \/ié(2w)@(2wz (use Theorem 3.9, page 53)
= V2e(w)aWw)dlw)
l(w)a(w)p(w), where [(w) = V2¢(2w).
Finally
IF1I7: = [IDyaflz>  (use i)

1
= /|é(w)|2d¢u (w=2v)
0
1/2 12
= 2/ |é(2u)|2du:/ l(v)]2dv. O
0 0

Lemma 6.8. With the same assumptions as in Lemma 2.6, we have
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ii) feW_, <= flw)=ANw)i(w+ 1)p(w), where X is antiperiodic with
period 3: ANw + 3) = —A(w), and

1/2
12 = / Aw)2dw (< o0)

(not that this is = [} ,|M\(w)[2dw).
Proof. f e W_; C Vg, so by Lemma 6.7,

fw) = éw)p(w) (10)
for some 1-periodic & On the other hand, f 1 V.4, so
(9,f)=0 VgeV, =
(9./)=0 YgeV, < (see Lemma 6.7)
25 l(@)a(w)p(w)é(w) @(w)dw = 0,

for every periodic [ with period 1. All of I(w), Mw), é(w) are periodic with
period one, so

okt
0= 3 [ s EEEe
_ Z/ (0 + R)a(w + R+ Bl + )P
k=—o00 per10d1c
- Z / |( (w+k)|*dw (use Theorem 1.5, page 43)

- / () () ).

Since Z(w) is periodic with period %, —

/2 1 -
0 = /0 l(w)&(w)é(w)dw—{—/l l(w)a(w)é(w)dw (wzy—l—l)

1/2 —_— 12
_ /O i)Aw + L)l + v + /0 () () @) duw

1 1

12
= [ i) [aIT + a + it + )] o

66



Here Z(w) is arbitrary, so [...] =0, i.e.,

1 1
d(w)é(w) + dw + i)é(w + 5) =0 (11)
for (almost) all w. Thus, f € W_; if and only if (10) and (11) hold. If both
&(w) # 0 and &(w + %) # 0, then (11) is equivalent to

e(w+1/2) é(w)

alw)  alw+1/2)
Denote this number by A(w + 3). If only &(w) # 0, then we define

1, dw+3
Mw+z) = 0(7(/:)—2)
2 a(w)
and if only d(w + 3) # 0, then we define

L i)
YT D

Note that we cannot have both &(w) = 0 and G&(w + 3) = 0 except in a
set of measure zero since

tw) = =AMw+1ia(w+1) and

N[ =

- (12)
w+3) = Mw+3)a(w)

In both cases we end up with the formula |&(w)|? + |&(w + 3)|> =1 (see

~

formula (7) on page 53), which is valid for almost all w. The function A is
periodic with period 1 since both & and ¢ are periodic. In addition, if we
replace w by w + % in (12) and use the periodicity, then we get

é(w—i—%) = —Aw)a(w)
dw) = A(w)d(w%—l).

2
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Compare this to (12) = A w) = —A(w + 1). Thus, A is anti-periodic with
period % By Lemma 6.7, page 64 and by (12), since f € Vj, we have

wmzziéwme
1 1
— [ M@)Pla+ 5)Pds
0

1/2 1
_ (A +A¥)MMW@W+%W®10MW+%H=MWW
1/2

= /0 IAMw)|?(absé(w)? + |d(w + 1)|2)alcu (see (7) on page 53)

2
1/2
:/ AW O
0

Corollary 6.9. With the same assumptions as in Lemmas 6.7-6.8, we have

i) f €Wy = ) = u(w)al% + De(3), where plw +1) = —p(w),
and

1
m@=/mw%w«w>
0
Proof. We have f € Wy <= D, € W_;. By Lemma 6.8

Dijof (@) = V2f(2w) = Aw)a(w + 1/2)p(w).

Replace w by w/2, and put p(w) = <=A(%). Then p(w+ 1) = —p(w), and
by Lemma 6.8,

Sl

1/2
112 = anmézl N
w=v/2 1 ! 9 1 9
=2 L wpdo = [ )P

ie.,

d(w)é(w) + d(w+1/2)é(w+1/2) =0 (for (almost) all w). (13)

Thus f € W_, if and only if (??) and (13) hold.
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If &(w + 1/2) # 0, then we can define

a(w+1/2)
so that (13) gives in this case
¢w) = —Mw+1/2)a(w+1/2) and

Cw+1/2) = MNw+1/2)0(w).
If, instead &(w) = 0 then we can define \(w + 1/2) by

¢(w+1/2)
(w)

and from (13) we again get (15). We know that at least one of &(w) and
a(w+1/2) # 0, because |&(w)|? + |a&(w+1/2)|*> = 1 (see formula (7) on page
53). Thus, (15) always holds. The function A is periodic with period 1 since
both & and ¢ are periodic. In addition, if we replace w by w + 1/2 in (15)
and use the periodicity, then we get

AMw+1/2) =

Y

[oN

dw+1/2) = —Aw)a(w)

R (15)
tw) = Mw)d(w+1/2).

Compare this to (15) = Aw) = —A(w + 1/2). Thus, A is antiperiodic
with period 1/2. 0O

On the other hand, part i) of Lemma 2.6 is also true if we replace V; by
Wy and ¢ by 1, where v is an arbitrary mother wavelet (if such a mother
wavelet exists):

Lemma 6.10. Suppose that the MRA {V;}32_ has a mother wavelet .
Then

A

feW, <= f(w)=dw(w)

for some periodic d with pertod 1, and
1 A
113 = [ ldw)Pda.
0
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Proof. Same as proof of part i) of Lemma 6.7, page 64. (Use Theorem 1.5
on page 43). O

Comparing this to Corollary 6.9 we realize how to construct a mother
wavelet!

Theorem 6.11. Let {V;}2° be a MRA with scaling function p. Then 1)

j=—o00

is a mother wavelet for this MRA <—

w 1 w

h(w) = V(W)@(§ + 5)@(5% (16)

where v(w + 1) = —v(w) and |v(w)| =1 for almost all w.

Proof. Necessity: Suppose that v is a mother wavelet. Then ¢ € W, so by
Corollary 6.9, it has a representation

~ w

D) = v@)als + )W), vlw+1) = —v(w).
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In addition, by Theorem 1.4 on page 42, for almost all w € R,

1 = Z| Y(w+ k)|

k=—o00
w k+1 k
— k)| Mo Ry
kZ\ P+ B)PJacs + ) Ple(s + 2)
——00 _,—/
[2(w)]? periodic,
period 2
(even) (odd)
w k‘—l—l k.
= PP Y+ Y )G+ SoPle +3)l
k=2l k=2l+1
w+1
— @[ 3 lad Ele( + 1)
l=—00
w—+1 9
+Z|al+ + 1)Ple(5— +z>|]
l——wH—/
Deod ¢
R w1 . w
= PPl +H)F D Ie(s + D)
l=—0c0

|2_Z|so 5P

(use Theorem 1.4, page 42)
1
= [p@)Pllag + P + a7
(use formula (7) on page 53)
= [P

Thus, |7(w)| = 1 for almost all w.

Sufficiency: Assume that (16) holds (page 70). The above computation
shows that then {7y} __ is an orthogonal system of translates (see The-
orem 1.4, page 42). By Corollary 6.9, v € W,. Since W} is invariant under
integer translates (easy to prove), we have Ty € W for all k, so the space
spanned by {71} (see Theorem 7?7 on page ??7) must be a subspace of
Wo.

Is it all of W;? Yes! Seen as follows.
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Take any g € Wy. Then by Corollary 6.9,

9(w) = pw)a(w/2 +1/2)p(w/2),

so we get from (16)

Here
lw+1)  —pw)  pw)

viw+1)  —v(w)  v(w)
is periodic with period one. Moreover

/1‘,&(@()) ‘2dw < 0.
0

v(w)

Thus, by Theorem 1.5 on page 43, g belongs to the subspace spanned by
{1} O

Back to Theorem 6.11 on page 70: We can choose v to be any function
satifying v(w + 1) = —v(w) and |v(w)| = 1. The standard choice is to take
v(w) = —e ™ (sometimes v(w) = FeF™).
We shall do so in the sequel.

Definition 6.12. Let {V;}>°___ be a MRA with scaling function ¢. Then the

j=—o00

standard mother wavelet associated with the MRA is the function v satifying
P(w) = =™ a(w/2 +1/2)p(w),
where « is the low-pass filter in Theorem 3.9 on page 53.

Theorem 6.13. The standard mother wavelet defined above has the following
expansion in terms of the scaling function p: Let

Bk) = (=1 a1l - k) (17)
Then
U(r) = 2 ) Bk)p2e—k), (18)
k=—o00
A(A2w) = Bw)g(w), where (19)
Blw) = —e ™a(w+1/2). (20)
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Moreover,

= 1
S8 = 5. and (21)
k=—o00
- - 1
B@P+Bw+3)F = 1, wek (22)
Proof. Homework. (Compare this to Theorem 3.9, on page 53). O

V.7 Examples of Wavelet Bases
V.7.1 The Haar Wavelet

It is easy to see that the Haar scaling function p on page 23 and the Haar
wavelet on page 26 satisfy

p(x) = p(22) +p2r —1) = a(0) = a(l) =
W) = p(2a) —p(2e —1) = B(0) =1

This agrees with formula (17) on page 72.

V.7.2 The Piecewise Linear Wavelet
By the formula on page 57,

~

plw) = —— 2
\/é(l + 2 cos?(mw))

N

The transform of this function satisfies

)

where ¢ is the function

B(w) = cos’ ()4 (5).
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Therefore,

0052(%)\/%(1—#20082(%)) B(2)

b) = 0

\/%(1+2COS2(7TW)) \/é(lﬂLQCOSQ(%))

(use formula (5) on page 53)
= a(5)8(3)
ERRTTATT

G(w) = COSz(Wu})\/ 1+ 2cos?(mw) .

where

1+ 2cos?(2mw)
By formula (17) on page 72,
Bw) = —e 7a(w+1/2)

i 1+ 2cos?(mw + %)
= —e cos?(Tw + )
27\ 14+ 2cos?(2mw + )

: 1 + 2sin?
— _6—27r2wsin2(ﬂ_w)\/ + Z2sin (ﬂ'(ﬂ)

1+ 2 cos?(27w)

By formula (19) on page 72,

bw) = AEIEE)
= —e™ s1n2( )\/1+281n %) 25)
2 7\ 1+ 2cos?(m w)\/%(1+20082(
= AP,

W
2

)

A(w) = —v/3e~2mi sinz(ﬂw)\/[ 1 + 2sin®(7w)

14 2cos?(27w)][1 + 2 cos?(mw)]

From here we get

_22 o(2z — k),

k=—00
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where ¢ is the function ! and v is the inverse Fourier transform of 4.
See picture in Walnut on page 188. (Not quite correct: a shift is missing).
(The coefficients (k) are # 0 for all k, but they tend geometrically to zero
as k — £o00).

V.7.3 The Shannon Wavelet
The Shannon wavelet is given by

_ sin(2mx) — cos(mx) _ sinm(r —1/2) sin
Y(z) = mx—1/2)  w(z—1/2) -2 !

See picture in Walnut on page 189 (which appears to be correct).

V.7.4 The Stromberg-Meyer Wavelet

The Strémberg-Meyer Wavelet is constructed from the formulas on page 72,
starting from the formula for ¢:

i) Use (5) on page 53 to get &
ii) Use (20) on page 72 to get 3

iii) Take v to be the inverse transform of

(The result depends on how you choose the original function ¢.

V.8 Spline Wavelets

Instead of using the triangular functions in V.7.2 on page 7?7 we can also use
higher order “spline” functions: These are functions which are

e piecewise polynomial functions, which are

e patched together so that only the highest order derivative is discon-
tinuous.

e Supported on a finite interval.
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Definition 8.1. Let

0, otherwise,

and forn =1,2,3,..., define

z+1/2

z—1/2
The function B, is called the B-spline of order n. For n € Z. , define

).

~ n+1
Bn(l’) = T(n+1)/an(l’) = Bn(ZIJ — 5

Lemma 8.2.
(a) By is the Haar scaling function

(b) By is the function o which we used in the construction of the piecewise
linear wavelet

(c)

N =

[0,1)
1,2)

st —3x+ 5, z €23

S
. ?+3x—3, wze

[y

otherwise.

(eI N}

Proof. Direct computation.

Lemma 8.3.

(a) B, is supported in [—"TH, ”T“], and B, is supported in [0,n + 1].

(b) B, and B,, are n — 1 times continuously differentiable for n > 1.

(¢) B, is equal to a polynomial of degree n in each of the intervals [k, k+1],
0 <k <n (and zero elsewhere).
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(d)

Bow) - (sin(mu))"ﬂ’ and

W

Bu(w) = e—m<n+1>w(7sm<m’>)n+l, n>0.
W

Proof. (a) - (b) are easy. (c) is proved by induction. (d) follows from Theo-
rem 9.5 on page 17. U

As in the case of the piecewise linear multiresolution, the function B,
does not define an orthonormal system of translates, but it does define a
Riesz system of translates. The crusial function

= > |§lw+ k)P
k=—00
in Definition 2.1 on page 47 is now given by

2L Jsin (w4 k)22
M(w) - Z |7r(w + k)|2n+1

k=
(the numerator is periodic)

sm )2n+2 i 1
= ((4) + k)2n+2

Sin 2n+2 SlIl W 2n+2
:(W N TS

#0

The function M(w) is periodic with period 1, so to show that the frame
condition in Definition 2.1 on page 47 holds it suffices to find 0 < A < B so

that

11
A< Mw)<B forwG[—i 5]

The function is a monotonely decreasing function in the interval [0, 7],

so for |w| < 2

M(w)

v

(sin(mu) ) 2n+2 > (sin(ﬂ/Q) ) 2n+2

Tw /2
2\ 2n+2
= (—) >0
T
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2n+2 .
Choose A = (%) . On the other hand, for all w in this interval \W\ <
1, |sin(7w)| < 1, and for all |k| > 0,

1
k|l > |kl — =
o K 2 k]~ 5,
SO
P — 1
M(w) < 1+7T2”+2Z (k_%)2n+2 < 0.
k=1

Choose B to be the right hand side. Then 0 < A < M(w) < B, and we see
that {T,B,} is a Riesz system of translates.

We can now continue exactly as we did in Section V.7.2 in the piecewise
linear case to get a family of wavelets consisting of m order splines.

V.9 Properties of the Scaling Functions

Througout this section we assume that

In particular,

/ lo(x)|de < oo and

— 00

| W < o

oo

In particular, this means we ezclude the shannon wavelet (which has [~ _|p(z)|dz =
00).

Note. Much of what is said below is true under weaker assumptions on ¢
and 1. The important thing is to assume that ¢ is continuous at zero.

Theorem 9.1. Let {V;}32  be a MRA with scaling function ¢. If p €
L'(R), then
[p(0)] = 1.

Proof (outline). Choose an arbitrary f € L2(R), so that
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A) f(w) =0 for |w| > 1 (for example)

B) ||fllz2() # 0

For example f (w) = \.l. Let f be the inverse Fourier transform of f. We
project f onto V; using P;:

oo

fi=Pif = D (F0ix)0in

k=—o00

Since ¢;4(w) = 279/2¢(27w)e ™27k " and since (f, ;1) = (f, $jx) (Par-
seval), we get from Bessel’s equality ((iii) on page 12)

£l = D 1(fr el

k=—o00

00 . S . 9
— Z ‘/f(w)2_3/2g5(2—jw)e_2“2 k“dw‘
k=—00 R
e L e o 2
= Z ‘/ f(w)Q_’/ng(Q—jw)e_zmz Jk“’dw‘
k=—o00 Y 1

(since f(w) = 0 for |w| > 1). The sequence {29/2e~272" "k i5 an orthogonal
basis for L2((—2771,2771)). Choose j so large that 2~ > 1, and use Bessel’s
equality once more (in the opposite direction) to get

1
50 = [ 1F)PIpe 0P
Now let j — oco. Then ¢(2/w) — $(0) uniformly on [—1,1], so we get
1
[l = BOF [ 1fe)Pds

= [@(O)°[1f 17

On the other hand, by using condition (c) in Definition 3.2 on page 50 (in
the form of Lemma 3.6(c), page 52) we get

lim |1 f5l1Z2 = 11z = 17117
Substitute above = (1 — [4(0)]?)|f]%. =0 = |$(0)] = 1. O
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Corollary 9.2. Assuming still that both ¢ € L'(R) and ¢ € L'(R) we have
/ W)z =0 (<= 3(0) =0).

Proof. ¢ and ¢ are continuous since ¢ € LY(R) and ¢ € L'(R) (this is part
of the Riemann-Lebesgue Lemma). By formula (5) on page 53,

Y A

a(w) = = (whenever ¢(w) # 0).

p(w)

This together with Theorem 9.1 on page 78 implies that &(0) = 1, and that
¢ is continuous in a neighborhood around zero. This plus formula (7) on
page 53 gives &(3) = 0, Plug this into the formula (20) on page 72 to get
¥(0) = 0. But

00 = [ w0
Corollary 9.3. If p € L'(R), then
o(n) =0 forn==+1,£2,...(n #0).
Proof. Follows from Theorem 9.1 on page 78 and the formula

Yo lpwrn)f=1

(this is true now for all w and not just almost all w, since p € LY(R)). O

Corollary 9.4. If ¢ € LY(R), then ¢ is a “partition of the unity” in the
sense that

Z o(x+n)=1 for (almost) all x.

n=—oo

Proof. The function Y ° (x4 n) is integrable over [0, 1):

/01‘ i SO(ern)‘dx < /01 i lp(a + n)|dz

n=—oo n=—oo

= 3 [t npas

n=—oo

- /Ol|so<x>|dx < oo,
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It is periodic (easy to see) with period one. Therefore, for all integers k, if
we compute the Fourier Series, we get

1 00 o0 1
/ g 2mikw Z ol +n)de = Z / e_z’rik“’go(x—kn)dm
0 n=-—00 n=—co v 0
e 0 n+1 )
T ;—y Z / 6_27”]%'}()0(1')(11'
1, k=0,

0, k#0.
The only function which has the above Fourier series is the function = 1. [

Comment 9.5. A converse of Theorem 9.1 on page 78 is also true: If $(0) =
1, then properties (d) and (e) in Definition 3.2 implies property (c) (recall
that our proof of Theorem 9.1 used property (c) in a crucial way). Thus, if
the other properties in Definition 3.2 hold, then

(¢) <= lg(0)] =1

(if » € L'(R)). In many cases it is much easier to check that [$(0)| = 1 then
to check (c) directly. See Gripenberg’s note for the proof.

Comment 9.6. Usually one standardizes ¢(0) to be
p(0) =1

; o
(simply replace ¢ by @(0))'
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