Chapter IV

The Discrete Haar Transform

IV.1 Motivation

According to the discussion on page 31, after we have projected $L^2(\mathbb{R})$ onto V_N , we are dealing with piecewise constant functions. Since the functions are constant we may as well represent them by changing the "continuous time variable v" into a discrete time variable k.

Figure IV.1: Function $f \in V_N$ replaced by a sequence

Every time we pass from one scale to the next courser scale the **distance** between two points doubles.

There is a one-to-one correspondence: Given $f \in V_n$ we get the sequence $\langle f, h_{N,k} \rangle$. Given the sequence $\langle f, h_{N,k} \rangle$ we can recreate

$$f = \sum_{k} \langle f, h_{N,k} \rangle h_{N,k}$$
.

 $f=\sum_k \langle f,h_{N,k}\rangle h_{N,k}$. Recall: One step in the "analysis" is to write $f\in V_N$ in the form

$$f = f_{N-1} + g_{N-1} = \underbrace{P_{N-1}f}_{\substack{\text{courser} \\ \text{average}}} + \underbrace{Q_{N-1}f}_{\substack{\text{detail} \\ \text{information}}}$$

Means what? Since $f \in V_N$, we have

$$f = P_N f = \sum_{k=-\infty}^{\infty} c_0(k) p_{N,k}$$
$$P_{N-1} f = \sum_{k=-\infty}^{\infty} c_1(k) p_{N-1,k}$$

where $c_j(k) = \langle f, p_{N-j,k} \rangle, j = 1, 2.$

Figure IV.2:

Look at the composition on page 26: We get $c_1(0)$ by computing

Put:
$$c_j(k) = \langle f, p_{N-j,k} \rangle$$

 $d_j(k) = \langle f, h_{N-j,k} \rangle$

Figure IV.3:

From this it is in principle very simple to solve for the coefficients $c_1(0)$ and $d_1(0)$ in terms of $c_0(0)$ and $c_0(1)$. The only problem is the scaling factors $2^{j/2}$ in the definitions of $p_{j,k}$ and $h_{j,k}$. Anyway, the answer is:

Lemma 1.1. Expand $f \in V_N$ into

$$\underbrace{\sum_{k=-\infty}^{\infty} c_0(k) p_{N,k}}_{f} = \underbrace{\sum_{k=-\infty}^{\infty} c_1(k) p_{N-1,k}}_{P_{N-1}f} + \underbrace{\sum_{k=-\infty}^{\infty} d_1(k) h_{N-1,k}}_{Q_{N-1}f}$$

where

$$c_0(k) = \langle f, p_{N,k} \rangle$$

$$c_1(k) = \langle f, p_{N-1,k} \rangle$$

$$d_1(k) = \langle f, h_{N-1,k} \rangle$$
"averages"

"differences"

Then

$$\begin{array}{lll} & \begin{array}{lll} & courser \\ averages \end{array} \} & c_1(k) & = & \frac{1}{\sqrt{2}}[c_0(2k) + c_0(2k+1)] \\ & \begin{array}{lll} & \\ corresponding \\ difference \end{array} \} & d_1(k) & = & \frac{1}{\sqrt{2}}\underbrace{[c_0(2k) - c_0(2k+1)]}_{averages, scale, 2^{-N}} \end{array}$$

Proof. Homework.

This means that in the analysis part we can forget about the functions $p_{j,k}$ and $h_{j,k}$ and only work with the sequences $c_j(k)$ and $d_j(k)$. However, the functions $p_{j,k}$ and $h_{j,k}$ are still needed in two steps:

- The initial projection onto V_N .
- The final stage when we "synthesize" back the original function from the coefficients.

IV.2 The Discrete Haar Transform (DHT)

We assume that we have a given sequence $\{c_N(k)\}_{k=-\infty}^{\infty}$ of "averages of order N", where N is fixed.

Definition 2.1. The one step Discrete Haar Transform maps the sequence

$$\{c_j(k)\}_{k=-\infty}^{\infty}$$

into the two sequences

$$\{c_{j+1}(k)\}_{k=-\infty}^{\infty}$$
 and $\{d_{j+1}(k)\}_{k=-\infty}^{\infty}$

given by

$$\begin{cases} c_{j+1}(k) = \frac{1}{\sqrt{2}}[c_j(2k) + c_j(2k+1)], \\ d_{j+1}(k) = \frac{1}{\sqrt{2}}[c_j(2k) - c_j(2k+1)]. \end{cases}$$

In matrix form this become:

$$\begin{bmatrix} c_{j+1}(k) \\ d_{j+1}(k) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} c_j(2k) \\ c_j(2k+1) \end{bmatrix}$$

Lemma 2.2. The one step DHT is invertible and the original sequence $\{c_j(k)\}_{k=-\infty}^{\infty}$ can be reconstructed from the two sequences $\{c_{j+1}(k)\}_{k=-\infty}^{\infty}$ and $\{d_{j+1}(k)\}_{k=-\infty}^{\infty}$ by

$$\begin{bmatrix} c_j(2k) \\ c_j(2k+1) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} c_{j+1}(k) \\ d_{j+1}(k) \end{bmatrix}.$$

Proof. Easy. \Box

Note. This is the "same" transformation as the original one. It "inverts itself".

Note 2.3. Often the original sequence $c_0(k)$ is of finite length. The next pair of sequences $c_1(k)$ and $d_1(k)$ are then only half as long. If we repeat the same step with $c_0(k)$ replaced by $c_1(k)$, then the new sequences that we get are again only half as long. It is therefore convenient to take length = power of 2 (put extra zeros at end, if necessary).

In the *multistep* version of DHT we leave $d_1(k)$ as it is. However, $c_1(k)$ is another sequence of "averages", so it can apply the "same transform" again. And so on.

Definition 2.4. Given $J \in \mathbb{N}$ (number of steps) and N (length of original sequence is 2^N) and a sequence $\{c_0(k)\}_{k=0}^{2^N-1}$ we define the DHT of $\{c_0(k)\}_{k=0}^{2^N-1}$ to be the sequences

$$\left\{ d_j(k) \right\}_{\substack{1 \le j \le J \\ 0 \le k < 2^{N-j} - 1}} \quad \text{and} \quad \left\{ c_j(k) \right\}_{0 \le k \le 2^{N-J} - 1}$$
 (1)

recursively by

$$\begin{bmatrix} c_{j+1}(k) \\ d_{j+1}(k) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} c_j(2k) \\ c_j(2k+1) \end{bmatrix}, \quad 0 \le j \le J - 1.$$

Lemma 2.5. The multistep DHT can be inverted: Given the sequence (1) above we can recover the original sequence $\{c_0(k)\}_{k=0}^{2^N-1}$ recursively from the formula

$$\begin{bmatrix} c_j(2k) \\ c_j(2k+1) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} c_{j+1}(k) \\ d_{j+1}(k) \end{bmatrix}.$$

To get back the *original* continuous time interpretation, we only have to add two more steps:

• The projection into the original space V_N (which gives us the original sequence c_0). This is the *first analysis* step.

Figure IV.5: Synthesis

• The convertion of the coefficients c_0 back into a function. This is the last step in the synthesis procedure.

In these two steps we need only the scaling functions $p_{N,k}$ but the wavelets $h_{j,k}$ are never needed! (Analysis and final synthesis takes place in the space V_N).