Chapter 111

The Haar System

ITII.1 Dyadic Step Functions and the Haar Scal-
ing Function
Definition 1.1. A dyadic interval is an interval of the type

Ly =127k 279 (k +1)).

J
A dyadic step function with scale j is a function which is constant on each

interval I, (with j fixed).

Definition 1.2. The Haar scaling functions of order j are given by:
pi() = 22p(2x — k),

where

1, 0<z<1
p(z) =
0, otherwise.

Lemma 1.3. We have the alternative formula

2j/2, x e [j,k
pjk(z) =
0, elsewhere.
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Figure I11.1: Dyadic step functions

Proof.

pir(x) 0 = 0<2r—k<1
= k<Yr<k+1
= xc[279k277(k+1)). O

Notation 1.4. V; = { set of all dyadic step functions of scale j which belong
to L*(R)}. We call V; the Haar approzimation space of order j.

Thus: V; consists of those functions of the type drawn in Figure IIL.1 on
page 24 which satisfy [~ |f(z)[*dz < oc.

Lemma 1.5.
i) V; C Vjyq for all g,
i) = Vi = {0},
ii) ;2 _ o Vj is dense in L*(R).
Proof.
i) Obvious.
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i) If f € ﬂ;’;_oo Vj, then f is a constant, and the only constant which is
in L? is zero.

iii) This says that given any f € L*(R), we can find some f; € V; (for some
sufficiently large 7). The proof of this requires some extra knowledge
of L?:
Step 1: There is a function h which is continuous and has compact
support so that

15 =0l = [ 1) - s < 5.

Step 2: There is a dyadic step function with compact support f; such
that
If; = hlI* <

N ™

(We skip the details.) O
Theorem 1.6. Fizx any j € Z. Then the set of functions
is an orthonormal basis for V;.

Proof. Homework. O

IT1.2 The Haar (Wavelet) System

Question 2.1. Since V; C V4, there are some functions in Vj; which are
orthogonal to all functions in V;. What do they look like? In other words:
Try to find the space W; = orthogonal complement to V; in V.

Notation 2.2. ‘/j—i-l = ‘/] ) Wj.

Solution: Each f € W; belongs to V;;; and is orthogonal to every p;
(since p; € V}).
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Figure I11.2: The Haar system (of wavelets)

The orthogonality condition p;; L f says:

(k+1)277
Pk, ) =0 = f(z)dz =0

k2—3
<= The average of f over any dyadic interval I, is zero

<= f can be written as a sum of functions h; of the
type in Figure II1.2

These functions have a name:
Definition 2.3. The Haar system (of wavelets) is the family

hiw(z) = 2202 — k), j ke

where h is the Haar wavelet:

—_
(e

1
§$<§,
ha)={ —1, L<a<,

0, otherwise.



Theorem 2.4. Fiz any j € Z. Then the set of functions (of order j)
is an orthonormal basis for W;.

Proof (outline). Since p;/s is an orthonormal basis of V; 1, and W; C Vj4,
every function in WW; has an expansion of the type

f@) =" apipnz)
k=—o00

In dyadic interval of length 277 the average of f is zero (since f € W), so
by combining two of the functions p;/,; we get a multiple of h;; (see last
page). This leads to a sum of the type

fz) = Z dihj .

k=—00

Conversely, every sum of this type is orthogonal to every function in V; since
pik(z) L hjy Vi k

(easy to check). O

Theorem 2.5 (Splitting Theorem).

i) Vijp =V, @ W; (ie, V; L W; and every f € Vi1 can be written as
g+ 1 where g € V; and r € W;).

ii) Every f € Vi1 has an expansion

f= Z ajkPik + Z bj ks

k=—o00 k=—00
with p;r and hj as in Definitions 1.2 and 2.3.

iii) The set of functions

{iatie oo [ J{hin i o

is an orthonormal basis in V4.
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Proof.

i) This is how W, was defined, i.e., W, was defined to be the orthogonal
complement in V,; to V;. See pages 25 to 27.

ii) Follows from i) and Theorems 1.6 and 2.4.

iii) Follows from ii) and part iv) of Theorem 2.3, page 12. Note that
hj, L p;; for all k,1 since p;; € V; and h;, € W, and V; L W;. O

Lemma 2.6. W; L W, for j # 1.
Proof. If | < 7, then W; L V;, and W; C V4y C Vj. O

By repeating this splitting over and over again we get the following result:

Vi, = WiV,
W1 ®@W;2@ Vo
Wj_l D Wj_z ) Wj—3 S Vj—3

This leads to

Theorem 2.7. For every j,J € Z, with j > J, the set of functions

{Psk e oo U {1} —so<hcoo
NG I

J<I<y

“averages” of order J )
“differences” of order k

is an orthonormal basis in V.

Proof. We have
Vi=W,sieW,s@...0aW;a V),

and {pyr}e> .. is a basis for V;, and {h;,}7> _ is a basis for W. O

Here we let j — oco. The set V; increases with j, and it tends to all
of L?(R) as j — oo (because of property iii) in Lemma 1.5 on page 24).
Therefore:
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Theorem 2.8. For every J € Z, the set of functions

S22 N G R TS
N——— —oco<k<o0

“averages” -
“differences”

is an orthonormal basis in L?(R).

Proof. Easy to see that this sequence is orthonormal. If f is orthogonal to
all of these functions, then by Theorem 2.7, f is orthogonal to V;. This is
true for all j > J. By Lemma 1.5, [J;2, Vj is dense in L*(R), and therefore
f =0. Thus this is a basis. O

We can also let J — —o0, and just keep going in the expression on the
top of this page. This leads to:

Theorem 2.9. The set of functions

is an orthonormal basis in L?(R).

Proof. Easy to see that it is orthonormal. To see that it is a basis we can
e.g. argue as follows: By Theorem 2.8, every f € L?(R) has an expansion
(for each fixed J)

f(z) = Z azrpk(z) + Z ij,khj,k(x)a

k=—00 k=—o0 j=J
where
ajr = (f,pjk)
bj,k = <f7 hj,k)

If f L hjyforall j > J and k € Z then b;;, = 0 for all j and k, so by
Theorem 1.6, f € V;. This is true for all J € Z, so

fe ) Vi
J=—00
By property ii) in Lemma 1.5, page 24, f = 0. Thus, only the zero function
is orthogonal to all h;, so {h;x} is a basis. O
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Comment 2.10. All of Theorems 2.7 - 2.9 are “important” for different
reasons:

e Theorem 2.9 is important in the mathematical theory.

e Theorem 2.8 is more “practical” Instead of using arbitrary “course”
scales we can “stop” at any time we please by adding the “average”
functions p;; to the basis.

e Theorem 2.7 is the one which is actually used in wavelet expansions.
We first “project” an arbitrary f € L?(R) onto the “fine” approximation
space V; and then do a “wavelet decomposition” using “differences” and
some final “averages” on the scale J.

The Haar wavelets have a very nice “localization” property:

Theorem 2.11. Theorems 2.7 - 2.8 remains true if we replace L?*(R) by
L*(0,1) (= L?-functions defined on (0, 1)) with the following modifications:

A) Throughout we take J > 0 and j > 0.
B) We only include those values of k where h;j;(x) =0 for x ¢ [0,1).

Proof. True because each of the basis functions is either = 0 for all z € [0, 1)
or =0 for all z ¢ [0,1) (as long as j > 0 and J > 0). O

IT1.3 The Haar Approximation Operator

By Lemma 1.5 iii), every function f € L*(R) can be approximated, within
an arbitrary tolerance ¢, by a function in some of the space V; (the smaller
the ¢, the bigger we have to choose j).

By Theorem 3.7 on page 14, there is always a best approximation f; € V;
to V; (the one that minimizes ||f — f;||), and by Theorem 3.7 and Theorem
1.6, the best approximation is given by

[e.e]

fi=Pif = > {fpix)pi (1)

k=—o00

where p; ;, are the Haar scaling functions of order j
Ji
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Definition 3.1. We call the operator P; defined in (1) the approzimation
operator of order j (induced by the Haar system).

Theorem 3.2. The approzimation operators P; has the following properties:

i) P; is the orthogonal projection of L*(R) onto the approzimation space
Vj

i) Pjf = f whenever f € V; for some J < j
i) lim;_, Pjf = f for all f € L*(R)
w) lim;__o Pjf =0 for all f € L*(R)
v) P;P;f = P;P;f = P;f whenever J < j.
Proof.
i) This follows from Theorem 3.7 (page 14) and Theorem 1.6 (page 25).
ii) If f € V; then f € V; (we have V; C V; for J < j). We know that for

all f € V; we have

[e.e]

f= Z (f, i) Djk

k=—00

(see Theorem 1.6, page 25, and Theorem 2.3, page 12). The right-hand
side is P;f. Thus, P;f = f if f € V; for some J < j.

iii) By Lemma 1.5 (page 24), there is a sequence g; € V; so that
lg; = fll =0 as j — oo

The function f; = P;f is the best approximation to f in Vj, so ||f; —
fll < llg; — fll- Therefore also ||f; — f|| — 0 as j — oo. This is the
same thing as

lim f; = f.
J—00

iv) By Theorem 2.9 on page 29, for each J,

F=Pif+ > (fihiw)hix

k=—o00 j=J
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SO
Prf=F—=Y_ Y {f hirdhj.
k=—o0 j=J
By Theorem 2.9 (page 29) and Theorem 2.3 iv) (page 12) the right
hand side tends to zero as J — —oo. Thus P;f — 0 as J — —o0.

v) Since P;f € V; it follows from ii) that P;P;f = P;f. It remains to
show that also P;P;f = P;f. By Theorem 2.8 we have two different
expressions for f:

fo=Pif+ Y (fluadh
1>
—oo<k<oo
= Pif+ > (fihgdu
1>
—oco<k<oo

Comparing these to each other we see that

Pif = P;f+ Z (fs hug) Py -

J<I<]
—oco<k<oo

-

This part is
orthogonal to Vy;
see Theorem 2.7.

= P;Pif = P;|Pif+ Z (fs Py huk

J<I<j
—oco<k<oo

Pif+0
P;f (because projection). O

II1.4 The Haar Detail Operator

Recall that {h;;}p> . is an orthonormal basis for W, (see Theorem 2.4,
page 27). By replacing V; with W, we get the detail operator:

Definition 4.1. The Haar detail operator (), of order j is given by

o0

Qif = > (f hyrdhju

k=—00
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where h;;, are the Haar wavelets of order j (or scale j).

Theorem 4.2. The detail (); operators have the following properties:
i) Q; is the orthogonal projection of L*(R) onto the detail space W;
i) P =P+ Q;

iii) Py =Py +Y 0,0 j>J
w) lim; o Q;f =0 for all f
v) lim; . o Q;f =0 for all f
vi) Q;Qif = QiQ;f =0 for j #1.
Proof.
i) Follows from Theorem 1.6 (page 25) and Theorem 2.4 (page 27)
ii) By Theorem 2.8 (page 29), for all f € L*(R)
f= Z (f,pik)Dik + Z (fs hjr)hir + Z Z<f, i) .

= P;f + Q;f + a part which is orthogonal to V;;;
= Pinf=PFf+Q;f.
iii) Repeat ii) several times.
iv)
lim Q;f = lim (P f = P;f) (by ii))

= lim Ppyf — lim Bif = f — f=0.
Jj—00 J—00

Jim Qs = lim (Piaf = Pif)
= 0-0=0.

vi) Follows from Theorem 2.6 on page 28 since W, L W, for j # L.
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II11.5 Wayvelet expansion of Haar Approxima-
tion

For numerical computations we first start by approximating f by some func-
tion in V) for some large V.

f =~ Pyf. (Thisis a dyadic step function.)

Then we split Py f into successively courser and courser “averages” F;f and
the corresponding difference “details™

Pnf = Qn-af+Pyaf (first step)
= Qn-1f + Qnaf + Py_af (second step)
= ... (etc.)

= QN—1f+QN—2f+~~~+QJ]j+ P;f
9 ~~

differences of scale 2—7 average of
scale 2=/

Problem: How do we compute these differences and averages as effectively
as possible? (See next chapter for the answer).
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